Seymour Contributions

CAMERON RAMPELL

November 28, 2025

Contents

1 A Blueprint for Cographicness

1

§1 A Blueprint for Cographicness

Lemma 1.1 (Row space of a standard representation)

Let X and Y be disjoint finite sets and let

$$B \in \mathbb{F}_2^{X \times Y}$$
.

Consider the matrix

$$A := [\mathbf{1}_x \mid B] \in \mathbb{F}_2^{X \times (X \cup Y)},$$

where the columns are indexed by $E := X \cup Y$ and the rows by X. Then the row space of A is

$$row(A) = \{ (u, uB) \mid u \in \mathbb{F}_2^X \} \subseteq \mathbb{F}_2^X \oplus \mathbb{F}_2^Y \cong \mathbb{F}_2^E.$$

Proof. The x-th row of A is $(e_x, B_{x,*})$, where e_x is the standard basis vector in \mathbb{F}_2^X and $B_{x,*}$ is the x-th row of B. A general linear combination of the rows is therefore

$$\sum_{x \in X} u_x(e_x, B_{x,*}) = (u, \sum_{x \in X} u_x B_{x,*}) = (u, uB),$$

where $u = (u_x)_{x \in X} \in \mathbb{F}_2^X$. Conversely, every pair (u, uB) arises in this way, so these are exactly the row vectors.

Lemma 1.2 (Orthogonal complement of a standard row space)

Let $A = [\mathbf{1}_x \mid B]$ be as in Lemma 1.1, and let

$$U := \text{row}(A) \subseteq \mathbb{F}_2^{X \cup Y}.$$

Then the orthogonal complement of U is

$$U^{\perp} = \{ (bB^{\mathsf{T}}, b) \mid b \in \mathbb{F}_2^Y \}.$$

Equivalently, if $B^* := -B^{\mathsf{T}}$, then

$$U^{\perp} = \{ (bB^*, b) \mid b \in \mathbb{F}_2^Y \}.$$

Proof. Write vectors in $\mathbb{F}_2^{X \cup Y}$ as pairs (a,b) with $a \in \mathbb{F}_2^X$ and $b \in \mathbb{F}_2^Y$. By Lemma 1.1, any element of U has the form (u,uB) with $u \in \mathbb{F}_2^X$. The orthogonality condition $(a,b) \in U^{\perp}$ means

$$0 = (a, b) \cdot (u, uB) = a \cdot u + b \cdot (uB) = a \cdot u + (bB^{\mathsf{T}}) \cdot u = (a + bB^{\mathsf{T}}) \cdot u$$

for all $u \in \mathbb{F}_2^X$. Hence we must have $a = bB^\mathsf{T}$, and then

$$U^{\perp} = \{ (bB^{\mathsf{T}}, b) \mid b \in \mathbb{F}_2^Y \}.$$

Over \mathbb{F}_2 we have -1 = 1, so $B^* = -B^\mathsf{T} = B^\mathsf{T}$, yielding the alternative description. \square

Lemma 1.3 (Row space of the dual standard matrix)

With B and $B^* = -B^{\mathsf{T}}$ as above, define

$$A^* := [\mathbf{1}_y \mid B^*] \in \mathbb{F}_2^{Y \times (X \cup Y)}$$

Then

$$row(A^*) = U^{\perp},$$

where U = row(A) and U^{\perp} is given by Lemma 1.2.

Proof. The y-th row of A^* is $(e_y, B_{y,*}^*)$ with $e_y \in \mathbb{F}_2^Y$. A general linear combination of the rows is

$$\sum_{y \in Y} b_y(e_y, B_{y,*}^*) = (b, bB^*),$$

where $b = (b_y)_{y \in Y} \in \mathbb{F}_2^Y$. Thus

$$row(A^*) = \{ (b, bB^*) \mid b \in \mathbb{F}_2^Y \}.$$

Identifying $\mathbb{F}_2^{X \cup Y}$ as $\mathbb{F}_2^X \oplus \mathbb{F}_2^Y$ with coordinates ordered as (X,Y), this is exactly the set

$$\{(bB^*,b)\mid b\in\mathbb{F}_2^Y\},\$$

which coincides with U^{\perp} by Lemma 1.2.

Lemma 1.4 (Dual vector matroid via orthogonal complement)

Let A and A' be matrices over a field F with the same column index set E, and suppose

$$row(A') = row(A)^{\perp} \subseteq F^E$$
.

Let M(A) and M(A') be the vector matroids represented by A and A'. Then

$$M(A') = M(A)^*.$$

Proof. Let $F \subseteq E$.

 (\Rightarrow) Suppose F is dependent in M(A). Then there exists a nonzero vector $c \in F^F$ such that $A_F c = 0$. Extend c by zero outside F (still denoted c). The condition Ac = 0 means each row r of A satisfies $r \cdot c = 0$, hence $c \in \text{row}(A)^{\perp} = \text{row}(A')$. Write

$$c = \sum_{i} \lambda_i r_i',$$

where the r'_i are rows of A' and not all λ_i are zero. For every $e \in E \setminus F$ we have $c_e = 0$, so

$$\left(\sum_{i} \lambda_{i} r_{i}'\right)\big|_{E \setminus F} = 0.$$

Hence the rows of A' indexed by $E \setminus F$ admit a nontrivial linear combination giving the zero row, so $E \setminus F$ is dependent in M(A').

(\Leftarrow) The same argument with A and A' interchanged, using $\text{row}(A) = (\text{row}(A')^{\perp})$, shows that if $E \setminus F$ is dependent in M(A'), then F is dependent in M(A).

Thus

F dependent in $M(A) \iff E \setminus F$ dependent in M(A'),

which is the defining property of duality.

Theorem 1.5 (Dual of standard representation corresponds to dual matroid)

Let M be a binary matroid on ground set $E = X \cup Y$, with standard representation B so that

$$A = [\mathbf{1}_X \mid B].$$

Let $B^* := -B^\mathsf{T}$ and

$$A^* := [\mathbf{1}_Y \mid B^*].$$

Then $M(A^*) = M(A)^* = M^*$.

Proof. By Lemma 1.1 and Lemma 1.2, if U = row(A) then U^{\perp} has the form

$$U^{\perp} = \{ (bB^*, b) \mid b \in \mathbb{F}_2^Y \}.$$

By Lemma 1.3, we have

$$row(A^*) = U^{\perp} = row(A)^{\perp}.$$

Therefore, by Lemma 1.4, the column-matroid $M(A^*)$ is the dual of M(A):

$$M(A^*) = M(A)^* = M^*.$$

Lemma 1.6

The dual matroid of a regular matroid is also a regular matroid.

Proof. Let M be a regular matroid. We wish to show that M^* is also regular.

Take a standard \mathbb{Z}_2 -representation matrix B of M. By Lemma 34, since M is regular, there exists a TU signing B' of B: B' is a matrix over \mathbb{Q} that is TU, and |B'(i,j)| = B(i,j) for all entries. So M is represented (over \mathbb{Q}) by a TU matrix B' whose pattern of zero and non-zero entries is exactly that of B.

From Theorem 1.5, if a matroid M has standard representation matrix B, then its dual M^* has the standard representation matrix $B^* = -B^{\mathsf{T}}$. The TU signing of this dual standard matrix, $(B')^* = -(B')^{\mathsf{T}}$, preserves total unimodularity, so $(B')^*$ is a TU matrix whose support is exactly B^* .

Since we have just exhibited a TU signing of M^* (i.e., $(B')^*$), the dual matroid M^* is regular by Lemma 34.

Theorem 1.7

Every cographic matroid is regular.

Proof. We know that all graphic matroids are regular by Theorem 70. Recall that we say a matroid is cographic if its dual is graphic. So it suffices to show regularity is preserved under duals, which we showed in Lemma 1.6.