barkhauseninstitut.org -l barkhausen
institut

Egg: An Equality Saturation Tactic in Lean

Marcus Rossel Barkhausen Institut
Andrés Goens University of Amsterdam
Rudi Schneider Technische Universitat Berlin




Recently on Lean Together 2025

set option diagnostics true

def f (x : Nat)
def g (x : Nat)

X + 1
1l + X

1
-h

@[simp] theorem f_eq : f x
@[simp] theorem g_eq : g x

by simp_arith [f, g]
by simp_arith [f, g]

xX X
1

example : f (x + 1) = x + 2 := by
set_option diagnostics true in
simp

X

used theorems (max: 249. num: 2): V
f_eq @Ff_eg : V {x : Nat}, f x = g x
g_eq » 249
tried theorems (max: 250, num: 2): »
use 'set_option diagnostics.threshold <num>" to control threshold for reporting counters

v simp_issue.lean:19:2 D € @

tactic 'simp' failed, nested error:

maximum recursion depth has been reached

use 'set_option maxRecDepth <num>" to increase limit

use “set_option diagnostics true® to get diagnostic information

h Barkhausen Institut



What if simp fails?

def f (x : Nat)
def g (x : Nat)

@[simp] theorem f_eq :
@[simp] theorem g_eq :

example: f (x + 1) = x

simp

I Barkhausen Institut

X + 1
1 + X

f x
g X

+ 2

—h Q
X X

by simp_arith [f, g]
by simp_arith [f, g]

T



What if simp fails?

def f (x : Nat)
def g (x : Nat)

X + 1
1 + X

:= by simp_arith [f, g]
by simp_arith [f, gl

@[simp] theorem f_eq : f X
@[simp] theorem g_eq : g X

I
-h Q
X X

I

example: f (x + 1) = x + 2 := by
Simp

example: f (x + 1) = x + 2 :
rw [f, g, f_eq, g_eq]

I
O
<

I Barkhausen Institut



What if simp fails?

X + 1
1 + X

def f (x : Nat)
def g (x : Nat)

@[simp] theorem f_eq : f X
@[simp] theorem g_eq : g X

1
-h Q
X X

example: f (x + 1) = x + 2 :

simp

example: f (x + 1) = x + 2 :

rw [f, g, f_eq, g_eq]

example: f (x + 1) = x + 2 :

rw [f]

I Barkhausen Institut

by simp_arith [f, gl
by simp_arith [f, g]



What if rw is annoying?

I Barkhausen Institut

T



What if rw is annoying?

variable [Group G] {a b : G}

example : (1 : G)-* =1 := by
simp only [mul assoc, one mul, mul one, inv_mul cancel, mul _inv_cancel]

I Barkhausen Institut

T



What if rw is annoying?

variable [Group G] {a b : G}

example : (1 : G)-* =1 := by
simp only [mul assoc, one mul, mul one, inv_mul cancel, mul _inv_cancel]

example : (1 : G)-* =1 := by
rw [« mul one, inv_mul_cancel]

Barkhausen Institut

T



What if rw is annoying? h -

variable [Group G] {a b : G}

example : (1 : G)-* =1 := by
simp only [mul assoc, one mul, mul one, inv_mul cancel, mul _inv_cancel]

example : (1 : G)-* =1 := by
rw [« mul one, inv_mul_cancel]

example : (1 : G)-* =1 := by
rw [« mul_one 1-1, inv_mul_cancel]

Barkhausen Institut



What if rw is annoying?

variable [Group G] {a b : G}

example : (1 : G)-* =1 := by
simp only [mul assoc, one mul, mul one, inv_mul cancel, mul _inv_cancel]

example : (1 : G)-* =1 := by
rw [« mul one, inv_mul_cancel]

example : (1 : G)-* =1 := by
rw [« mul_one 1-1, inv_mul_cancel]

example : (1 : G)-* =1 :
group

by

Barkhausen Institut

T



What if there is no tactic for your domain?

I Barkhausen Institut

T



What if there is no tactic for your domain?

@[simp]

theorem neg_lie : [-x, m] = =[x, m] := by
rw [« sub_eq_zero, sub_neg_eq_add, < add_lie]
simp

Barkhausen Institut

T



What if there is no tactic for your domain?

@[simp]

theorem neg_lie : [-x, m] = =[x, m] := by
rw [« sub_eq_zero, sub_neg_eq_add, < add_lie]
simp

theorem neg_lie : [-x, m] = —-[x, m] := by

egg [sub_eq_zero, sub_neg_eq_add, add_lie, neg_add_cancel, zero_lie]

Barkhausen Institut

T



What if there is no tactic for your domain?

@[simp]

theorem neg_lie : [-x, m] = =[x, m] := by
rw [« sub_eq_zero, sub_neg_eq_add, < add_lie]
simp

theorem neg_lie : [-x, m] = —-[x, m] := by

egg [sub_eq_zero, sub_neg_eq_add, add_lie, neg_add_cancel, zero_lie]

theorem inv_one : (1 : G)-* =1 := by
egg [mul_assoc, one_mul, mul_one, inv_mul_cancel, mul_inv_cancel]

I Barkhausen Institut



Tactic Comparsion

h Barkhausen Institut

T



Tactic Comparsion

based on rewriting

h Barkhausen Institut

based on rewriting

simp

based on rewriting

T



Tactic Comparsion

based on rewriting

local knowledge

h Barkhausen Institut

based on rewriting

domain-specific knowledge

simp

based on rewriting

global knowledge

T



Tactic Comparsion

based on rewriting

local knowledge

non-/terminal

h Barkhausen Institut

based on rewriting
domain-specific knowledge

terminal *

simp

based on rewriting

global knowledge

non-/terminal

T



Tactic Comparsion

based on rewriting

local knowledge
non-/terminal

really fast

h Barkhausen Institut

based on rewriting
domain-specific knowledge
terminal *

slow

T

simp

based on rewriting

global knowledge
non-/terminal

fast



Tactic Comparsion

based on rewriting

local knowledge
non-/terminal
really fast

manual rewriting

h Barkhausen Institut

based on rewriting
domain-specific knowledge
terminal *
slow

equality saturation

simp

based on rewriting

global knowledge
non-/terminal
fast

greedy rewriting



Equality Saturation

Barkhausen Institut

Equality Saturation: a New Approach to Optimization *

Ross Tate ~ Michael Stepp

Zachary Tatlock  Sorin Lerner

Department of Computer Science and Engineering
University of California, San Diego
{rtate, mstepp, ztatlock, lerner} @cs.ucsd.edu

Abstract

Optimizations in a traditional compiler are applied sequentially,
with each optimization destructively modifying the program to pro-
duce a transformed program that is then passed to the next op-
timization. We present a new approach for structuring the opti-
mization phase of a compiler. In our approach, optimizations take
the form of equality analyses that add equality information to a
common intermediate representation. The optimizer works by re-
peatedly applying these analyses to infer equivalences between
program fragments, thus saturating the intermediate representation
with equalities. Once saturated, the intermediate representation en-
codes multiple optimized versions of the input program. At this
point, a profitability heuristic picks the final optimized program
from the various programs represented in the saturated represen-
tation. Our proposed way of structuring optimizers has a variety of
benefits over previous approaches: our approach obviates the need
to worry about optimization ordering, enables the use of a global
optimization heuristic that selects among fully optimized programs,
and can be used to perform translation validation, even on compil-
ers other than our own. We present our approach, formalize it, and
describe our choice of intermediate representation. We also present
experimental results showing that our approach is practical in terms
of time and space overhead, is effective at discovering intricate op-
timization opportunities, and is effective at performing translation
validation for a realistic optimizer.

generated code, a problem commonly known as the phase ordering
problem. Another drawback is that profitability heuristics, which
decide whether or not to apply a given optimization, tend to make
their decisions one optimization at a time, and so it is difficult for
these heuristics to account for the effect of future transformations.

In this paper, we present a new approach for structuring optimiz-
ers that addresses the above limitations of the traditional approach,
and also has a variety of other benefits. Our approach consists of
computing a set of optimized versions of the input program and
then selecting the best candidate from this set. The set of candidate
optimized programs is computed by repeatedly inferring equiva-
lences between program fragments, thus allowing us to represent
the effect of many possible optimizations at once. This, in turn,
enables the compiler to delay the decision of whether or not an op-
timization is profitable until it observes the full ramifications of that
decision. Although related ideas have been explored in the context
of super-optimizers, as Section 8 on related work will point out,
super-optimizers typically operate on straight-line code, whereas
our approach is meant as a general-purpose compilation paradigm
that can optimize complicated control flow structures.

At its core, our approach is based on a simple change to the tra-
ditional compilation model: whereas traditional optimizations op-
erate by destructively performing transformations, in our approach
optimizations take the form of equality analyses that simply add
equality information to a common intermediate representation (IR),
without losing the original program. Thus, after each equality anal-




Equality Saturation: Phase Ordering Problem

h Barkhausen Institut

T



Equality Saturation: Phase Ordering Problem

Program

h Barkhausen Institut

Optimizations

T



Equality Saturation: Phase Ordering Problem h -

Program Optimizations
a-?2 x-2 = x<«1
2
Xy y
— = X =
Z Z
X
- = 1
X
x-1 = x

h Barkhausen Institut



Equality Saturation: Phase Ordering Problem

Program

a-?2 a1

— — —
2 2

h Barkhausen Institut

Optimizations

X2 =
Xy
—_— :
Z
X
— —
X
x-1 =

x K1

x .

p—

N [



Equality Saturation: Phase Ordering Problem

Program

a- 2 4
2
U

a-% = a1 = a “'

h Barkhausen Institut

Optimizations

X2 =
Xy
—_— :
Z
X
— —
X
x-1 =

x K1

x .

N [

p—



Equality Saturation: Phase Ordering Problem h -

Program Optimizations

Phase Ordering Problem

In which order should we apply optimizations?

Barkhausen Institut



Equality Saturation: Phase Ordering Problem h -

Proof Goal Equational Theorems

Phase Ordering Problem

In which order should we apply optimizations?

Barkhausen Institut



Equality Saturation: Phase Ordering Problem

Proof Goal Equational Theorems
. 6,
' 4 " N\

Phase Ordering Problem “Solution”

In which order should we apply optimizations? Try all possible orders.

Barkhausen Institut




Equality Saturation: E-Graphs

h Barkhausen Institut

T



Equality Saturation: E-Graphs

E-Graph = Term Graph + Congruence Relation

h Barkhausen Institut

T



Equality Saturation: E-Graphs

E-Graph = Term Graph + Congruence Relation

(@) Initial e-graph
contains (a X 2)/2.

h Barkhausen Institut

T



Equality Saturation: E-Graphs

E-Graph = Term Graph + Congruence Relation

(a) Initial e-graph  (b) After applying rewrite
contains (a X 2)/2. xX2-x<1.

h Barkhausen Institut



Equality Saturation: E-Graphs h -

E-Graph = Term Graph + Congruence Relation

(@) Initial e-graph  (b) After applying rewrite  (c) After applying rewrite
contains (a X 2)/2. xXX2—>x <l (xXy)/z = x X (y/z).

h Barkhausen Institut



Equality Saturation: E-Graphs h -

E-Graph = Term Graph + Congruence Relation

(@) Initial e-graph  (b) After applying rewrite  (c) After applying rewrite  (d) After applying rewrites
contains (a X 2)/2. xXX2—>x <l (xXy)/z = x X (y/z). x/x > land1Xx — x.

h Barkhausen Institut



Equality Saturation: E-Graphs h -

E-Graph = Term Graph + Congruence Relation

(@) Initial e-graph  (b) After applying rewrite  (c) After applying rewrite  (d) After applying rewrites
contains (a X 2)/2. xXX2—>x <l (xXy)/z - x X (y/2). x/x > land1Xx — x.

h Barkhausen Institut



Previous Work h 0

v¢ Equality Saturation as a Tactic for Proof Assistants

Rewrites are an essential component of proof assistants. Term rewrite systems are well-studied methods to deal with these kinds of
rewrites in a formal setting. A limitation of arbitrary term rewrite systems is the destructive nature of rewrites. In contrast, in Egraphs,
applying a rewrite also keeps the previous representative. In a sense, this applies the rewrite in both directions. The main idea of this talk
is using equality saturation in proof assistants as a powerful tactic, i.e. a meta-program to partially automate the task of finding proofs.
We will discuss the limitations of Egraph-based rewrites and our proposed solutions to these. We do this using the Lean proof assistant
and the egg framework, considering examples from group theory.
7.« Andrés Goens Siddharth Bhat
W the University of Edinburgh the University of Edinburgh

h Barkhausen Institut



Basic Pipeline

Proof Goal & Equations

Proof Tactic

h Barkhausen Institut

T



Basic Pipeline

Proof Goal & Equations

Encoding

Proof Tactic

h Barkhausen Institut

egg Library

T



Encoding h -

37
38
39
40
41

set_option trace.egg.encoded true in
example : [-x, m] = -fx, m] := by

E [neg_add_cancel, zero_lie, sub_eq zero, sub neg _eq_add, add_liel

Lean Infoview X

Encoded v

Goal v
LHS: (app (app (app (app (app (const "Bracket.bracket" (param "v") (param "w")) (fvar 13281))

(fvar 13283)) (inst (app (app (const "Bracket" (param "v") (param "w")) (fvar 13281)) (fvar 13283))))
(app (app (app (const "Neg.neg" (param "v")) (fvar 13281)) (inst (app (const "Neg" (param "v")) (fvar
13281)))) (fvar 13897))) (fvar 13903))

RHS: (app (app (app (const "Neg.neg" (param "w")) (fvar 13283)) (inst (app (const "Neg" (param
"w")) (fvar 13283)))) (app (app (app (app (app (const "Bracket.bracket" (param "v") (param "w")) (fvar
13281)) (fvar 13283)) (inst (app (app (const "Bracket" (param "v") (param "w")) (fvar 13281)) (fvar
13283)))) (fvar 13897)) (fvar 13903)))

h Barkhausen Institut



Basic Pipeline

Proof Goal & Equations

Encoding

Proof Tactic

h Barkhausen Institut

egg Library

Equality Saturation

Explanation

T



Explanations 0

(= (app (app (app (app (app (const Bracket.bracket (param v) (param w)) (fvar 13281)) (fvar 13283)) (inst (app (app (const Bracket (paramv) (param w)) (fvar 13281)) (fvar 13283)))) (app (app (app (const Neg.neg (paramv)) (fvar 13281)) (inst (app (const Neg (paramv)) (fvar 13281)))) (fvar 13897))) (fvar 13903)) (app (app
(app (const Neg.neg (param w)) (fvar 13283)) (inst (app (const Neg (param w)) (fvar 13283)))) (app (app (app (app (app (const Bracket.bracket (paramv) (param w)) (fvar 13281)) (fvar 13283)) (inst (app (app (const Bracket (paramv) (param w)) (fvar 13281)) (fvar 13283)))) (fvar 13897)) (fvar 13903)))) (Rewrite=> #2<-0>-
rev (=(app (app (app (app (app (app (const HSub.hSub (param w) (param w) (param w)) (fvar 13283)) (fvar 13283)) (fvar 13283)) (inst (app (app (app (const HSub (param w) (param w) (param w)) (fvar 13283)) (fvar 13283)) (fvar 13283)))) (app (app (app (app (app (const Bracket.bracket (paramv) (param w)) (fvar 13281))
(fvar 13283)) (inst (app (app (const Bracket (param v) (param w)) (fvar 13281)) (fvar 13283)))) (app (app (app (const Neg.neg (paramv)) (fvar 13281)) (inst (app (const Neg (paramv)) (fvar 13281)))) (fvar 13897))) (fvar 13903))) (app (app (app (const Neg.neg (param w)) (fvar 13283)) (inst (app (const Neg (param w)) (fvar
13283)))) (app (app (app (app (app (const Bracket.bracket (paramv) (param w)) (fvar 13281)) (fvar 13283)) (inst (app (app (const Bracket (paramv) (param w)) (fvar 13281)) (fvar 13283)))) (fvar 13897)) (fvar 13903)))) (app (app (app (const OfNat.ofNat (param w)) (fvar 13283)) (lit 0)) (inst (app (app (const OfNat (param
w)) (fvar 13283)) (lit 0)))))) (= (app (app (app (app (app (app (const HSub.hSub (param w) (param w) (param w)) (fvar 13283)) (fvar 13283)) (fvar 13283)) (inst (app (app (app (const HSub (param w) (param w) (param w)) (fvar 13283)) (fvar 13283)) (fvar 13283)))) (app (app (app (app (app (const Bracket.bracket (paramv)
(paramw)) (fvar 13281)) (fvar 13283)) (inst (app (app (const Bracket (paramv) (param w)) (fvar 13281)) (fvar 13283)))) (app (app (app (const Neg.neg (paramv)) (fvar 13281)) (inst (app (const Neg (paramv)) (fvar 13281)))) (fvar 13897))) (fvar 13903))) (app (app (app (const Neg.neg (param w)) (fvar 13283)) (inst (app
(const Neg (param w)) (fvar 13283)))) (app (app (app (app (app (const Bracket.bracket (param v) (param w)) (fvar 13281)) (fvar 13283)) (inst (app (app (const Bracket (paramv) (param w)) (fvar 13281)) (fvar 13283)))) (fvar 13897)) (fvar 13903)))) (Rewrite<=#1 (app (app (app (app (app (const Bracket.bracket (paramv)
(param w)) (fvar 13281)) (fvar 13283)) (inst (app (app (const Bracket (paramv) (param w)) (fvar 13281)) (fvar 13283)))) (app (app (app (const OfNat.ofNat (paramv)) (fvar 13281)) (lit 0)) (inst (app (app (const OfNat (paramv)) (fvar 13281)) (lit 0))))) (fvar 13903)))) (= (app (app (app (app (app (app (const HSub.hSub (param
w) (param w) (param w)) (fvar 13283)) (fvar 13283)) (fvar 13283)) (inst (app (app (app (const HSub (param w) (param w) (param w)) (fvar 13283)) (fvar 13283)) (fvar 13283)))) (app (app (app (app (app (const Bracket.bracket (param v) (param w)) (fvar 13281)) (fvar 13283)) (inst (app (app (const Bracket (paramv) (param
w)) (fvar 13281)) (fvar 13283)))) (app (app (app (const Neg.neg (paramv)) (fvar 13281)) (inst (app (const Neg (paramv)) (fvar 13281)))) (fvar 13897))) (fvar 13903))) (app (app (app (const Neg.neg (param w)) (fvar 13283)) (inst (app (const Neg (param w)) (fvar 13283)))) (app (app (app (app (app (const Bracket.bracket
(paramv) (param w)) (fvar 13281)) (fvar 13283)) (inst (app (app (const Bracket (paramv) (param w)) (fvar 13281)) (fvar 13283)))) (fvar 13897)) (fvar 13903)))) (app (app (app (app (app (const Bracket.bracket (paramv) (param w)) (fvar 13281)) (fvar 13283)) (inst (app (app (const Bracket (paramv) (param w)) (fvar 13281))
(fvar 13283)))) (Rewrite<=#0 (app (app (app (app (app (app (const HAdd.hAdd (param v) (param v) (param v)) (fvar 13281)) (fvar 13281)) (fvar 13281)) (inst (app (app (app (const HAdd (paramv) (paramv) (paramv)) (fvar 13281)) (fvar 13281)) (fvar 13281)))) (app (app (app (const Neg.neg (paramv)) (fvar 13281)) (inst
(app (const Neg (paramv)) (fvar 13281)))) (fvar 13897))) (fvar 13897)))) (fvar 13903))) (= (app (app (app (app (app (app (const HSub.hSub (param w) (param w) (param w)) (fvar 13283)) (fvar 13283)) (fvar 13283)) (inst (app (app (app (const HSub (param w) (param w) (param w)) (fvar 13283)) (fvar 13283)) (fvar 13283))))
(app (app (app (app (app (const Bracket.bracket (paramv) (param w)) (fvar 13281)) (fvar 13283)) (inst (app (app (const Bracket (paramv) (param w)) (fvar 13281)) (fvar 13283)))) (app (app (app (const Neg.neg (paramv)) (fvar 13281)) (inst (app (const Neg (paramv)) (fvar 13281)))) (fvar 13897))) (fvar 13903))) (app (app
(app (const Neg.neg (param w)) (fvar 13283)) (inst (app (const Neg (param w)) (fvar 13283)))) (app (app (app (app (app (const Bracket.bracket (paramv) (param w)) (fvar 13281)) (fvar 13283)) (inst (app (app (const Bracket (paramv) (paramw)) (fvar 13281)) (fvar 13283)))) (fvar 13897)) (fvar 13903)))) (Rewrite=> #4 (app
(app (app (app (app (app (const HAdd.hAdd (param w) (param w) (param w)) (fvar 13283)) (fvar 13283)) (fvar 13283)) (inst (app (app (app (const HAdd (param w) (param w) (param w)) (fvar 13283)) (fvar 13283)) (fvar 13283)))) (app (app (app (app (app (const Bracket.bracket (param v) (param w)) (fvar 13281)) (fvar
13283)) (inst (app (app (const Bracket (paramv) (param w)) (fvar 13281)) (fvar 13283)))) (app (app (app (const Neg.neg (paramv)) (fvar 13281)) (inst (app (const Neg (paramv)) (fvar 13281)))) (fvar 13897))) (fvar 13903))) (app (app (app (app (app (const Bracket.bracket (param v) (param w)) (fvar 13281)) (fvar 13283))
(inst (app (app (const Bracket (paramv) (param w)) (fvar 13281)) (fvar 13283)))) (fvar 13897)) (fvar 13903))))) (= (app (app (app (app (app (app (const HSub.hSub (param w) (param w) (param w)) (fvar 13283)) (fvar 13283)) (fvar 13283)) (inst (app (app (app (const HSub (param w) (param w) (param w)) (fvar 13283)) (fvar
13283)) (fvar 13283)))) (app (app (app (app (app (const Bracket.bracket (paramv) (param w)) (fvar 13281)) (fvar 13283)) (inst (app (app (const Bracket (paramv) (param w)) (fvar 13281)) (fvar 13283)))) (app (app (app (const Neg.neg (paramv)) (fvar 13281)) (inst (app (const Neg (paramv)) (fvar 13281)))) (fvar 13897)))
(fvar 13903))) (app (app (app (const Neg.neg (param w)) (fvar 13283)) (inst (app (const Neg (param w)) (fvar 13283)))) (app (app (app (app (app (const Bracket.bracket (paramv) (param w)) (fvar 13281)) (fvar 13283)) (inst (app (app (const Bracket (paramv) (param w)) (fvar 13281)) (fvar 13283)))) (fvar 13897)) (fvar
13903)))) (Rewrite<=#3 (app (app (app (app (app (app (const HSub.hSub (param w) (param w) (param w)) (fvar 13283)) (fvar 13283)) (fvar 13283)) (inst (app (app (app (const HSub (param w) (param w) (param w)) (fvar 13283)) (fvar 13283)) (fvar 13283)))) (app (app (app (app (app (const Bracket.bracket (param v)
(paramw)) (fvar 13281)) (fvar 13283)) (inst (app (app (const Bracket (paramv) (param w)) (fvar 13281)) (fvar 13283)))) (app (app (app (const Neg.neg (paramv)) (fvar 13281)) (inst (app (const Neg (paramv)) (fvar 13281)))) (fvar 13897))) (fvar 13903))) (app (app (app (const Neg.neg (param w)) (fvar 13283)) (inst (app
(const Neg (param w)) (fvar 13283)))) (app (app (app (app (app (const Bracket.bracket (param v) (param w)) (fvar 13281)) (fvar 13283)) (inst (app (app (const Bracket (paramv) (param w)) (fvar 13281)) (fvar 13283)))) (fvar 13897)) (fvar 13903)))))) (= (app (app (Rewrite=>#2<+0>[ «69632,0] (app (app (const Sub.sub
(paramw)) (fvar 13283)) (inst (app (const Sub (param w)) (fvar 13283))))) (app (app (app (app (app (const Bracket.bracket (paramv) (param w)) (fvar 13281)) (fvar 13283)) (inst (app (app (const Bracket (paramv) (param w)) (fvar 13281)) (fvar 13283)))) (app (app (app (const Neg.neg (paramv)) (fvar 13281)) (inst (app
(const Neg (paramv)) (fvar 13281)))) (fvar 13897))) (fvar 13903))) (app (app (app (const Neg.neg (param w)) (fvar 13283)) (inst (app (const Neg (param w)) (fvar 13283)))) (app (app (app (app (app (const Bracket.bracket (paramv) (param w)) (fvar 13281)) (fvar 13283)) (inst (app (app (const Bracket (paramv) (param w))
(fvar 13281)) (fvar 13283)))) (fvar 13897)) (fvar 13903)))) (app (app (app (app (app (app (const HSub.hSub (param w) (param w) (param w)) (fvar 13283)) (fvar 13283)) (fvar 13283)) (inst (app (app (app (const HSub (param w) (param w) (param w)) (fvar 13283)) (fvar 13283)) (fvar 13283)))) (app (app (app (app (app (const
Bracket.bracket (paramv) (paramw)) (fvar 13281)) (fvar 13283)) (inst (app (app (const Bracket (paramv) (paramw)) (fvar 13281)) (fvar 13283)))) (app (app (app (const Neg.neg (paramv)) (fvar 13281)) (inst (app (const Neg (paramv)) (fvar 13281)))) (fvar 13897))) (fvar 13903))) (app (app (app (const Neg.neg (param w))
(fvar 13283)) (inst (app (const Neg (param w)) (fvar 13283)))) (app (app (app (app (app (const Bracket.bracket (paramv) (param w)) (fvar 13281)) (fvar 13283)) (inst (app (app (const Bracket (paramv) (param w)) (fvar 13281)) (fvar 13283)))) (fvar 13897)) (fvar 13903))))) (= (app (app (app (app (const Sub.sub (param w))
(fvar 13283)) (inst (app (const Sub (param w)) (fvar 13283)))) (app (app (app (app (app (const Bracket.bracket (paramv) (param w)) (fvar 13281)) (fvar 13283)) (inst (app (app (const Bracket (paramv) (param w)) (fvar 13281)) (fvar 13283)))) (app (app (app (const Neg.neg (paramv)) (fvar 13281)) (inst (app (const Neg
(paramv)) (fvar 13281)))) (fvar 13897))) (fvar 13903))) (app (app (app (const Neg.neg (param w)) (fvar 13283)) (inst (app (const Neg (param w)) (fvar 13283)))) (app (app (app (app (app (const Bracket.bracket (paramv) (param w)) (fvar 13281)) (fvar 13283)) (inst (app (app (const Bracket (paramv) (param w)) (fvar 13281))
(fvar 13283)))) (fvar 13897)) (fvar 13903)))) (app (app (Rewrite=>#2<-0>[ «69632,0] (app (app (const Sub.sub (param w)) (fvar 13283)) (inst (app (const Sub (param w)) (fvar 13283))))) (app (app (app (app (app (const Bracket.bracket (paramv) (param w)) (fvar 13281)) (fvar 13283)) (inst (app (app (const Bracket (param
v) (param w)) (fvar 13281)) (fvar 13283)))) (app (app (app (const Neg.neg (paramv)) (fvar 13281)) (inst (app (const Neg (paramv)) (fvar 13281)))) (fvar 13897))) (fvar 13903))) (app (app (app (const Neg.neg (param w)) (fvar 13283)) (inst (app (const Neg (param w)) (fvar 13283)))) (app (app (app (app (app (const
Bracket.bracket (paramv) (param w)) (fvar 13281)) (fvar 13283)) (inst (app (app (const Bracket (paramv) (param w)) (fvar 13281)) (fvar 13283)))) (fvar 13897)) (fvar 13903))))) (Rewrite=>= (const True))

Barkhausen Institut



Basic Pipeline

Proof Goal & Equations

Encoding

Proof Tactic

Proof Reconstruction

h Barkhausen Institut

egg Library

Equality Saturation

Explanation

T



Basic Pipeline h -

Proof Goal & Equations

Encoding
& — Proof Tactic egg Library

Equality Saturation

Proof Reconstruction

Explanation

h Barkhausen Institut



Proof
37
38 set_option trace.egg.explanation true in
39 example : f[-x, m] = =[x, m] := by
40 e [neg_add_cancel, zero_lie, sub_eq zero, sub _neg_eq_add, add_liel
41

h Barkhausen Institut

Lean Infoview X

[e

— e r— e (O
hd ] d d d bd d bd —d (O

0 »
[0, m] »
[-x + X,

.explanation.steps] Explanation Steps v

mi »

E-x, m] + Ex, m] »

f-x, m] - -[x, m] »

f-x, m] = -fx, mj

0: f-x, m] - -fx, m]

1: [—-x, m] - -fx, m]

2: f-x, m] - -fx, m]

3: f-x, m] - -fx, m]

4: [-x, m] - =[x, m]

5: Sub.sub f-x, m] (-fx, m]) =
6: Sub.sub [f-x, m] (-fx, m]) =
7: True »

f-x, m] - -[x, m] »
Sub.sub f-x, m] (=[x, m]) »



Proof

37
38 set_option trace.egg.explanation true in
39 example : f[-x, m] = =[x, m] := by

40 egg [neg_add_cancel, zero_lie, sub_eq_zero, sub_neg _eq_add, add_lie]
41

Lean Infoview X

[egg.explanation.steps] Explanation Steps v

'l F=x, m] = -Fx, m]

1 0: F-=x, m] - -fx, m] = 0 »

'] 1: f-x, m] - -fx, m] = [0, m] »

'] 2: F=x, m] - -fx, m] = [-x + x, m] »

'l 3 f—x, m] - -fx, m] = [-x, m] + [x, m] »

'l 4: F-x, m] - -fx, m] = [-x, m] - =[x, m] »

'l 5: Sub.sub [-x, m] (-fx, m]) = [-x, m] - =[x, m] »

'l 6: Sub.sub f-x, m] (-fx, m]) = Sub.sub [-x, m] (-fx, m]) »
'l 7: True »

h Barkhausen Institut



Guides

Barkhausen Institut

Guided Equality Saturation

THOMAS KEHLER, Inria & Université de Strasbourg, France
ANDRES GOENS, University of Edinburgh, UK
SIDDHARTH BHAT, University of Edinburgh, UK

TOBIAS GROSSER, University of Edinburgh, UK

PHIL TRINDER, University of Glasgow, UK

MICHEL STEUWER, University of Edinburgh, UK

Rewriting is a powerful and principled term transformation technique with uses across theorem proving and
compilation. In theorem proving, each rewrite is a proof step; in compilation, rewrites optimize a program
term. While developing rewrite sequences manually is possible, this process does not scale when larger rewrite
sequences are needed. Automated rewriting techniques, like greedy simplification or equality saturation, work
well without requiring human input. Yet, they do not scale to large and complex search spaces, which limits
the complexity of tasks where automated rewriting is effective, and means that just a small increase in term
size or rewrite sequence length may result in failure.

This paper proposes a semi-automatic rewriting technique as a means to scale rewriting by allowing for
human input at key decision points. Specifically, we propose guided equality saturation that embraces human
guidance when fully automated equality saturation does not scale. A human provides an intermediate guide,
and the rewriting is split into two simpler automatic equality saturation steps: from the original term to the
guide, and from the guide to the target. A complex rewriting task may require multiple guides, resulting in a
sequence of equality saturation steps. A guide need not be a complete term, it can also be a sketch containing
undefined elements that are instantiated by the equality saturation search. Such sketches may be much more
concise than complete program terms.

We demonstrate the generality and effectiveness of guided equality saturation using case studies in theorem
proving and program optimization. First, we introduce guided equality saturation as a novel tactic in the
Lean 4 proof assistant, allowing proofs to be written in the style of textbook proof sketches, i.e., as a series of
calculations that omit details and skip steps. This tactic concludes in fractions of a second instead of minutes
when compared to unguided equality saturation, and can find complex proofs that previously had to be done
manually. Second, in the compiler of the RISE functional array language, where unguided equality saturation
fails to perform advanced optimizations within an hour and using 60 GB of memory, guided equality saturation
performs the same optimizations with up to 3 guides, within seconds and using less than 1 GB of memory.

CCS Concepts: » Theory of computation — Equational logic and rewriting; Automated reasoning;
Software and its engineering — Compilers; « General and reference — Performance.



Guides

/— The inverse of a bijective morphism is a morphism. -/
def inverse (f : Li —-fR] L2) (g : L2 » Li) (h:1 : Function.LeftInverse g f)
(h2 : Function.RightInverse g f) : L2 -[R] L1 :=
{ LinearMap.inverse f.toLinearMap g hi h2 with
map_lie' := by
intros x y
calc
g Ix, yl =g [f (g x), f (g y)] := by conv_lhs => rw [« h2 X, « h2 y]
_ =g (f Fg x, g y1) := by rw [map_lie]
_ =19 x, gyl i=hs _
}

Barkhausen Institut



Guides

calc
g fx, yl =g f (g x), f (g y)i

I Barkhausen Institut

:= by conv_lhs => rw [« h2 X, « h2 y]

_ =9 (f g x, g y]) := by rw [map_liel

fg x, 9 vyi

:= h1 _

T



Guides

egg calc [h2 x, h2 y, map_lie, ha
g [x, yl =g f (g x), f (g y)]
_=g9 (f kg x, g yi)

- =1tgx gyl

Barkhausen Institut

_]

T



Guides

I Barkhausen Institut

n! n!

r—Dln—r+1)!  An-r)
| n! 1 1
B (r—l)!(n—r)!(n—r+1 +;)
| n! r+n—r+1
B (r—l)!(n—r)!( r(n—r+1) )
| n! n+1
~ (r- 1)!(n—r)!(r(n—r+1))
_ (n+1)!
rl(n4r—1)!




Guides h-'

n! n!
r—Dln—r+D! -7
| n! 1 1
B (r—l)!(n—r)!(n—r+1 +;)
| n! r+n—r+1)
(r—D!n—r)!"r(n—r+1)
a n! n+1 )
(r—=D(n—-r)!'r(n—r+1)
~ (n+1)!
~ rln47r—1)!

egg calc [add_comm, sub_add_cancel, sub_add_eq_add_sub, mul_one, mul_comm, mul_assoc,
mul_div_mul_left, _root_.div_mul_div_comm, _root_.add_div, left_distrib,
div_mul_eqg_div_mul_one_div, Real.Gamma_add_one, ha, hs, hsl
(nt / (r=1)r x(n=-r+1)1)+nt / (r 1 x(n-=mr)1))
=n! / ((r=1)tv x(n=-r)1)* 1/ (n-r+1)+1/r)
=n! / ((r=2)tr x(n=-r)1) *x ((r+(n-r+1) /(rx(n-r+1)))
*
*

=n! / ((r-1)1 (n-r)1)*x(n+1)/(rx(n-r+1)))
(n+ 1)1 / (r (n+1-=-1r)1)

Barkhausen Institut




Future Work

Barkhausen Institut

[add_comm, sub_add_cancel, sub_add_eq_add_sub, mul_one, mul_comm, mul_assoc,
mul_div_mul_left, _root_.div_mul_div_comm, _root_.add_div, left_distrib,
div_mul_eqg_div_mul_one_div, Real.Gamma_add_one, ha, hs, hsl



Future Work

[add_comm, sub_add_cancel, sub_add_eq_add_sub, mul_one, mul_comm, mul_assoc,
mul_div_mul_left, _root_.div_mul_div_comm, _root_.add_div, left_distrib,

div_mul_eqg_div_mul_one_div, Real.Gamma_add_one,

he, hs, he]

Proof obligations for conditional rewrites

Barkhausen Institut



Future Work

[add_comm, sub_add_cancel, sub_add_eq_add_sub, mul_one, mul_comm, mul_assoc,
mul_div_mul_left, _root_.div_mul_div_comm, _root_.add_div, left_distrib,

div_mul_eqg_div_mul_one_div, Real.Gamma_add_one,

he, hs, he]

Proof obligations for conditional rewrites
should be an output of egg

Barkhausen Institut



Future Work

Barkhausen Institut

[add_comm, sub_add_cancel, sub_add_eq_add_sub, mul_one, mul_comm, mul_assoc,
mul_div_mul_left, _root_.div_mul_div_comm, _root_.add_div, left_distrib,
div_mul_eqg_div_mul_one_div, Real.Gamma_add_one, ha, hs, hsl



Future Work

Barkhausen Institut

Simp Set

[add_comm, sub_add_cancel, sub_add_eq_add_sub, mul_one, mul_comm, mul_assoc,
mul_div_mul_left, _root_.div_mul_div_comm, _root_.add_div, left_distrib,
div_mul_eqg_div_mul_one_div, Real.Gamma_add_one, ha, hs, hsl



Future Work

Barkhausen Institut

Egg Basket
[add_comm, sub_add_cancel, sub_add_eq_add_sub, mul_one, mul_comm, mul_assoc,

mul_div_mul_left, _root_.div_mul_div_comm, _root_.add_div, left_distrib,
div_mul_eqg_div_mul_one_div, Real.Gamma_add_one, has, hs, hsl



Future Work

I Barkhausen Institut

Stmp-Set
Egg Basket

egg lie
egg real

€gg group
egg list

T



Future Work

Proof Persistence

Congruence Theorems
in Proof Reconstruction

Premise Selection

Barkhausen Institut

Egg Basket

Bundle the Backend in
Lake Project

Output Proof Obligations for
Conditional Rewrites

T



Try it out... at your own risk.

O marcusrossel / lean-egg

<> Code (*) Issues 6 £ Pullrequests  ©J) Discussions (») Actions [ Projects

& Unwatch 5

v

<7 Unpin

Go tofile + <> Code ~

95dead1 - yesterday @

‘ lean-egg Public

) N

¥ main ~

‘ marcusrossel Remove conditions from tc proj rewrites X

[ .github/workflows 8 months ago

Combine test scripts

e Fix mysterious explanation kind FFI b... 2 days ago
M Docs Update to Lean v4.11.0 5 months ago
M Lean Remove conditions from tc proj rewri... yesterday

h Barkhausen Institut

T

J wiki @ Security
%Y Fork 3 v Y7 Star 49 -
About i)

A (WIP) equality saturation tactic
for Lean based on egg.

Readme
Apache-2.0 license
Activity

49 stars

5 watching

€< O % ¢ B

3 forks



barkhauseninstitut.org -l barkhausen
institut

Questions?




	Slide 1: Egg: An Equality Saturation Tactic in Lean
	Slide 2: Recently on Lean Together 2025
	Slide 3: What if simp fails?
	Slide 4: What if simp fails?
	Slide 5: What if simp fails?
	Slide 6: What if rw is annoying?
	Slide 7: What if rw is annoying?
	Slide 8: What if rw is annoying?
	Slide 9: What if rw is annoying?
	Slide 10: What if rw is annoying?
	Slide 11: What if there is no tactic for your domain?
	Slide 12: What if there is no tactic for your domain?
	Slide 13: What if there is no tactic for your domain?
	Slide 14: What if there is no tactic for your domain?
	Slide 15: Tactic Comparsion
	Slide 16: Tactic Comparsion
	Slide 17: Tactic Comparsion
	Slide 18: Tactic Comparsion
	Slide 19: Tactic Comparsion
	Slide 20: Tactic Comparsion
	Slide 21: Equality Saturation
	Slide 22: Equality Saturation: Phase Ordering Problem
	Slide 23: Equality Saturation: Phase Ordering Problem
	Slide 24: Equality Saturation: Phase Ordering Problem
	Slide 25: Equality Saturation: Phase Ordering Problem
	Slide 26: Equality Saturation: Phase Ordering Problem
	Slide 27: Equality Saturation: Phase Ordering Problem
	Slide 28: Equality Saturation: Phase Ordering Problem
	Slide 29: Equality Saturation: Phase Ordering Problem
	Slide 30: Equality Saturation: E-Graphs
	Slide 31: Equality Saturation: E-Graphs
	Slide 32: Equality Saturation: E-Graphs
	Slide 33: Equality Saturation: E-Graphs
	Slide 34: Equality Saturation: E-Graphs
	Slide 35: Equality Saturation: E-Graphs
	Slide 36: Equality Saturation: E-Graphs
	Slide 37: Previous Work
	Slide 38: Basic Pipeline
	Slide 39: Basic Pipeline
	Slide 40: Encoding
	Slide 41: Basic Pipeline
	Slide 42: Explanations
	Slide 43: Basic Pipeline
	Slide 44: Basic Pipeline
	Slide 45: Proof
	Slide 46: Proof
	Slide 47: Guides
	Slide 48: Guides
	Slide 49: Guides
	Slide 50: Guides
	Slide 51: Guides
	Slide 52: Guides
	Slide 53: Future Work
	Slide 54: Future Work
	Slide 55: Future Work
	Slide 56: Future Work
	Slide 57: Future Work
	Slide 58: Future Work
	Slide 59: Future Work
	Slide 60: Future Work
	Slide 61: Try it out… at your own risk.
	Slide 62: Questions?
	Slide 63: Challenge: Syntax vs Semantics
	Slide 64: Challenge: Syntax vs Semantics
	Slide 65: Challenge: Syntax vs Semantics
	Slide 66: Challenge: Syntax vs Semantics
	Slide 67: Challenge: Syntax vs Semantics
	Slide 68: Challenge: Syntax vs Semantics
	Slide 69: Challenge: Syntax vs Semantics

