KISIELEWICZ MODEL FOR EQUATION 1516

JOSE BROX

$$x = y^2(x(xy))$$

Equation 1516

Date: 24/10/2024.

JOSE BROX

1. Model rules

 $x \cdot x = 2^x$ (a)

$$(b) x \cdot 2^x = 3^x 5^x$$

(c)
$$x \cdot (2^x 3^y) = 3^x 5^y$$

(d)
$$2^{2^{2^x}3^y} \cdot 2^x = 2^{3^{y}5^x}$$

(e)
$$2^{2^{2^x}3^y} \cdot (2^{2^{3^{y_5^x}3^{2^x}}}) = 2^{3^{y_5^x}}$$

(f)
$$2^{3^x 5^y} \cdot (2^{2^y} 3^x) = 2^y$$

(g)
$$2^{2^x} \cdot (3^x 5^x) = x$$

(h)
$$2^x \cdot (3^{2^x} 5^x) = 3^{2^x} 5^x$$

(i)
$$2^{y} \cdot (3^{x}5^{y}) = x \text{ (except if } y = z, x = 2^{z})$$

(j)
$$2^{2^{y_3y}} \cdot (3^x 5^y) = x$$

(k)
$$x \cdot (3^x 5^y) = 3^x 5^y \text{ (except if } x = 2^y \text{ or } x = 2^{2^y 3^y} \text{)}$$

(1)
$$2^{2^{x}3^{y}} \cdot (3^{x}5^{y}) = x$$

(m)
$$2^{3^{3^{x_5^y}5^y}} \cdot x = 2^y$$

(n)
$$x \cdot y = 2^x 3^y$$
 otherwise.

Ambiguities: We analyze only those cases which are not completely obvious.

- (a),(??), (??) and (b) are disjoint, since x, 2^x, 2^{2^x}, 2^{2^x3^x} are pairwise distinct.
 (c) and (f) are disjoint, since (putting x = 2^α in (c)) α ≠ 3^y5^α.

- (g) is disjoint with (h),(i),(j),(k),(l) since $2^{2x} \neq x \neq 2^x \neq 2^x 3^x$.
- (h) is disjoint with (j),(l) since $x \neq 2^x$.
- (i) is disjoint with (j),(l) since $2^y 3^y \neq y \neq 2^x 3^y$.
- (j) and (l) are disjoint except if x = y, in which case they both resolve to the same element x.
- If (k) may apply, then (h), (i) and (j) may apply too.
- (k) and (l) are disjoint, since $x \neq 2^{2^x 3^y}$.
- Even if in (m) we have a free x as right factor, it does not have any ambiguities with the previous rules in which the right factor is of the form 2^{α} , $2^{\alpha}3^{\beta}$ or $3^{\alpha}5^{\beta}$. E.g., consider a possible ambiguity with (f), in which $x = 2^{2^{\alpha}}3^{\beta}$. This then would imply that $\beta = 3^{2^{2^{\alpha}3^{\beta}5^{\alpha}}}$, which is impossible.

2. VALIDITY OF THE MODEL

- (1) In the generic case:
 - a) First level:

$$y^2 = 2^y, \quad xy = 2^x 3^y.$$

- (a) applies to y^2 .
- No rule other than (n) applies to xy.
- b) Second level:

$$x \cdot (2^x 3^y) = 3^x 5^y.$$

- (c) applies.
- c) Third level:

$$2^y \cdot (3^x 5^y) = x.$$

• (i) applies.

(2) If x = y:

a) First level:

$$x^2 = 2^x.$$

• (a) applies to x^2 twice.

b) Second level:

$$x \cdot 2^x = 3^x 5^x.$$

• (b) applies.

c) Third level:

$$2^x \cdot (3^x 5^x) = x.$$

• (i) applies.

(3) If $y = 2^x$:

a) First level:

$$y^2 = 2^y$$
, $xy = x \cdot 2^x = 3^x 5^x$.

• (a) applies to y^2 , (b) applies to xy.

b) Second level:

$$x \cdot 3^x 5^x = 3^x 5^x.$$

- (h),(i) do not apply since $x \neq 2^x$.
- (j),(l) do not apply since $x \neq 2^{2^{x}3^{x}}$.
- (k) applies.

c) Third level:

$$2^{y} \cdot (3^{x}5^{x}) = 2^{2^{x}} \cdot (3^{x}5^{x}) = x.$$

• (i) applies.

4

(4) If $y = 2^x 3^z$:

a) First level:

$$y^2 = 2^y$$
, $xy = x \cdot 2^x 3^z = 3^x 5^z$.

- (a) applies to y^2 , (c) applies to xy.
- b) Second level:

$$x \cdot 3^x 5^z$$
.

- (1) does not apply since $x \neq 2^{2^{x}3^{y}}$.
- If $x = 2^z$ then (h) applies:

$$2^z \cdot 3^{2^z} 5^z = 3^{2^z} 5^z = 3^x 5^z.$$

• If $x \neq 2^z$ then (k) applies:

$$x \cdot 3^x 5^z = 3^x 5^z.$$

c) Thirld level: (l) applies:

$$2^y \cdot 3^x 5^z = 2^{2^x 3^z} \cdot 3^x 5^z = x.$$

(5) If $x = 2^{3^{u}5^{v}}, y = 2^{2^{v}}3^{u}$:

a) First level:

$$y^2 = 2^y$$
, $xy = 2^{3^{u_5v}} \cdot 2^{2^v} 3^u = 2^v$.

• (a) applies to y^2 , (f) applies to xy.

b) Second level:

$$2^{3^{u}5^{v}} \cdot 2^{v}$$

• If $u = 3^{2^v} 5^v$ then (m) applies:

$$x \cdot 2^{v} = 2^{3^{3^{2^{v}} 5^{v}} 5^{v}} \cdot 2^{v} = 2^{v}.$$

• If $u \neq 3^{2^v} 5^v$ then (n) applies:

$$2^{3^{u}5^{v}} \cdot 2^{v} = 2^{2^{3^{u}5^{v}}} 3^{2^{v}}.$$

c) Third level:

• If $u = 3^{2^v} 5^v$ then (d) applies:

$$2^{y} \cdot 2^{v} = 2^{2^{2^{v}}3^{u}} \cdot 2^{v} = 2^{3^{u}5^{v}} = x.$$

• If $u \neq 3^{2^v} 5^v$ then (e) applies:

$$2^{y} \cdot 2^{2^{3^{u_5^{v}}}} 3^{2^{v}} = 2^{2^{2^{v}}3^{u}} \cdot 2^{2^{3^{u_5^{v}}}} 3^{2^{v}} = 2^{3^{u_5^{v}}} = x.$$

Email address: josebrox@uva.es