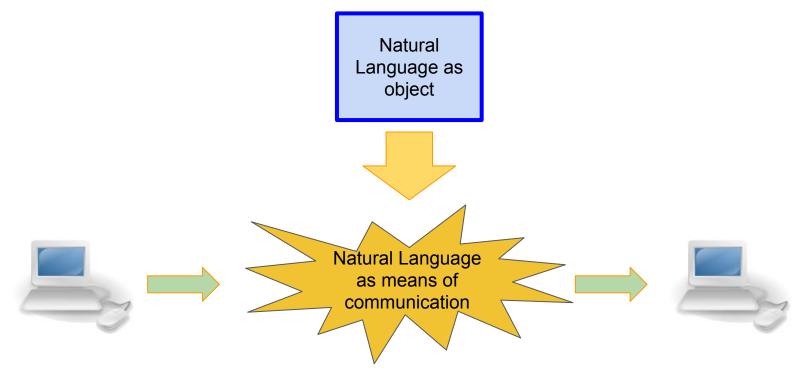
A Promising Path To Autoformalization and General AI

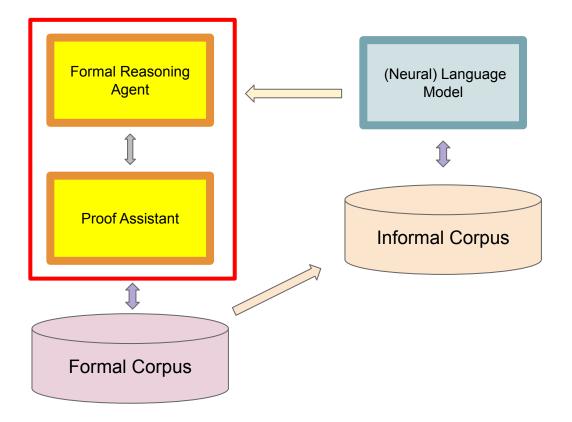
CICM 2020 29th of July 2020

Christian Szegedy Google Research

Can we demonstrate real language understanding?



Vision of joint proving and auto-formalization



Background And History

John McCarthy: **Computer programs for checking mathematical proofs.** In: A Paper Presented at the Symposium on Recursive Function Theory, New York, April 1961

Donald Lee Simon: **Checking number theory proofs in natural language**. Ph.D thesis (1990)

Claus Zinn: **Understanding informal mathematical discourse**. Ph.D thesis, Institut für Informatik, Universität Erlangen-Nürnberg (2004)

Background And History

Josef Urban: **Translating Mizar for first order theorem provers**. MKM 2003

Josef Urban: MaLARea: a metasystem for automated reasoning in large theories. CADE-21 (2007)

Cezary Kaliszyk, Josef Urban, Jiří Vyskočil: Learning to parse on aligned corpora (Rough Diamond). ITP 2015

Cezary Kaliszyk, Josef Urban, Jiří Vyskocil: **System description: statistical parsing of informalized Mizar formulas**. SYNASC 2017

Autformalization vs. Formal Theorem Proving Only

• Most mathematics is given in natural language (this is where the data is)

Autformalization vs. Formal Theorem Proving Only

- Most mathematics is given in natural language (this is where the data is)
- Open-ended exploration? Interestingness is hard to define
 - AlphaZero: Could do self-play. Math cannot be done via self-play unless the interestingness problem is solved (what to explore)
 - Generated mathematics would be alien to us. How to evaluate?
 - How would one communicate with a system that has developed its own notions and theories?

Autformalization vs. Formal Theorem Proving Only

- Most mathematics is given in natural language (this is where the data is)
- Open-ended exploration? Interestingness is hard to define
 - AlphaZero: Could do self-play. Math cannot be done via self-play unless the interestingness problem is solved (what to explore)
 - Generated mathematics would be alien to us. How to evaluate?
 - How would one communicate with a system that has developed its own notions and theories?
- Formalization itself is a hard task
 - Manual formalization requires domain experts
 - Hard to check correctness wrt to natural language
 - Slow

Is (Deep) Reinforcement Learning Useful?

Alemi et al: DeepMath (NIPS 2016): **Deep Neural Networks for Premise** Selection

Whalen: **Holophrasm** (Deep RL for Metamath) (2016)

Loos et al: Deep Network Guided Proof Search: LPAR (2017)

Kaliszyk et al: Reinforcement Learning for Theorem Proving (2018)

Zombori et al: Towards Finding Longer Proofs (2019)

Bansal et al: HOList/DeepHOL (Deep RL for HOL Light) ICML (2019)

Machine Translation/Language Modeling (Transformers):

Lample et al: Unsupervised Machine Translation Using Monolingual Corpora Only (2017)

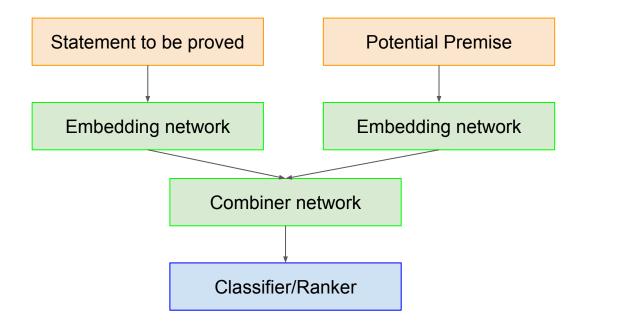
Devlin et al: BERT: **Pre-training of Deep Bidirectional Transformers for Language Understanding**

Lample, Charton: Deep Learning for Symbolic Mathematics (ICRL 2019)

Rabe et al: Language Modeling for Formal Mathematics (2020)

Brown et al: Language Models are Few-Shot Learners (2020) [GPT-3]

Premise Selection Using Deep Learning



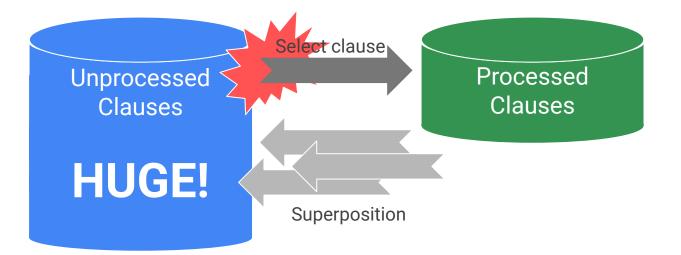
Embedding Network:

- Convolutional
 network
- Recurrent LSTM
 network
- Combined convolutional network with LSTM on top

DeepMath-Deep Sequence Models for Premise Selection

Alemi, A. A., Chollet, F., Een, N., Irving, G., Szegedy, C., & Urban, J, NIPS 2016

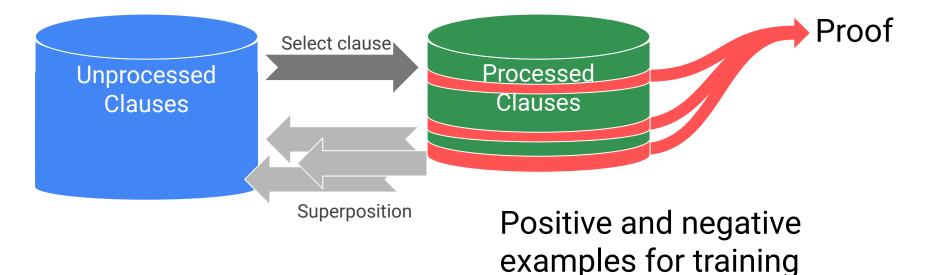
The E Theorem Prover



System Description: E 1.8,

Stephan Schulz. LPAR (2013) www.eprover.org

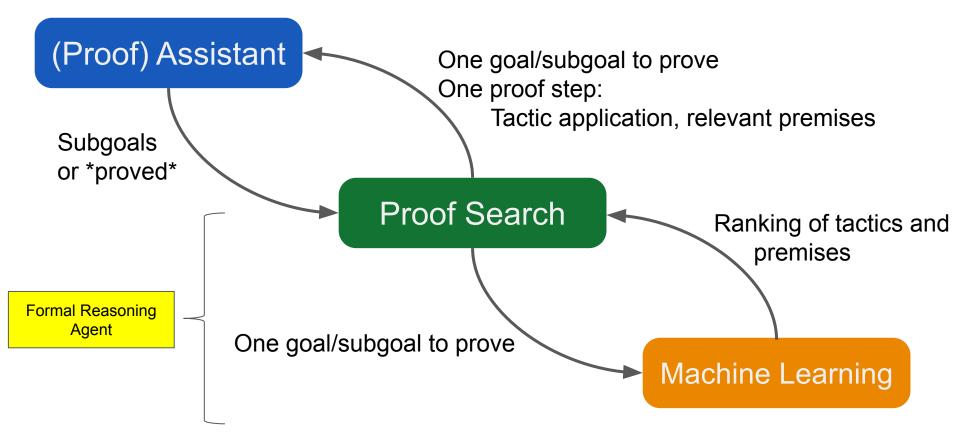
The E Theorem Prover - Generating Training Data



Deep Network Guided Proof Search

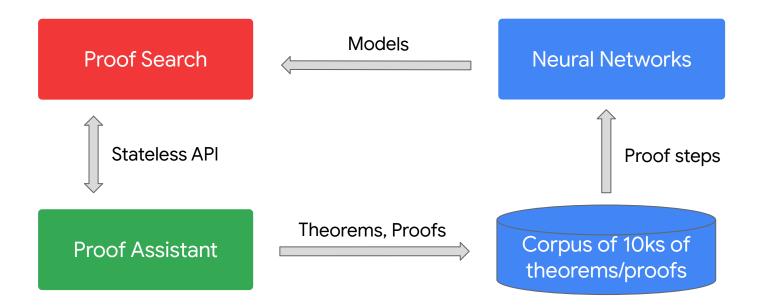
S. Loos, G. Irving, C. Szegedy, and C Kaliszyk. LPAR (2017).

APIs for Theorem Prover Developers and ML Researchers



Open Source Release: The HOList Environment

www.deephol.org

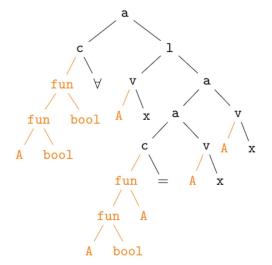


Bansal et al: HOList: An Environment for Machine Learning of Higher-Order Theorem Proving, ICML(1029)

Aditya Paliwal et al.

Neural Architectures for Formulas

Apply Graph Neural Networks to abstract syntax trees. E.g.:

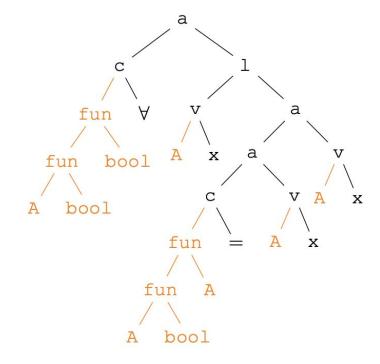


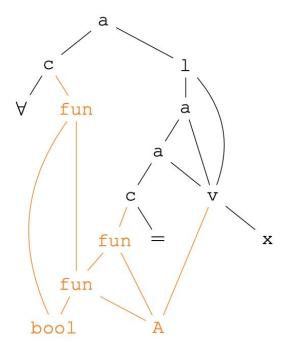
$$\forall x : x = x$$

- a: function application
- c: constant
- v: variable
- 1: lambda/abstraction

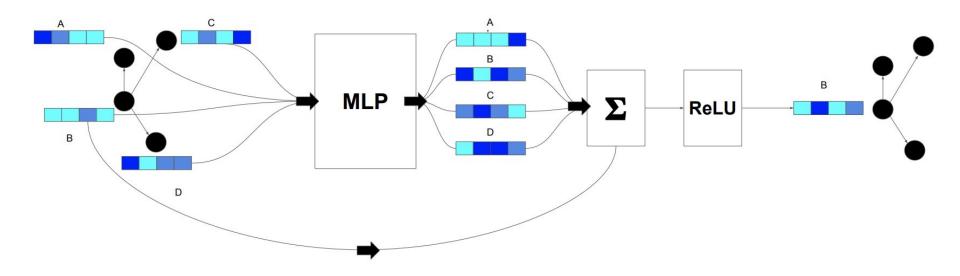
fun, bool, A are type annotations

Compressed Graph Representation



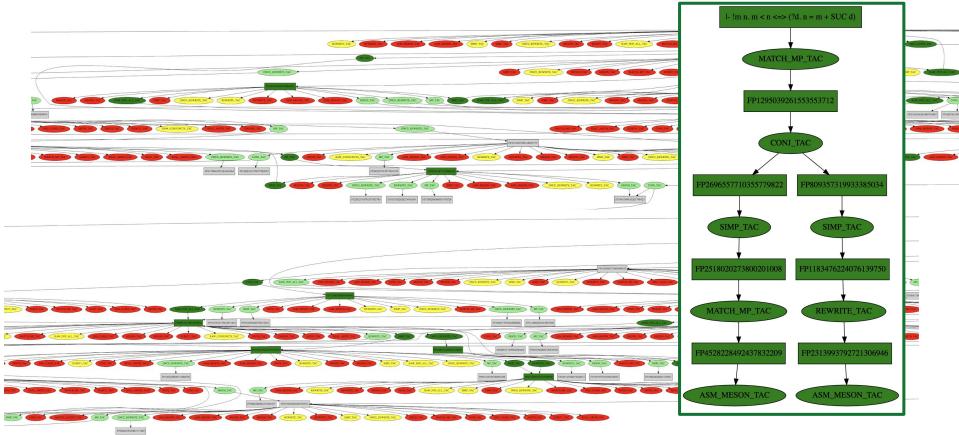


Graph Neural Networks

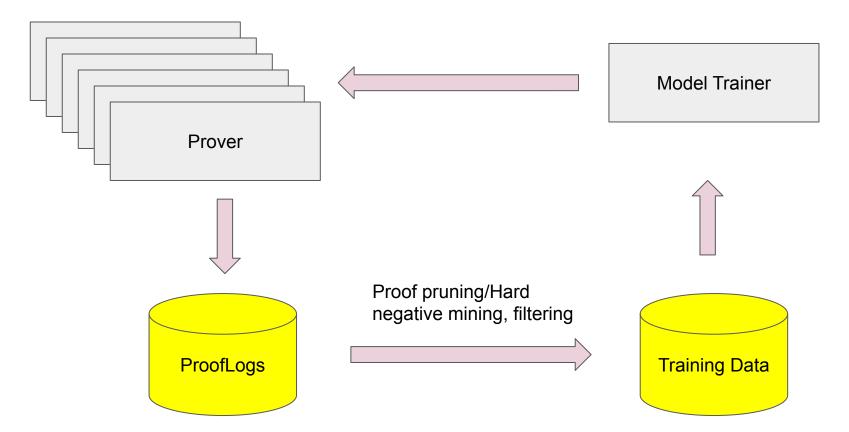


Paliwal et al, Graph Representations for Higher-Order Logic and Theorem Proving AAAI 2020

Proof Search Tree



DeepHOL Loop



Bansal et al.: Learning to Reason in Large Theories without Imitation (2019)

DeepHOL results on HOL-Light Core + Multivariate Analysis

Method	Proof success rate
Imitation Learning With Graph Neural Networks	50%
DeepHOL-Zero Reinforcement Learning, Bootstrapping without human proofs	56%
Imitation + Reinforcement Learning	60%
Cumulative over Reinforcement Learning	70%

Cherry picked Example

Human proof

let LOCALLY_INTER_OPEN = prove (`!P s t u:real^N->bool. locally P s /\ open_in (subtopology euclidean u) s /\ open_in (subtopology euclidean u) t ==> locally P (s INTER t)`, REPEAT STRIP_TAC THEN REWRITE_TAC[locally; IN_INTER] THEN MAP_EVERY X_GEN_TAC [`v:real^N->bool`; `x:real^N`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [locally]) THEN DISCH_THEN(MP_TAC o SPECL [`t INTER v:real^N->bool`; `x:real^N`]) THEN ASM_REWRITE_TAC[IN_INTER] THEN ANTS_TAC THENL [CONJ_TAC THENL [MATCH_MP_TAC OPEN_IN_TRANS THEN EXISTS_TAC `s INTER t:real^N->bool` THEN CONJ_TAC THENL [SUBGOAL_THEN `t INTER v:real^N->bool = (s INTER t) INTER v` (fun th -> ASM_SIMP_TAC[th; OPEN_IN_INTER; OPEN_IN_REFL]) THEN REPEAT(FIRST_X_ASSUM(MP_TAC o MATCH_MP OPEN_IN_IMP_SUBSET)) THEN ASM SET_TAC[]; MATCH_MP_TAC OPEN_IN_SUBTOPOLOGY_INTER_SUBSET THEN EXISTS_TAC `u:real^N->bool` THEN ASM_SIMP_TAC[OPEN_IN_INTER; OPEN_IN_REFL] THEN ASM_MESON_TAC[OPEN_IN_IMP_SUBSET]]; REPEAT(FIRST_X_ASSUM(MP_TAC o MATCH_MP OPEN_IN_IMP_SUBSET)) THEN ASM SET_TAC[]]; MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `n:real^N->bool` THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `1:real^N->bool` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN MATCH_MP_TAC OPEN_IN_SUBSET_TRANS THEN EXISTS_TAC `s:real^N->bool` THEN ASM_REWRITE_TAC[] THEN REPEAT(FIRST_X_ASSUM(MP_TAC o MATCH_MP OPEN_IN_IMP_SUBSET)) THEN ASM SET_TAC[]]);;

Proof found by DeepHOL

g `!P s t u:real^N->bool. locally P s ∧ open_in (subtopology euclidean u) s ∧ open_in (subtopology euclidean u) t ==> locally P (s INTER t)`;;

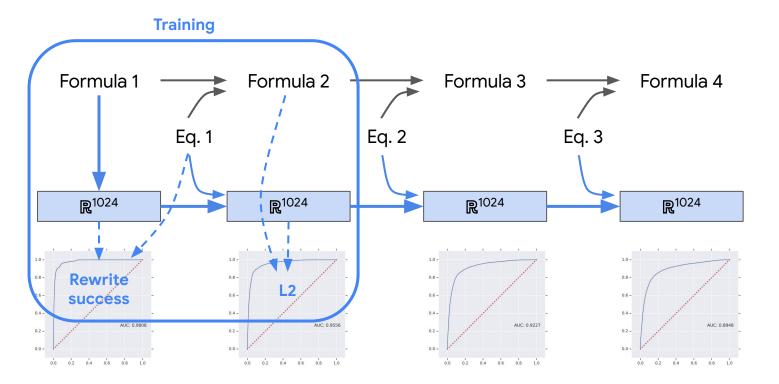
e (MESON_TAC [LOCALLY_OPEN_SUBSET; open_in; INTER_SUBSET; OPEN_IN_INTER; OPEN_IN_SUBSET_TRANS]);; val it : goalstack = No subgoals

Dennis Lee at al.

Matematical Reasoning in Latent Space, ICLR (2019)

Reasoning in Latent Space

Trivial example: $3^2 = 9$ can be **rewritten** to $3^*3 = 9$ by the equality $x^2 = x^*x$.



Transformer Networks

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, Illia Polosukhin: **Attention is All You Need**, NIPS 2017

Transformers

Attention: Relaxation of Nearest-Neighbor Lookup in a vector space:

- Key Matrix: *K*
- Value Matrix: V
- Query Matrix: Q

$softmax(QK^T)V$

Transformers

Self-Attention: Query and memory comes from the same set of vectors

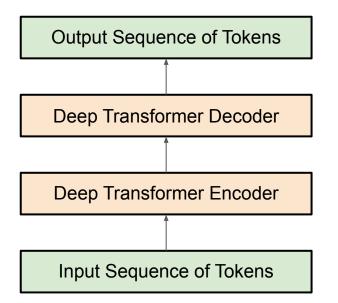
- A lot of lookups in parallel (stacked horizontally: "attention heads").
- A lot of layers:

(stacked vertically: "layers")

• K, V and Q and are computed by matrix products using learned parameters.

Skip-Tree Model Pretraining via Transformers

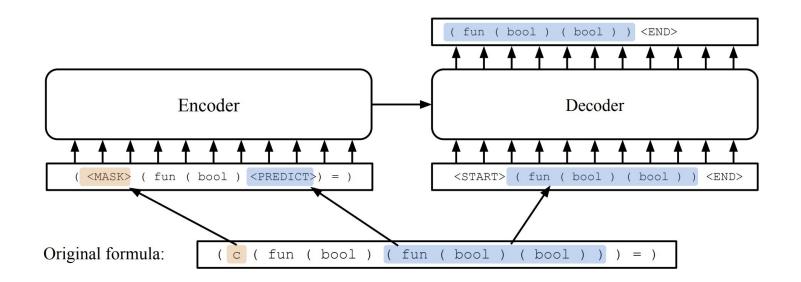
Machine Translation:



Rabe et al: Language Modeling for Formal Mathematics (2020)

Skip-Tree Model Pretraining via Transformers

Task:



Skip Tree Inference Tasks

- PREDICT> \Rightarrow ($x \Leftrightarrow (b \lor x1) \land (b \lor x0)$)
- Predict> \Rightarrow $(g \setminus \{s\}) = g$
- PREDICT> \Rightarrow $(x1/y1 = x2/y2 \Leftrightarrow x1 * y2 = x2 * y1)$

Skip Tree Inference Tasks

- PREDICT> \Rightarrow ($x \Leftrightarrow (b \lor x1) \land (b \lor x0)$)
- Predict> $\Rightarrow (g \setminus \{s\}) = g$
- PREDICT> \Rightarrow $(x1/y1 = x2/y2 \Leftrightarrow x1 * y2 = x2 * y1)$

The ground truth answers are as follows:

- $\bullet \ ((b \Leftrightarrow \texttt{False}) \Rightarrow (x \Leftrightarrow x0)) \land (b \Leftrightarrow \texttt{True}) \Rightarrow (x \Leftrightarrow x1)$
- $\neg(s \in g)$
- $0 < y1 \land 0 < y2$, note that $0 \neq y1 \land 0 \neq y2$ would be a more general assumption.

Skip-Tree Inference Tasks

- $\forall x, n \in \mathbb{N}$: $(x^n = 1) = \langle \text{PREDICT} \rangle$
- $\forall m, n: n \leq m \Rightarrow m n + n = \mathsf{PREDICT} \mathsf{>}$
- $\forall l, m : \langle \text{PREDICT} \rangle = \text{APPEND}(\text{REVERSE}(m), \text{REVERSE}(l))$

Skip-Tree Inference Tasks

- $\forall x, n \in \mathbb{N}$: $(x^n = 1) = \langle \text{PREDICT} \rangle$
- $\forall m, n: n \leq m \Rightarrow m n + n = \mathsf{PREDICT} \mathsf{>}$
- $\forall l, m : \langle \text{PREDICT} \rangle = \text{APPEND}(\text{REVERSE}(m), \text{REVERSE}(l))$

The ground truth for the tasks is:

- $x = 1 \lor n = 0$
- $\bullet m$
- REVERSE(APPEND(l, m))

Success Rate of Transformer Based Inference

Dataset	Type Inference	Hard Type Inference	Assumptions	Equalities
Skip-tree (uniform)	96.21%	94.40%	40.85%	46.57%
Skip-tree (weighted)	96.23%	93.32%	40.86%	42.89%
Skip-tree (small)	95.89%	90.42%	39.23%	40.91%
Skip-tree (no <mask>)</mask>	96.07%	32.50%	38.38%	41.60%
Skip-sequence (long)	9.44%	0.06%	0.53%	0.56%
Skip-sequence (medium)	48.94%	5.97%	3.32%	3.55%
Skip-sequence (short)	77.25%%	3.21%	0.68%	2.06%

Neural Network Model Parameters over the years

Name	Year	Million Parameters
QuocNet (Google)	2012	600
AlexNet (University of Toronto)	2012	60
Inception-v1 (Google)	2014	12
ResNet-152 (Microsoft)	2015	60
Bert-Large (Google)	2018	340
GPT-2 Large (OpenAI)	2018	1500
Meena (Google)	2019	2600
GPT-3 (OpenAI)	2020	175000
GShard (Google)	2020	600000

Rough Estimated Compute Cost of Training Models

Name	Year	PetaFLOPS-days (310 ²² floating point operations)
AlexNet (University of Toronto)	2012	10 ⁻²
ResNet-152 (Microsoft)	2015	10 ⁻¹
Bert-Large (Google)	2018	10 ²
GPT-2 Large (OpenAI)	2018	10 ²
Meena (Google)	2019	104
GPT-3 (OpenAI)	2020	104
GShard (Google)	2020	10 ⁴

- Pretrain large models in unsupervised manner (generatively) for all available formal/informal mathematics
- Use cycle-consistency to train translation models without parallel corpora
- Use hindsight experience replay to do guided exploration.
- Use images as inputs for mathematical text

• Pretrain large models in unsupervised manner (generatively) for all available formal/informal mathematics

- Pretrain large models in unsupervised manner (generatively) for all available formal/informal mathematics
- Use cycle-consistency to train translation models without parallel corpora

- Pretrain large models in unsupervised manner (generatively) for all available formal/informal mathematics
- Use cycle-consistency to train translation models without parallel corpora
- Use hindsight experience replay to do guided exploration.

- Pretrain large models in unsupervised manner (generatively) for all available formal/informal mathematics
- Use cycle-consistency to train translation models without parallel corpora
- Use hindsight experience replay to do guided exploration.
- Use images as inputs for mathematical text

Vision of joint proving and auto-formalization

