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Can we demonstrate real language understanding?
Natural 

Language as 
object

Natural Language 
as means of 

communication



Vision of joint proving and auto-formalization

Proof Assistant

Formal Reasoning 
Agent

 (Neural) Language 
Model

Formal Corpus 

Informal Corpus 



Background And History

John McCarthy: Computer programs for checking mathematical proofs. 
In: A Paper Presented at the Symposium on Recursive Function Theory, New 
York, April 1961

Donald Lee Simon: Checking number theory proofs in natural language. 
Ph.D thesis (1990)

Claus Zinn: Understanding informal mathematical discourse. Ph.D thesis, 
Institut für Informatik, Universität Erlangen-Nürnberg (2004)



Background And History

Josef Urban: Translating Mizar for first order theorem provers. MKM 
2003

Josef Urban: MaLARea: a metasystem for automated reasoning in 
large theories. CADE-21 (2007)

Cezary Kaliszyk, Josef Urban, Jiří Vyskočil: Learning to parse on aligned 
corpora (Rough Diamond). ITP 2015

Cezary Kaliszyk, Josef Urban, Jiří Vyskocil: System description: 
statistical parsing of informalized Mizar formulas. SYNASC 2017



Autformalization vs. Formal Theorem Proving Only

● Most mathematics is given in natural language (this is where the data is)



Autformalization vs. Formal Theorem Proving Only

● Most mathematics is given in natural language (this is where the data is)
● Open-ended exploration? Interestingness is hard to define

○ AlphaZero: Could do self-play. Math cannot be done via self-play unless the 
interestingness problem is solved (what to explore)

○ Generated mathematics would be alien to us. How to evaluate?
○ How would one communicate with a system that has developed its own notions and 

theories?



Autformalization vs. Formal Theorem Proving Only

● Most mathematics is given in natural language (this is where the data is)
● Open-ended exploration? Interestingness is hard to define

○ AlphaZero: Could do self-play. Math cannot be done via self-play unless the 
interestingness problem is solved (what to explore)

○ Generated mathematics would be alien to us. How to evaluate?
○ How would one communicate with a system that has developed its own notions and 

theories?
● Formalization itself is a hard task

○ Manual formalization requires domain experts
○ Hard to check correctness wrt to natural language
○ Slow



Is (Deep) Reinforcement Learning Useful?

Alemi et al: DeepMath (NIPS 2016): Deep Neural Networks for Premise 
Selection

Whalen: Holophrasm (Deep RL for Metamath) (2016)

Loos et al: Deep Network Guided Proof Search: LPAR (2017)

Kaliszyk et al: Reinforcement Learning for Theorem Proving (2018)

Zombori et al: Towards Finding Longer Proofs (2019)

Bansal et al: HOList/DeepHOL (Deep RL for HOL Light) ICML (2019)



Machine Translation/Language Modeling (Transformers):

Lample et al: Unsupervised Machine Translation Using Monolingual 
Corpora Only (2017)

Devlin et al: BERT: Pre-training of Deep Bidirectional Transformers for 
Language Understanding

Lample, Charton: Deep Learning for Symbolic Mathematics (ICRL 2019)

Rabe et al: Language Modeling for Formal Mathematics (2020)

Brown et al: Language Models are Few-Shot Learners (2020) [GPT-3]

https://arxiv.org/search/cs?searchtype=author&query=Lample%2C+G
https://arxiv.org/search/cs?searchtype=author&query=Charton%2C+F


Premise Selection Using Deep Learning

Statement to be proved

Embedding network

Potential Premise

Embedding network

Combiner network

Classifier/Ranker

Embedding Network:
● Convolutional 

network
● Recurrent LSTM 

network
● Combined 

convolutional network 
with LSTM on top

DeepMath-Deep Sequence Models for Premise Selection
Alemi, A. A., Chollet, F., Een, N., Irving, G., Szegedy, C., & Urban, J, NIPS 2016



The E Theorem Prover 

Superposition

Unprocessed 
Clauses

Processed 
Clauses

HUGE!

Select clause

System Description: E 1.8,
Stephan Schulz.  LPAR (2013)
www.eprover.org



The E Theorem Prover - Generating Training Data

Superposition

Unprocessed 
Clauses

Select clause

Processed 
Clauses

Proof

Positive and negative 
examples for training

Deep Network Guided Proof Search
S. Loos, G. Irving, C. Szegedy, and C Kaliszyk. LPAR (2017).



(Proof) Assistant

Proof Search

APIs for Theorem Prover Developers and ML Researchers

Machine Learning

One goal/subgoal to prove
One proof step: 
        Tactic application, relevant premises

Subgoals
or *proved*

One goal/subgoal to prove

Ranking of tactics and
      premises 

Formal Reasoning
Agent



Open Source Release: The HOList Environment

Corpus of 10ks of 
theorems/proofs

Proof Assistant

Proof Search

Theorems, Proofs

Neural Networks
Models

Stateless API Proof steps

Bansal et al: HOList: An Environment for Machine Learning of Higher-Order Theorem Proving, ICML(1029)

www.deephol.org



Neural Architectures for Formulas

Apply Graph Neural Networks to abstract syntax trees.  E.g.: 

a:  function application
c:  constant
v:  variable
l:  lambda/abstraction

 fun, bool, A  are type annotations

Aditya Paliwal et al.



Compressed Graph Representation



Graph Neural Networks

Paliwal et al, Graph Representations for Higher-Order Logic and Theorem Proving AAAI 2020



Proof Search Tree



Prover
Prover

Model Trainer

ProofLogs Training Data

Proof pruning/Hard 
negative mining, filtering

DeepHOL Loop

Bansal et al.: Learning to Reason in Large Theories without Imitation (2019)



DeepHOL results on HOL-Light Core + Multivariate Analysis

Method Proof success rate

Imitation Learning With Graph 
Neural Networks

50%

DeepHOL-Zero Reinforcement 
Learning, Bootstrapping without 
human proofs

56%

Imitation + Reinforcement Learning 60%

Cumulative over Reinforcement 
Learning 70%



let LOCALLY_INTER_OPEN = prove
 (`!P s t u:real^N->bool.
        locally P s /\
        open_in (subtopology euclidean u) s /\
        open_in (subtopology euclidean u) t
        ==> locally P (s INTER t)`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[locally; IN_INTER] THEN
  MAP_EVERY X_GEN_TAC [`v:real^N->bool`; `x:real^N`] THEN STRIP_TAC THEN
  FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [locally]) THEN
  DISCH_THEN(MP_TAC o SPECL [`t INTER v:real^N->bool`; `x:real^N`]) THEN
  ASM_REWRITE_TAC[IN_INTER] THEN ANTS_TAC THENL
   [CONJ_TAC THENL
     [MATCH_MP_TAC OPEN_IN_TRANS THEN EXISTS_TAC `s INTER t:real^N->bool` 
THEN
      CONJ_TAC THENL
       [SUBGOAL_THEN `t INTER v:real^N->bool = (s INTER t) INTER v`
         (fun th -> ASM_SIMP_TAC[th; OPEN_IN_INTER; OPEN_IN_REFL]) THEN
        REPEAT(FIRST_X_ASSUM(MP_TAC o MATCH_MP OPEN_IN_IMP_SUBSET)) THEN
        ASM SET_TAC[];
        MATCH_MP_TAC OPEN_IN_SUBTOPOLOGY_INTER_SUBSET THEN
        EXISTS_TAC `u:real^N->bool` THEN
        ASM_SIMP_TAC[OPEN_IN_INTER; OPEN_IN_REFL] THEN
        ASM_MESON_TAC[OPEN_IN_IMP_SUBSET]];
      REPEAT(FIRST_X_ASSUM(MP_TAC o MATCH_MP OPEN_IN_IMP_SUBSET)) THEN
      ASM SET_TAC[]];
    MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `n:real^N->bool` THEN
    MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `l:real^N->bool` THEN
    STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
    CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN
    MATCH_MP_TAC OPEN_IN_SUBSET_TRANS THEN
    EXISTS_TAC `s:real^N->bool` THEN ASM_REWRITE_TAC[] THEN
    REPEAT(FIRST_X_ASSUM(MP_TAC o MATCH_MP OPEN_IN_IMP_SUBSET)) THEN
    ASM SET_TAC[]]);;

g `!P s t u:real^N->bool.
        locally P s /\
        open_in (subtopology euclidean u) s /\
        open_in (subtopology euclidean u) t
        ==> locally P (s INTER t)`;;

e (MESON_TAC [LOCALLY_OPEN_SUBSET; open_in; 
INTER_SUBSET; OPEN_IN_INTER; OPEN_IN_SUBSET_TRANS]);;
val it : goalstack = No subgoals

Cherry picked Example

Human proof Proof found by DeepHOL



Reasoning in Latent Space
Trivial example:   32 = 9  can be rewritten to 3*3 = 9 by the equality x2 = x*x.

Dennis Lee at al.
Matematical Reasoning in Latent 

Space, ICLR (2019)

Formula 1 Formula 2 Formula 3 Formula 4

Eq. 1 Eq. 2 Eq. 3

ℝ1024 ℝ1024 ℝ1024 ℝ1024

Training

Rewrite
success L2



Transformer Networks

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, 
Łukasz Kaiser, Illia Polosukhin: Attention is All You Need, NIPS 2017



Transformers

Attention: Relaxation of Nearest-Neighbor Lookup in a vector space:

softmax(QKT)V

● Key Matrix: K
● Value Matrix: V
● Query Matrix: Q



Transformers

Self-Attention: Query and memory comes from the same set of vectors

● A lot of lookups in parallel 
            (stacked horizontally: “attention heads”).
● A lot of layers:  

(stacked vertically: “layers”)
● K, V and Q and are computed by matrix 

products using learned parameters.



Skip-Tree Model Pretraining via Transformers

Machine Translation:

Input Sequence of Tokens

Deep Transformer Encoder

Deep Transformer Decoder

Output Sequence of Tokens

Rabe et al: Language Modeling for Formal Mathematics (2020)



Skip-Tree Model Pretraining via Transformers

Task: 



Skip Tree Inference Tasks
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Skip-Tree Inference Tasks



Skip-Tree Inference Tasks



Success Rate of Transformer Based Inference



Neural Network Model Parameters over the years

Name Year Million Parameters

QuocNet (Google) 2012 600

AlexNet (University of 
Toronto)

2012 60

Inception-v1 (Google) 2014 12

ResNet-152 (Microsoft) 2015 60

Bert-Large (Google) 2018 340

GPT-2 Large (OpenAI) 2018 1500

Meena (Google) 2019 2600

GPT-3 (OpenAI) 2020 175000

GShard (Google) 2020 600000



Rough Estimated Compute Cost of Training Models

Name Year PetaFLOPS-days (31022 
floating point operations)

AlexNet (University of 
Toronto)

2012 10-2

ResNet-152 (Microsoft) 2015 10-1

Bert-Large (Google) 2018 102

GPT-2 Large (OpenAI) 2018 102

Meena (Google) 2019 104

GPT-3 (OpenAI) 2020 104

GShard (Google) 2020 104



Forward Looking Ideas

● Pretrain large models in unsupervised manner (generatively) 
for all available formal/informal mathematics

● Use cycle-consistency to train translation models without 
parallel corpora

● Use hindsight experience replay to do guided exploration. 
● Use images as inputs for mathematical text
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