136 W. Thomas

PART I. AUTOMATA ON INFINITE WORDS

Notation

Throughout this chapter A denotes a finite alphabet and A^* , respectively A^{ω} , denote the set of finite words, resp. the set of ω -sequences (or: ω -words) over A. An ω -word over A is written in the form $\alpha = \alpha(0)\alpha(1)\dots$ with $\alpha(i) \in A$. Let $A^{\infty} = A^* \cup A^{\omega}$. Finite words are indicated by u, v, w, \dots , the empty word by ε , and sets of finite words by U, V, W, \dots Letters α, β, \dots are used for ω -words and L, L', \dots for sets of ω -words (i.e., ω -languages). Notations for segments of ω -words are

$$\alpha(m,n) := \alpha(m) \dots \alpha(n-1)$$
 (for $m \le n$), and $\alpha(m,\omega) := \alpha(m)\alpha(m+1) \dots$

The logical connectives are written \neg , \lor , \land , \rightarrow , \exists , \forall . As a shorthand for the quantifiers "there exist infinitely many n" and "there are only finitely many n" we use " $\exists^{\omega} n$ ", respectively " $\exists^{<\omega} n$ ".

The following operations on sets of finite words are basic: for $W \subseteq A^*$ let

$$\begin{split} & \text{pref } W := \big\{ u \in A^* \mid \exists v \ uv \in W \big\}, \\ & W^\omega := \big\{ \alpha \in A^\omega \mid \alpha = w_0 \ w_1 \dots \text{ with } w_i \in W \text{ for } i \geqslant 0 \big\}, \\ & \overrightarrow{W} := \big\{ \alpha \in A^\omega \mid \exists^\omega n \ \alpha(0, n) \in W \big\}. \end{split}$$

Other notations for \overrightarrow{W} found in the literature are $\limsup W$ and W^{δ} . Finally, for an ω -sequence $\sigma = \sigma(0)\sigma(1)\dots$ from S^{ω} , the "infinity set" of σ is

$$\operatorname{In}(\sigma) := \{ s \in S \mid \exists^{\omega} n \, \sigma(n) = s \}.$$

1. Büchi automata

Büchi automata are nondeterministic finite automata equipped with an acceptance condition that is appropriate for ω -words: an ω -word is accepted if the automaton can read it from left to right while assuming a sequence of states in which some final state ocurs infinitely often (*Büchi acceptance*).

DEFINITION. A Büchi automaton over the alphabet A is of the form $\mathscr{A} = (Q, q_0, \Delta, F)$ with finite state set Q, initial state $q_0 \in Q$, transition relation $\Delta \subseteq Q \times A \times Q$, and a set $F \subseteq Q$ of final states. A run of \mathscr{A} on an ω -word $\alpha = \alpha(0)\alpha(1) \dots$ from A^{ω} is a sequence $\sigma = \sigma(0)\sigma(1) \dots$ such that $\sigma(0) = q_0$ and $(\sigma(i), \alpha(i), \sigma(i+1)) \in \Delta$ for $i \geqslant 0$; the run is called successful if $\operatorname{In}(\sigma) \cap F \neq \emptyset$, i.e. some state of F occurs infinitely often in it. \mathscr{A} accepts α if there is a successful run of \mathscr{A} on α . Let

$$L(\mathscr{A}) = \{ \alpha \in A^{\omega} \mid \mathscr{A} \text{ accepts } \alpha \}$$

be the ω -language recognized by \mathscr{A} . If $L = L(\mathscr{A})$ for some Büchi automaton \mathscr{A} , L is said to be Büchi recognizable.

Example. Consider the alphabet $A = \{a, b, c\}$. Define $L_1 \subseteq A^{\omega}$ by

 $\alpha \in L_1$ iff after any occurrence of letter a there is some occurrence of letter b in α .