
Tyler R. Josephson
AI & Theory-Oriented Molecular Science (ATOMS) Lab

University of Maryland, Baltimore County

Twitter: @trjosephson
Email: tjo@umbc.edu

Lean for Scientists and Engineers

Dream Dream Dream
Madeon

https://twitter.com/trjosephson

Lean for Scientists and Engineers 2024

1. Logic and proofs for scientists and engineers
1. Introduction to theorem proving
2. Writing proofs in Lean
3. Formalizing derivations in science and engineering

2. Functional programming in Lean 4
1. Functional vs. imperative programming
2. Numerical vs. symbolic mathematics
3. Writing executable programs in Lean

3. Provably-correct programs for scientific computing

Schedule (tentative)
July 9, 2024 Introduction to Lean and proofs

July 10, 2024 Equalities and inequalities

July 16, 2024 Proofs with structure

July 17, 2024 Proofs with structure II

July 23, 2024 Proofs about functions; types

July 24, 2024 Calculus-based-proofs

July 30-31, 2024 Prof. Josephson traveling

August 6, 2024 Functions, recursion, structures

August 7, 2024 Polymorphic functions for floats and reals; lists, arrays

August 13, 2024 Lists, arrays, indexing, and matrices

August 14, 2024 Input / output, compiling Lean to C

August 20, 2024 LeanMD & BET Analysis in Lean

August 21, 2024 SciLean tutorial, by Tomáš Skřivan

Logic and proofs for scientists and engineers
Functional programming in Lean 4
Provably-correct programs for scientific computing

Guest instructor: Tomáš Skřivan

Content inspired by:
Mechanics of Proof, by Heather Macbeth
Functional Programming in Lean, by David Christiansen

Schedule for today

• Recap Lecture 8
• Lists
• Defining lists
• Accessing and slicing elements
• Applying functions
• Recursion over lists
• Filtering using if ... then
• Folding

• Vectors

• Strings
• Input/output
• An analogy
• Hello, world!

• Compiling Lean to C
• Example: CSV Parser

Big thanks to David Christiansen and
 Functional Programming in Lean!

All possible
combinations

of symbols

Logically valid
statements

Reality

Pure math
Syntax

Code

Scientific models Symbolic models Computable
models

Syntax and semantics in scientific computing

Reality

Scientific software

Slide from Lecture 3

All possible
combinations

of symbols

Logically valid
statements

Syntax

Code

Symbolic models Computable
models

Syntax and semantics in scientific computing

Reality

Traditionally, the
validity of the
mathematics and the
scientific theory are
established by hand

Humans read the theory
and write the code as
best as they can

Then use various automated
and manual means to
compare to experiment

Slide from Lecture 3

All possible
combinations

of symbols

Logically valid
statements

Syntax

Code

Symbolic models Computable
models

Syntax and semantics in scientific computing

Reality

Can we represent all
of this in Lean, and
validate the
construction of the
math, scientific models,
and software, in one
system?

Then use various automated
and manual means to
compare to experiment

Slide from Lecture 3

Polymorphic functions to bridge floats and reals

Adsorption data
Filter data to
focus on “BET

regime”

Linearize the
raw data

Perform linear
regression

Fitted
coefficients

Proof that linear
regression

minimizes least
squares error

Proof that algebra
for linearization is

correct

Formal proof of BET Theory

follows from a body of assumptions about

<latexit sha1_base64="qGJr2BfNG7MrRouJGmSxxRyQAxs=">AAACE3icbVDLSsNAFJ3UV62vqks3g0VIlNZEfG2EohuXFewD2hIm00k7dJKMM5NCCf0HN/6KGxeKuHXjzr9x2mahrQcuHM65l3vv8TijUtn2t5FZWFxaXsmu5tbWNza38ts7NRnFApMqjlgkGh6ShNGQVBVVjDS4ICjwGKl7/ZuxXx8QIWkU3qshJ+0AdUPqU4yUltz84QO8gi1fIJwM3ABiPkpM7tpFbpnOkYmLjmXyYy1Y1sjNF+ySPQGcJ05KCiBFxc1/tToRjgMSKsyQlE3H5qqdIKEoZmSUa8WScIT7qEuamoYoILKdTH4awQOtdKAfCV2hghP190SCAimHgac7A6R6ctYbi/95zVj5l+2EhjxWJMTTRX7MoIrgOCDYoYJgxYaaICyovhXiHtIBKR1jTofgzL48T2onJee8dHZ3Wihfp3FkwR7YByZwwAUog1tQAVWAwSN4Bq/gzXgyXox342PamjHSmV3wB8bnD99Wmv8=</latexit>

q =
vmcp

(p0 � p)(1 + (c� 1)(p/p0))

Proof that output corresponds
to meaningful parameters

Polymorphic functions
Floating point numbers

Real numbers

ℝ

8Slide from Lecture 1

Programming Paradigms
Imperative
• Emphasizes how to solve
• State and Mutation: Variables can be

changed after they are set
• Procedural Style: Follows a sequence

of steps to achieve a result
• Control Flow: Uses loops, conditionals,

and other control structures

• Side Effects: Functions or methods can
modify global state or have other side
effects

• Examples: Python, Java, most languages

Functional
• Emphasizes what to solve
• Immutability: Variables, once assigned,

cannot be changed
• Declarative Style: Focuses on defining and

declaring what things are
• Functions Prioritized: Functions can be

passed as arguments, returned from other
functions, and assigned to variables

• Pure Functions: No side effects, given the
same input, always produces the same
output

• Examples: Haskell, Lean 4!

It’s possible to write functional-style code in languages like Python
Lean 4 is purely functional; it doesn’t let you use imperative techniques

Slide from Lecture 7

Why is mutability so popular?

0.61 0.13 0.03
0.27 0.68 0.22
0.22 0.83 0.98
0.15 0.99 0.14
0.24 0.38 0.62
0.46 0.92 0.88
0.41 0.28 0.69
0.58 0.29 0.36
0.68 0.89 0.02
0.89 0.15 0.94

0.61 0.13 0.03
0.27 0.68 0.22
0.22 0.83 0.98
0.15 0.99 0.14
0.24 0.76 0.62
0.46 0.92 0.88
0.41 0.28 0.69
0.58 0.29 0.36
0.68 0.89 0.02
0.89 0.15 0.94

Multiply one
element by 2

Efficiency

If this matrix is immutable, you need to re-copy the rest of the matrix!
In this case, 2x the memory and 30x the computational cost

Functional programming languages use various tricks to manage cost
Lean 4 introduced the “functional but in-place” paradigm
(see de Moura and Ullrich, CADE 2021 for more details)

Slide from Lecture 7

Recursive functions

• Functions can call other functions
• A function is recursive when it calls itself
• Python example: factorial function, n!

def factorial(n):
 if n==0:
 return 1
 else:
 return n*factorial(n-1)

def factorial_loop(n):
 result = 1
 for i in range(1,n+1):
 result = result*i
 return result

Imperative style Functional style

Slide from Lecture 7

Factorial function – recursive

def factorial(n):
 if n==0:
 return 1
 else:
 return n*factorial(n-1)

Functional style

factorial(5)
5*factorial(5-1)
5*factorial(4)
5*4*factorial(3)
5*4*3*factorial(2)
5*4*3*2*factorial(1)
5*4*3*2*1*factorial(0)
5*4*3*2*1*1

factorial(5)

return 120

Notice how the “stack” of calculations keeps increasing.
At scale, this creates memory issues.

This means this is not “tail recursive.”

Slide from Lecture 7

Factorial function – tail-recursive

def factorial_tail(n, acc=1):
 if n == 0:
 return acc
 else:
 return factorial_tail(n-1, n*acc)

Functional style

factorial(5,1)
factorial(4,5*1)
factorial(4,5)
factorial(3,5*4)
factorial(3,20)
factorial(2,20*3)
factorial(2,60)
factorial(1,60*2)
factorial(1,120)
factorial(0,120)

factorial(5)

return 120

This tail-recursive function manages the “stack” so it
doesn’t blow up.

Almost always, tail-recursive functions perform better

Slide from Lecture 7

The halting problem

• Let’s consider recursive functions
• Does factorial(5) halt?
• How about factorial(20)?
• factorial(1523482)?
• What about factorial(-3)?
• factorial(-60)?

def factorial(n):
 if n==0:
 return 1
 else:
 return n*factorial(n-1)

You don’t need to finish running the program every time
You’re using logic to figure this out!

Slide from Lecture 7

Recursion in Lean

def factorial : ℕ → ℕ
 | 0 => 1
 | n + 1 => (n + 1) * factorial n

1

ℕ ℕ

1

def not_factorial : ℕ → ℕ
 | 0 => 1
 | n + 1 => (n + 1) * not_factorial (n+1)

This function works This function is broken

Check out the error message on not_factorial:

fail to show termination for not_factorial
with errors
structural recursion cannot be used:

In factorial, Lean automatically proves termination
via structural recursion, so this function is okay.

2

fac(3) 6

fac(2)

fac(1)

fac(0)

Slide from Lecture 7

Lists vs Arrays

https://medium.com/@bilal_k/wtf-is-linked-list-5d58b8a3bfe7

1

4

7

12

9

11

1

4

7

12

9

11

A “list” in Python is an array!A “list” in Lean is a linked list

Slide from Lecture 8

Lists in Lean

• FPIL Ch 3
• Lists in Lean are linked lists
• When you declare them, you need to specify the type of the data

included, or specify a generic type and use polymorphism

• Summing elements in a list requires recursion

def periodicTable : List String :=
 ["H", "He", "Li", "Be", "B", "C", "N", "O", "F", "Ne”]

def primesUnder10 : List Nat := [2, 3, 5, 7]

def sum_list : List Nat → Nat
| [] => 0
| (x :: xs) => x + sum_list xs

Slide from Lecture 8

Lists

Vectors

• Lean is a dependently-typed programming language
• Types can depend on values
• The type “Vector” is a List with the list length as a value

def Vector (α : Type) (n : ℕ) :=
 { l : List α // l.length = n }

Strings

• Strings defined using double quotations, e.g. "hello"
• Single quotations are used for characters, e.g. 'c'

• Go to StringExamples.lean

Input / Output: An Analogy

Kitchen
(back of house)

Dining room
(front of house)

Waiter

Pure functions
Mathlib

Verified logical syntax

Messy, unpredictable
real world

IO Monad

All possible
combinations

of symbols

Logically valid
statements

Reality

Pure math
Syntax

Code

Scientific models Symbolic models Computable
models

Syntax and semantics in scientific computing

Reality

Scientific software

Slide from Lecture 3

Basic Output

def main : IO Unit := IO.println "Hello, world!"

Save file as Hello.lean
Then, from the Terminal, run:

lean --run Hello.lean

Input + Output

def main : IO Unit := do
 let stdin ← IO.getStdin

 let input ← stdin.getLine

 IO.println "How would you like to be addressed?"
 let name := input.dropRightWhile Char.isWhitespace
 IO.println s!"Hello, {name}!"

1. Evaluate the right-hand side
2. Learn that it’s an IO action: IO.getStdin
3. Execute this IO action to create a value: stdin
4. stdin has type IO.FS.Stream

1. Evaluate the right-hand side
2. Learn that it’s an IO action: getLine
3. Execute this IO action to create a value: input
4. input has type String

let introduces a variable that
will be assigned as such
throughout the do block

← Using an arrow means that the value
of the expression is an IO action that
should be executed, with the result of
the action saved in the local variable.

:= is used here instead of ← because
the right side is pure functions, not IO

Input + Calculation + Output

• Let’s get a number from standard input and calculate its factorial!
• But wait, what happens if standard input doesn’t provide a number?
• We need a way to manage error handling

• Option Monad

Opportunity for further study: Monads

• IO is a “monad”

• My favorite resource introducing Monads:
https://www.youtube.com/watch?v=Q0aVbqim5pE

• A helpful analogy from Scott Wlaschin (code in F#):
https://vimeo.com/113588389 (timestamp 38:48)

Compiling Lean to C

• Lean 4 is designed to be able to be compiled to C

lean --c=cfile.c leanfile.lean

Example: CSV Parser

• CSV: comma-separated values

• Chris Lovett from Microsoft wrote CSV parser

0.61 0.13 0.03
0.27 0.68 0.22
0.22 0.83 0.98
0.15 0.99 0.14
0.24 0.76 0.62
0.46 0.92 0.88
0.41 0.28 0.69
0.58 0.29 0.36
0.68 0.89 0.02
0.89 0.15 0.94

