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Large Math Libraries: Generative Approach

Inspiration: Haskell
data List a = Nil | Cons a (List a)

deriving (Eq, Show, Ord, Read,

-- by enabling some extensions

Functor, Generic, Data,

Foldable,Traversable, Lift)}
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Large Math Libraries: Generative Approach

Inspiration: Haskell
data Point = Point { _x :: Double, _y :: Double }

makeLenses ''Point
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Motivation Contribution Approach Testing Conclusion

Which parts of the library can be generated?

Algebra libraries typically contain

Theories
record Monoid c ` : Set (suc (c t `)) where

infixl 7 _•_
infix 4 _≈_
field

Carrier : Set c

_≈_ : Rel Carrier `
_•_ : Op2 Carrier

isMonoid : IsMonoid _≈_ _•_ ε

Related Constructions
record IsMonoidMorphism (J_K:Morphism) : Set(c1 t `1 t c2 t `2) where

field

sm-homo : IsSemigroupMorphism F.semigroup T.semigroup J_K
ε-homo : Homomorphic0 J_K F.ε T.ε

Theorems and proofs
comm+idl ⇒idr : LeftIdentity e _•_ → RightIdentity e _•_
comm+idl⇒idr idl x = begin

x • e ≈ 〈 comm x e 〉
e • x ≈ 〈 idl x 〉
x
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What are the preconditions for generating them?

Universal Algebra

theory: (S,F,E)

homomorphism between
(S1,F1,E1) and
(S2,F2,E2)

A function hom : S1 → S2

For every op ∈ F,

hom (op1 x1 · · · xn) = op2 (hom x1) · · · (hom x2)
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How would this affect the library building process?

One theory, Multiple Representations

MathScheme

Monoid := Theory {

U : type;

* : (U,U) → U;

e : U;

axiom right_identity_*_e :

forall x : U · (x * e) = x;

axiom left_identity_*_e :

forall x : U · (e * x) = x;

axiom associativity_* :

forall x,y,z : U ·
(x * y) * z = x * (y * z);

}

MMT

theory Semigroup : ?NatDed =

u : sort

comp : tm u → tm u → tm u

# 1 * 2 prec 40

assoc : ` ∀ [x, y, z]

(x * y) * z = x * (y * z)

assocLeftToRight :

{x,y,z} ` (x * y) * z

= x * (y * z)

= [x,y,z]

allE (allE (allE assoc x) y) z

assocRightToLeft :

{x,y,z} ` x * (y * z)

= (x * y) * z

= [x,y,z] sym assocLR

theory Monoid : ?NatDed

includes ?Semigroup

unit : tm u # e

unit_axiom : ` ∀ [x] = x * e = x

Haskell

class Semiring a => Monoid a

where

mempty :: a

mappend :: a -> a -> a

mappend = (<>)

mconcat :: [a] -> a

mconcat =

foldr mappend mempty

Coq

class Monoid {A : type}

(dot : A → A → A)

(one : A) : Prop := {

dot_assoc : forall x y z : A,

(dot x (dot y z)) =

dot (dot x y) z

unit_left : forall x,

dot one x = x

unit_right : forall x,

dot x one = x

}

Alternative Definition:

Record monoid := {

dom : Type;

op : dom -> dom -> dom

where "x * y" := op x y;

id : dom where "1" := id;

assoc : forall x y z,

x * (y * z) = (x * y) * z;

left_neutral : forall x,

1 * x = x;

right_neutal : forall x,

x * 1 = x;

}

Agda

data Monoid (A : Set)

(Eq : Equivalence A) : Set where

monoid :

(z : A) →
(_+_ : A → A → A) →
(left_id : LeftIdentity Eq z _+_) →
(right_id : RightIdentity Eq z _+_) →
(assoc : Associative Eq _+_) →
Monoid A Eq

Alternative Definition:

record Monoid c ` : Set (suc (c t `)) where

infixl 7 _•_
infix 4 _≈_
field

Carrier : Set c

_≈_ : Rel Carrier `
_•_ : Op2 Carrier

isMonoid : IsMonoid _≈_ _•_ ε
where IsMonoid is defined as

record IsMonid (• : Op2) (ε : A)

: Set (a t `) where

field

isSemiring : IsSemiring •
identity : Identity ε

identity l : LeftIdentity ε •
identity l : proj1 identity

identity r : Rightdentity ε •
identity r : proj2 identity

7 / 23



Motivation Contribution Approach Testing Conclusion

How would this affect the library building process?

One theory, Multiple Representations

MathScheme

Monoid := Theory {

U : type;

* : (U,U) → U;

e : U;

axiom right_identity_*_e :

forall x : U · (x * e) = x;

axiom left_identity_*_e :

forall x : U · (e * x) = x;

axiom associativity_* :

forall x,y,z : U ·
(x * y) * z = x * (y * z);

}

MMT

theory Semigroup : ?NatDed =

u : sort

comp : tm u → tm u → tm u

# 1 * 2 prec 40

assoc : ` ∀ [x, y, z]

(x * y) * z = x * (y * z)

assocLeftToRight :

{x,y,z} ` (x * y) * z

= x * (y * z)

= [x,y,z]

allE (allE (allE assoc x) y) z

assocRightToLeft :

{x,y,z} ` x * (y * z)

= (x * y) * z

= [x,y,z] sym assocLR

theory Monoid : ?NatDed

includes ?Semigroup

unit : tm u # e

unit_axiom : ` ∀ [x] = x * e = x

Haskell

class Semiring a => Monoid a

where

mempty :: a

mappend :: a -> a -> a

mappend = (<>)

mconcat :: [a] -> a

mconcat =

foldr mappend mempty

Coq

class Monoid {A : type}

(dot : A → A → A)

(one : A) : Prop := {

dot_assoc : forall x y z : A,

(dot x (dot y z)) =

dot (dot x y) z

unit_left : forall x,

dot one x = x

unit_right : forall x,

dot x one = x

}

Alternative Definition:

Record monoid := {

dom : Type;

op : dom -> dom -> dom

where "x * y" := op x y;

id : dom where "1" := id;

assoc : forall x y z,

x * (y * z) = (x * y) * z;

left_neutral : forall x,

1 * x = x;

right_neutal : forall x,

x * 1 = x;

}

Agda

data Monoid (A : Set)

(Eq : Equivalence A) : Set where

monoid :

(z : A) →
(_+_ : A → A → A) →
(left_id : LeftIdentity Eq z _+_) →
(right_id : RightIdentity Eq z _+_) →
(assoc : Associative Eq _+_) →
Monoid A Eq

Alternative Definition:

record Monoid c ` : Set (suc (c t `)) where

infixl 7 _•_
infix 4 _≈_
field

Carrier : Set c

_≈_ : Rel Carrier `
_•_ : Op2 Carrier

isMonoid : IsMonoid _≈_ _•_ ε
where IsMonoid is defined as

record IsMonid (• : Op2) (ε : A)

: Set (a t `) where

field

isSemiring : IsSemiring •
identity : Identity ε

identity l : LeftIdentity ε •
identity l : proj1 identity

identity r : Rightdentity ε •
identity r : proj2 identity

7 / 23



Motivation Contribution Approach Testing Conclusion

How would this affect the library building process?

Multiple theories, One Construction

module _ {c1 `1 c2 `2}

(From : Monoid c1 `1)

(To : Monoid c2 `2) where

private

module F = Monoid From

module T = Monoid To

open Definitions F.Carrier T.Carrier T._≈_

record IsMonoidMorphism (J_K:Morphism)
: Set(c1 t `1 t c2 t `2) where

field

sm-homo :

IsSemigroupMorphism F.semigroup T.semigroup J_K
ε-homo : Homomorphic0 J_K F.ε T.ε

open IsSemigroupMorphism sm-homo public

module _ {c1 `1 c2 `2}

(From : CommutativeMonoid c1 `1)

(To : CommutativeMonoid c2 `2) where

private

module F = CommutativeMonoid From

module T = CommutativeMonoid To

open Definitions F.Carrier T.Carrier T._≈_

record IsCommutativeMonoidMorphism (J_K:Morphism)
: Set(c1 t `1 t c2 t `2) where

field

mn-homo :

IsMonoidMorphism F.monoid T.monoid J_K

open IsMonoidMorphism mn-homo public
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How would this affect the library building process?

Signature, Product Algebra, Basic Term Language, Homomorphism, Closed Term

Language, Open Term Language, Evaluator, Simplification rules, Staged terms, Finally

tagless representations, induction principle, Relational Interpretation, Monomorphism,

Isomorphism, Endomorphism, Congruence relation, Quotient algebra, Trivial

subtheory, Flipped theory, Monoid action, Monoid Cosets, composition of morphisms,

kernel of homomorphisms, parse trees.
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Motivation Contribution Approach Testing Conclusion

Tog: A small Language and TypeChecker

dependently typed language

Martin Löf type theory.

experimental language, in the style of Agda

record Monoid (A : Set) : Set where

constructor monoid

field

e : A

op : A -> A -> A

lunit : {x : A} -> (op e x) == x

runit : {x : A} -> (op x e) == x

assoc : {x y z : A} ->

(op x (op y z)) == (op (op x y) z)
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Tog: Internal Representation

One universe: Set

Functions: Fun Expr Expr.

Axioms: Pi Telescope Expr.

They use the underlying propositional equality:
Eq Expr Expr.

Theories: Σ-types.
parameters: Binding.

HBind [Arg] Expr

Bind [Arg] Expr

declarations: Constr Name Expr.
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Equational Theory

data EqTheory = EqTheory {

name :: Name_ ,

sort :: Constr , -- the carrier S

funcTypes :: [Constr], -- function symbols F

axioms :: [Constr], -- equations E

waist :: Int -- the number of parameters

}
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Constructions for Free!

Example: Product Algebra
productThry :: Eq.EqTheory -> Eq.EqTheory

productThry t =

let mkProd = productField $ getConstrName srt

· · ·
in

over Eq.thyName (++ "Prod") $

over Eq.funcTypes (map mkProd) $

over Eq.axioms (map mkProd) $

gmap ren t

record MonoidProd (AP : Set) : Set where

constructor MonoidProdC

field

eP : Prod AP AP

opP : Prod AP AP -> Prod AP AP -> Prod AP AP

lunit_eP : (xP : Prod AP AP) -> opP eP xP == xP

runit_eP : (xP : Prod AP AP) -> opP xP eP == xP

associative_opP : (xP: Prod AP AP)(yP: Prod AP AP) (zP : Prod AP AP) ->

opP (opP xP yP) zP == opP xP (opP yP zP)
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Constructions for Free!

Example: Homomorphism
homomorphism :: Eq.EqTheory -> Decl

homomorphism t =

let nm = t ^. Eq.thyName ++ "Hom"

(psort,pfuncs,_) = mkPConstrs t

((i1, n1), (i2, n2)) = createThryInsts t

a = Eq.args t

fnc = genHomFunc psort n1 n2

axioms = map (oneAxiom fnc psort n1 n2) pfuncs

in Record (mkName nm)

(ParamDecl $ (map (recordParams Bind) a) ++ [i1,i2])

(RecordDeclDef setType (mkName $ nm ++ "C")

(mkField $ fnc : axioms))

record MonoidHom (A1 : Set) (A2 : Set)

(Mo1 : Monoid A1) (Mo2 : Monoid A2) : Set where

constructor MonoidHomC

field

hom : A1 -> A2

pres-e : hom (e Mo1) == e Mo2

pres-op : (x1 : A1) (x2 : A1) -> hom (op Mo1 x1 x2) == op Mo2 (hom x1) (hom x2)
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More Constructions

Signature, Product Algebra, Basic Term Language, Homomorphism, Closed Term

Language, Open Term Language, Evaluator, Simplification rules, Staged terms, Finally

tagless representations, induction principle, Relational Interpretation, Monomorphism,

Isomorphism, Endomorphism, Congruence relation, Quotient algebra, Trivial

subtheory, Flipped theory, Monoid action, Monoid Cosets, composition of morphisms,

kernel of homomorphisms, parse trees.
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Generated

record Monoid (A : Set) : Set

where

constructor monoid

field

e : A

op : A -> A -> A

lunit:{x : A} -> (op e x) == x

runit:{x : A} -> (op x e) == x

assoc: {x y z : A} ->

op x (op y z) == op (op x y) z

record MonoidSig (AS : Set) : Set where

constructor MonoidSigSigC

field

eS : AS

opS : AS -> AS -> AS

data MonoidLang : Set where

eL : MonoidLang

opL : MonoidLang -> MonoidLang -> MonoidLang

record MonoidProd (AP : Set) : Set where

constructor MonoidProdC

field

eP : Prod AP AP

opP : Prod AP AP ->

Prod AP AP -> Prod AP AP

lunit_eP : (xP : Prod AP AP)

-> opP eP xP == xP

runit_eP : (xP : Prod AP AP)

-> opP xP eP == xP

associative_opP :

(xP: Prod AP AP)(yP: Prod AP AP)

(zP : Prod AP AP) ->

opP (opP xP yP) zP == opP xP (opP yP zP)

record MonoidHom (A1 : Set) (A2 : Set)

(Mo1 : Monoid A1) (Mo2 : Monoid A2) : Set where

constructor MonoidHomC

field

hom : A1 -> A2

pres-e : hom (e Mo1) == e Mo2

pres-op : (x1 : A1) (x2 : A1) ->

hom (op Mo1 x1 x2) == op Mo2 (hom x1) (hom x2)
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Testing: MathScheme Library

Built using 3 combinators:

Extension.
CommMagma = extend Magma {comm : ...}

Rename.
AddMagma = rename Magma {op to +}

Combine.
Monoid = combine Semigroup {} Unital {} over PointedMagma
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Testing: MathScheme Library

Theory Graph

Carrier Pointed

Magma PointedMagma RightUnital

Semigroup LeftUnital Unital

Monoid
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Results

Input Time of Writing Now

Definitions 227 1132 5047

LOC 316 14811 106468
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Conclusion

Algebra libraries formalizes the same standard mathematical
information again and again

Algebra library in every formal system

At least 4 libraries of Algebra in Coq.

“In spite of this body of prior work, however, we have
found it difficult to make practical use of the alge-
braic hierarchy in our project to formalize the Feit-
Thompson Theorem in the Coq system.”1
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“In spite of this body of prior work, however, we have
found it difficult to make practical use of the alge-
braic hierarchy in our project to formalize the Feit-
Thompson Theorem in the Coq system.”1

1Garillot, François, et al. ”Packaging mathematical structures.”
International Conference on Theorem Proving in Higher Order Logics.
Springer, Berlin, Heidelberg, 2009.
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Conclusion and Future Work

Support the process of building libraries

Goal: Eliminate Redundancy.
Technique: Generative Programming.

Abstract over design decisions.

Generate uniform constructions.

Future Work:

Generating more definitions.
Enrich the theory graph structure.
Exporting to existing, full-featured systems.
Generalizing to higher order logics.
Scripting language for referencing theories and
constructions within the library.
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Conclusion

Monoid = combine Semigroup {} Unital {} over PointedMagma

generate (Homomorphism, ProductTheory, TermLang)

using · · ·
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