Porting Mathlib

Mario Carneiro

Carnegie Mellon University

July 30, 2021

1/33

Acknowledgements

> This is reporting on an unfinished project

> Joint work with Daniel Selsam, Aurélien Saue, Gabriel
Ebner, Wojciech Nawrocki, Kevin Buzzard, David
Renshaw, Jeremy Avigad, Deniz Aydin, Shing Tak Lam

» and many more are likely to enter the project later
» Funded by Microsoft Research

2/33

Github: digama
Zulip: Mario Carneiro

v

PhD student in Logic at CMU
Proof engineering since 2013
> Metamath (maintainer)
> Lean 3 mathlib (founder, maintainer)
> Dabbled in Isabelle, HOL Light, Coq,
Mizar
> Metamath Zero (author)
» Proved 37 of Freek’s 100 theorems list in
Metamath

Lots of library code in mathlib
Say hi at
https://leanprover.zulipchat.com

v

v Yy

3/33

https://leanprover.zulipchat.com

Mathlib

Library of formalized mathematics and computer science
Lean 3 proof assistant

de-facto standard library

Based on Dependent type theory (CIC)

Uses classical logic (and choice)
Active community

» github.com/leanprover-community/mathlib
> leanprover.zulipchat.com

vyVvVy vy Vv YVvyy

4/33

Number of lines

700000

600000

500000

400000

300000

200000

100000

/mathlib_stats.html

.10

ty.github

—communil

//leanprover

https

5/33

https://leanprover-community.github.io/mathlib_stats.html

Commits by month

500

450

400

350

300

250

200

150

100

50

//leanprover-community.github.io/mathlib_stats.html

https

6/33

https://leanprover-community.github.io/mathlib_stats.html

Mathlib goals

Two main goals:
» (CS) To build a standard library for lean as a programming
language
> To support verified programming and proven-correct
algorithms
> To support and provide tactics and decision procedures for
proof automation
» (Math) To build a library of formalized mathematics, and
support users doing the same

These goals complement each other, it is not just two libraries in
one

7/33

Mathlib goals: 3 years later

I wrote those goals in a presentation three years ago, and the
Math goal has seen considerably more attention than the CS
goal, for several reasons:

» The name

> Effective marketing to mathematicians by Kevin Buzzard
et al. have skewed the composition of mathlib contributors
much farther towards pure mathematicians than
comparable formal libraries in other communities

» Poor performance of the lean 3 interpreter means that
optimized and verified data structures aren’t really worth it

I expect that Lean 4 will push the balance towards more CS
applications.

8/33

More Mathlib projects

A number of notable projects have been done within or using
mathlib:

» Schemes in Lean (v1: Kevin Buzzard, Chris Hughes,
Kenny Lau; v2: Amelia Livingston, Ramon Fernandez Mir;
v3: Scott Morrison)

» Formalising perfectoid spaces (Kevin Buzzard, Johan
Commelin, Patrick Massot)

> A formal proof of the independence of the continuum
hypothesis (Jesse Michael Han, Floris van Doorn)

» Liquid Tensor Experiment (Johan Commelin, Peter
Scholze, Patrick Massot, Adam Topaz, Riccardo Brasca,
Kevin Buzzard, Bhavik Mehta, Scott Morrison, Damiano
Testa, Heather Macbeth, Filippo A.E. Nuccio, et al)

> This one has even been the subject of several news articles

9/33

A Short History of Lean and mathlib

Several major versions:

>

vV v vy

Lean 1 (2013 - no public release)

Lean 2 (2015) — includes HoTT mode

Lean 3 (2017)

Lean 4 (2021, alpha)

The Lean 2 math library was developed by Jeremy Avigad,
Floris van Doorn, Rob Lewis et al.

Lean 3 is not backwards compatible with Lean 2, and the
decision was made to start again taking advantage of
significant new features

mathlib is the latest version of the Lean 3 math library,
developed by hundreds of contributors

Lean 4 is not backwards compatible with Lean 3, and the
decision was made to port the library

10/33

The Lean 2 — Lean 3 transition

>

Lean 3 added a number of features around the
metaprogramming framework

But the elaborator was scaled back significantly to avoid
excessive backtracking that caused bad error messages and
flaky scripts

Reinterpreted Lean 2 files would generally have an error
on every other lemma, and there were some small syntax
differences as well, so manual porting required heavy
touch-ups

Mathlib was loosely based on the lean 2 library, but was
written by hand from scratch

Lean 2 library is about 40K lines; this was all eventually
ported to mathlib within the first year (important stuff
right away, other stuff later for completeness)

11/33

The Lean 2 — Lean 3 transition

>

Lean 3 added a number of features around the
metaprogramming framework

But the elaborator was scaled back significantly to avoid
excessive backtracking that caused bad error messages and
flaky scripts

Reinterpreted Lean 2 files would generally have an error
on every other lemma, and there were some small syntax
differences as well, so manual porting required heavy
touch-ups

Mathlib was loosely based on the lean 2 library, but was
written by hand from scratch

Lean 2 library is about 40K lines; this was all eventually
ported to mathlib within the first year (important stuff
right away, other stuff later for completeness)

Mathlib is now 600K lines, up from 450K at Jan 2021

11/33

Lean 4

A complete reimplementation of Lean in Lean by
Leonardo de Moura and Sebastian Ullrich

Implementation started in 2018, first stable version
released Jan 2021

Endlessly extensible - third party libraries like mathlib can
override or extend almost any part of the system

Compiles to C, so no more slow interpreted tactics

A much more powerful macro / syntax engine, for first
class DSL support

do notation is significantly more powerful

12/33

Lean 3 — Lean 4 differences

> Lean 4 is “inspired” by lean 3, it is not a direct upgrade and
there is no backward compatibility
> The basic concepts of theorems, definitions, expressions,
tactics, attributes all have equivalents, but many things are
moved around

» The lean 4 kernel is (mostly) an extension of the lean 3
kernel

> Nested and mutual inductives

> Natural number and string literals (with builtin bignum
arithmetic)

> Lean 3 “macros” are handled differently

> Opaque definitions (constant)

> A kernel primitive for trusting the evaluation of a compiled
lean expression

13/33

Lean 3 — Lean 4 differences

> Lots of minor syntax changes

> by tacs instead of begin tacs end

> match doesn’t have an end

» funx=>e¢instead of A x, e

> Much more reliance on whitespace sensitivity over
punctuation delimiters

» Tactics are now integrated with macros
> Elaboration is sometimes stronger, sometimes weaker
> Typeclass inference is different

» Many lean 3 tactics don't exist yet in lean 4

> Some are omitted on purpose, either because they can be
implemented by users (aka mathlib) or we have a better but
incompatible design now

14/33

Porting strategies

15/33

binport: Porting kernel terms

» The plan:

> Run lean 3
> Get elaborated expressions
> Typecheck them with the lean 4 kernel

16/33

binport: Porting kernel terms

» The plan:

> Run lean 3
> Get elaborated expressions
> Typecheck them with the lean 4 kernel

» This works, although it is very sensitive to unfolding
heuristics matching between lean 3 and lean 4

16/33

binport: Porting kernel terms

» The plan:

> Run lean 3
> Get elaborated expressions
> Typecheck them with the lean 4 kernel

» This works, although it is very sensitive to unfolding
heuristics matching between lean 3 and lean 4

> We have ported all of mathlib this way! &

16/33

binport: Porting kernel terms

» The plan:

> Run lean 3
> Get elaborated expressions
> Typecheck them with the lean 4 kernel

» This works, although it is very sensitive to unfolding
heuristics matching between lean 3 and lean 4

> We have ported all of mathlib this way! &

> The result is a set of compiled .olean files that can be
imported into lean 4 files

16/33

Drawbacks of binport

> It doesn’t produce source files

17/33

Drawbacks of binport

> It doesn’t produce source files
> Hybrid build process?

17/33

Drawbacks of binport

> It doesn’t produce source files
> Hybrid build process?
> but lean 3 files can’t refer to lean 4 files

17/33

Drawbacks of binport

> It doesn’t produce source files
> Hybrid build process?
> but lean 3 files can’t refer to lean 4 files
> Potential for gradual top-down manual translation

17/33

Drawbacks of binport

> It doesn’t produce source files

> Hybrid build process?

> but lean 3 files can’t refer to lean 4 files

> Potential for gradual top-down manual translation
> A lot of very important extra-logical metadata is lost

> Tactics

> Elaboration hints for definition unfolding

> Attributes / simp lemmas

> Notations

17/33

Drawbacks of binport

> It doesn’t produce source files
> Hybrid build process?
> but lean 3 files can’t refer to lean 4 files
> Potential for gradual top-down manual translation
> A lot of very important extra-logical metadata is lost
> Tactics
> Elaboration hints for definition unfolding
> Attributes / simp lemmas
> Notations
> Lean 4 already has definitions for builtins, like Nat, that we
want to align

> This is necessary to get the benefits of e.g. Nat.add

17/33

Drawbacks of binport

> It doesn’t produce source files
> Hybrid build process?
> but lean 3 files can’t refer to lean 4 files
> Potential for gradual top-down manual translation
> A lot of very important extra-logical metadata is lost
> Tactics
> Elaboration hints for definition unfolding
> Attributes / simp lemmas
> Notations
> Lean 4 already has definitions for builtins, like Nat, that we
want to align
> This is necessary to get the benefits of e.g. Nat.add
> Every alignment has to be defeq or it can break the
translation

17/33

Drawbacks of binport

> It doesn’t produce source files
> Hybrid build process?
> but lean 3 files can’t refer to lean 4 files
> Potential for gradual top-down manual translation
> A lot of very important extra-logical metadata is lost
> Tactics
> Elaboration hints for definition unfolding

> Attributes / simp lemmas
> Notations
> Lean 4 already has definitions for builtins, like Nat, that we
want to align
> This is necessary to get the benefits of e.g. Nat.add
> Every alignment has to be defeq or it can break the
translation
> Some necessary alignments are not defeq

17/33

Drawbacks of binport

> It doesn’t produce source files

> Hybrid build process?

> but lean 3 files can’t refer to lean 4 files

> Potential for gradual top-down manual translation
> A lot of very important extra-logical metadata is lost

> Tactics

> Elaboration hints for definition unfolding

> Attributes / simp lemmas

> Notations

> Lean 4 already has definitions for builtins, like Nat, that we
want to align

> This is necessary to get the benefits of e.g. Nat.add

> Every alignment has to be defeq or it can break the
translation

> Some necessary alignments are not defeq

> Some alignments are completely different, e.g. +is
heterogeneous in lean 4

17/33

olean-port: Reconstructed syntax porting

> The plan:

> Run lean 3
> Get compiled olean files
> Reconstruct lean 4 syntax which would have the same effect

18/33

olean-port: Reconstructed syntax porting

» The plan:

> Run lean 3
> Get compiled olean files
> Reconstruct lean 4 syntax which would have the same effect

» Lean 3 uses olean files to communicate from one file to the
next, so they have much better coverage of notations,
attributes, etc.

18/33

olean-port: Reconstructed syntax porting

» The plan:
» Run lean 3
> Get compiled olean files
> Reconstruct lean 4 syntax which would have the same effect
> Lean 3 uses olean files to communicate from one file to the
next, so they have much better coverage of notations,
attributes, etc.

» Can get a result similar to the lean 3 #print command

18/33

olean-port: Reconstructed syntax porting

» The plan:
> Runlean 3
> Get compiled olean files
> Reconstruct lean 4 syntax which would have the same effect
» Lean 3 uses olean files to communicate from one file to the
next, so they have much better coverage of notations,
attributes, etc.
» Can get a result similar to the lean 3 #print command

> Tactics generally have characteristic proofs, so we can
reconstruct the tactics that produced the terms

18/33

olean-port: Reconstructed syntax porting

» The plan:
» Run lean 3
> Get compiled olean files
> Reconstruct lean 4 syntax which would have the same effect
> Lean 3 uses olean files to communicate from one file to the
next, so they have much better coverage of notations,
attributes, etc.

» Can get a result similar to the lean 3 #print command

> Tactics generally have characteristic proofs, so we can
reconstruct the tactics that produced the terms

> And if they don’t, we can make them leave more explicit
annotations

18/33

Drawbacks of olean-port

> Tactics are completely erased in proofs stored in oleans,
and reconstruction is hard

19/33

Drawbacks of olean-port

> Tactics are completely erased in proofs stored in oleans,
and reconstruction is hard
> This does not capture file-local structuring commands:

> local notations

> variables

> sections and namespaces

> local attributes, or attributes that remove themselves

19/33

Drawbacks of olean-port

> Tactics are completely erased in proofs stored in oleans,
and reconstruction is hard
> This does not capture file-local structuring commands:
> local notations
> variables

> sections and namespaces

> local attributes, or attributes that remove themselves
» Many autogenerated definitions are mixed in with the

“real” definitions

> Definitional lemmas

> Theorems generated by the inductive command

> Theorems generated by tactics in a definition

> Theorems generated by attributes

19/33

Drawbacks of olean-port

> Tactics are completely erased in proofs stored in oleans,
and reconstruction is hard
> This does not capture file-local structuring commands:

> local notations

> variables

> sections and namespaces

> local attributes, or attributes that remove themselves

» Many autogenerated definitions are mixed in with the
“real” definitions

> Definitional lemmas

> Theorems generated by the inductive command
> Theorems generated by tactics in a definition

> Theorems generated by attributes

> Definitions by pattern matching are already compiled

19/33

lean3-port: Lean 3 re-parsing

> The plan:
> Use lean 4 to write a lean 3 parser
> Use it on lean 3 files or snippets

20/33

lean3-port: Lean 3 re-parsing

» The plan:
> Use lean 4 to write a lean 3 parser
> Use it on lean 3 files or snippets

» This is a very flexible approach, since it means we can just
have #lang lean3 sections in a lean 4 file

20/33

lean3-port: Lean 3 re-parsing

» The plan:
> Use lean 4 to write a lean 3 parser
> Use it on lean 3 files or snippets
» This is a very flexible approach, since it means we can just
have #lang lean3 sections in a lean 4 file
» Or we can target it on full files, and either translate them to
lean 4 syntax or just run and import them

20/33

lean3-port: Lean 3 re-parsing

» The plan:
> Use lean 4 to write a lean 3 parser
> Use it on lean 3 files or snippets
» This is a very flexible approach, since it means we can just
have #lang lean3 sections in a lean 4 file
» Or we can target it on full files, and either translate them to
lean 4 syntax or just run and import them
> Lean 4 has a focus on versatile syntax parsing, and it is
already being used to implement a parser very similar to
lean 3 (namely lean 4)

20/33

Drawbacks of 1lean3-port

» The lean 3 grammar is not at all context free
> There is an approximate BNF description but it lies a lot

21/33

Drawbacks of 1lean3-port

» The lean 3 grammar is not at all context free

> There is an approximate BNF description but it lies a lot
> The expression grammar is extensible, even locally to an
expression

21/33

Drawbacks of 1lean3-port

» The lean 3 grammar is not at all context free
> There is an approximate BNF description but it lies a lot
> The expression grammar is extensible, even locally to an
expression
> The parser is very stateful: each command is executed as
soon as it is parsed

21/33

Drawbacks of 1lean3-port

» The lean 3 grammar is not at all context free

> There is an approximate BNF description but it lies a lot
> The expression grammar is extensible, even locally to an
expression

> The parser is very stateful: each command is executed as
soon as it is parsed
» The parser can also run VM code, even IO actions

21/33

Drawbacks of 1lean3-port

» The lean 3 grammar is not at all context free
> There is an approximate BNF description but it lies a lot
> The expression grammar is extensible, even locally to an
expression
> The parser is very stateful: each command is executed as
soon as it is parsed
» The parser can also run VM code, even IO actions
> The VM code needs an emulation of the lean 3 environment

21/33

Drawbacks of 1lean3-port

» The lean 3 grammar is not at all context free

> There is an approximate BNF description but it lies a lot
> The expression grammar is extensible, even locally to an
expression

> The parser is very stateful: each command is executed as
soon as it is parsed
» The parser can also run VM code, even IO actions
> The VM code needs an emulation of the lean 3 environment

> Yes, parsing is definitely Turing-complete

21/33

Drawbacks of 1lean3-port

» The lean 3 grammar is not at all context free

> There is an approximate BNF description but it lies a lot
> The expression grammar is extensible, even locally to an
expression

> The parser is very stateful: each command is executed as
soon as it is parsed
» The parser can also run VM code, even IO actions
> The VM code needs an emulation of the lean 3 environment

> Yes, parsing is definitely Turing-complete
In short, to parse lean 3 you have to be lean 3

21/33

Drawbacks of 1lean3-port

» The lean 3 grammar is not at all context free

> There is an approximate BNF description but it lies a lot
> The expression grammar is extensible, even locally to an
expression

> The parser is very stateful: each command is executed as
soon as it is parsed
» The parser can also run VM code, even IO actions
> The VM code needs an emulation of the lean 3 environment

> Yes, parsing is definitely Turing-complete
In short, to parse lean 3 you have to be lean 3

> Lean 4 parsers are more restricted

21/33

Drawbacks of 1lean3-port

» The lean 3 grammar is not at all context free

> There is an approximate BNF description but it lies a lot
> The expression grammar is extensible, even locally to an
expression

> The parser is very stateful: each command is executed as
soon as it is parsed
» The parser can also run VM code, even IO actions
> The VM code needs an emulation of the lean 3 environment

> Yes, parsing is definitely Turing-complete
In short, to parse lean 3 you have to be lean 3

> Lean 4 parsers are more restricted
> parsing happens all at once before execution

21/33

Drawbacks of 1lean3-port

» The lean 3 grammar is not at all context free

> There is an approximate BNF description but it lies a lot
> The expression grammar is extensible, even locally to an
expression

> The parser is very stateful: each command is executed as
soon as it is parsed
» The parser can also run VM code, even IO actions
> The VM code needs an emulation of the lean 3 environment
> Yes, parsing is definitely Turing-complete
In short, to parse lean 3 you have to be lean 3

> Lean 4 parsers are more restricted

> parsing happens all at once before execution
> parsers can’t do IO

21/33

Drawbacks of 1lean3-port

» The lean 3 grammar is not at all context free
> There is an approximate BNF description but it lies a lot
> The expression grammar is extensible, even locally to an
expression
> The parser is very stateful: each command is executed as
soon as it is parsed
» The parser can also run VM code, even IO actions
> The VM code needs an emulation of the lean 3 environment
> Yes, parsing is definitely Turing-complete
In short, to parse lean 3 you have to be lean 3

> Lean 4 parsers are more restricted
> parsing happens all at once before execution
> parsers can’t do 10
> parsers can’t change the environment (they are
non-monadic)

21/33

synport: AST syntax parsing

> The plan:

> Modify the lean 3 parser to construct an AST on the side
> Export the AST in a common format
> Load the AST into lean 4 and translate it to lean 4 syntax

22/33

synport: AST syntax parsing

» The plan:

> Modify the lean 3 parser to construct an AST on the side
> Export the AST in a common format
> Load the AST into lean 4 and translate it to lean 4 syntax

» This ensures that we perfectly mimic any lean 3 parser
oddities, since lean 3 is doing the parsing

22/33

synport: AST syntax parsing

» The plan:
> Modify the lean 3 parser to construct an AST on the side
> Export the AST in a common format
> Load the AST into lean 4 and translate it to lean 4 syntax
» This ensures that we perfectly mimic any lean 3 parser
oddities, since lean 3 is doing the parsing
> We can get access to all sorts of syntax not available with
previous approaches:

» Tactic block structure
> Pattern matching definitions
» Variables, sections, local notations

22/33

Drawbacks of synport

» We have to instrument lean 3

23/33

Drawbacks of synport

> We have to instrument lean 3 (done *)

23/33

Drawbacks of synport

> We have to instrument lean 3 (done FS)
» How to adjust to elaboration changes?

> Lean 3 uses a different elaboration strategy for recursors
than lean 4, so most applications of e.g. Nat. rec fail

23/33

Drawbacks of synport

> We have to instrument lean 3 (done FS)
» How to adjust to elaboration changes?

> Lean 3 uses a different elaboration strategy for recursors
than lean 4, so most applications of e.g. Nat. rec fail

» How to adjust to tactic changes?

> e.g. We know the lean 3 code used simp here but it doesn’t
work in lean 4

23/33

Drawbacks of synport

> We have to instrument lean 3 (done ‘)
» How to adjust to elaboration changes?

> Lean 3 uses a different elaboration strategy for recursors
than lean 4, so most applications of e.g. Nat. rec fail

» How to adjust to tactic changes?

> e.g. We know the lean 3 code used simp here but it doesn’t
work in lean 4

> We need implementations for all lean 3 tactics

> The meta framework is very different, so we are not
planning to port meta code directly

23/33

Drawbacks of synport

v

We have to instrument lean 3 (done ‘)

v

How to adjust to elaboration changes?

> Lean 3 uses a different elaboration strategy for recursors
than lean 4, so most applications of e.g. Nat. rec fail

How to adjust to tactic changes?

> e.g. We know the lean 3 code used simp here but it doesn’t
work in lean 4

v

v

We need implementations for all lean 3 tactics

> The meta framework is very different, so we are not
planning to port meta code directly

v

Some commands manipulate lean 3 state that is expressed
differently in lean 4, like precedence

> Should we just delete these?

23/33

The manual approach: mathlib4

> The plan:

> Take inspiration from lean 3 mathlib
> Write lean 4 files by hand

24/33

The manual approach: mathlib4

> The plan:

> Take inspiration from lean 3 mathlib
> Write lean 4 files by hand

> Best quality results

24/33

The manual approach: mathlib4

> The plan:

> Take inspiration from lean 3 mathlib
> Write lean 4 files by hand

> Best quality results

> Able to adapt to areas where lean 4 is just too different

24/33

The manual approach: mathlib4

> The plan:

> Take inspiration from lean 3 mathlib
> Write lean 4 files by hand

> Best quality results
> Able to adapt to areas where lean 4 is just too different

» No startup cost besides training people to write lean 4 code

24/33

Drawbacks of manual porting

» Obviously doesn’t scale: the porting process itself will take
a month or more

25/33

Drawbacks of manual porting

» Obviously doesn’t scale: the porting process itself will take
a month or more

What to do about ongoing changes? Mathlib gets 10 PRs a day

25/33

Drawbacks of manual porting

» Obviously doesn’t scale: the porting process itself will take
a month or more

What to do about ongoing changes? Mathlib gets 10 PRs a day
> Stop the world and port everything?

25/33

Drawbacks of manual porting

» Obviously doesn’t scale: the porting process itself will take
a month or more

What to do about ongoing changes? Mathlib gets 10 PRs a day
> Stop the world and port everything?
> Could be done if we get everyone together to work on it

25/33

Drawbacks of manual porting

» Obviously doesn’t scale: the porting process itself will take
a month or more
What to do about ongoing changes? Mathlib gets 10 PRs a day
> Stop the world and port everything?

> Could be done if we get everyone together to work on it
> The skillset needed for porting is not the same as for
authoring

25/33

Drawbacks of manual porting

» Obviously doesn’t scale: the porting process itself will take
a month or more
What to do about ongoing changes? Mathlib gets 10 PRs a day
> Stop the world and port everything?

> Could be done if we get everyone together to work on it
> The skillset needed for porting is not the same as for
authoring

> Freeze parts of mathlib and port bottom-up

25/33

Drawbacks of manual porting

» Obviously doesn’t scale: the porting process itself will take
a month or more
What to do about ongoing changes? Mathlib gets 10 PRs a day
> Stop the world and port everything?

> Could be done if we get everyone together to work on it
> The skillset needed for porting is not the same as for
authoring

> Freeze parts of mathlib and port bottom-up
> Easy for theorems to get lost in the shuffle

25/33

Drawbacks of manual porting

» Obviously doesn’t scale: the porting process itself will take
a month or more
What to do about ongoing changes? Mathlib gets 10 PRs a day
> Stop the world and port everything?

> Could be done if we get everyone together to work on it
> The skillset needed for porting is not the same as for
authoring

> Freeze parts of mathlib and port bottom-up
> Easy for theorems to get lost in the shuffle
» Fork mathlib, keep both versions in sync

25/33

Drawbacks of manual porting

» Obviously doesn’t scale: the porting process itself will take
a month or more
What to do about ongoing changes? Mathlib gets 10 PRs a day
> Stop the world and port everything?

> Could be done if we get everyone together to work on it
> The skillset needed for porting is not the same as for
authoring

> Freeze parts of mathlib and port bottom-up
> Easy for theorems to get lost in the shuffle
» Fork mathlib, keep both versions in sync
> Easy for theorems to get lost in the shuffle

25/33

What we are actually doing

vV v vyyy

binport: Porting kernel terms
olean-port: Reconstructed syntax porting
lean3-port: Lean 3 re-parsing

synport: AST syntax parsing

mathlib4: Manual porting

26/33

What we are actually doing

vV v vyyy

binport: Porting kernel terms
olean-port: Reconstructed syntax porting
lean3-port: Lean 3 re-parsing

synport: AST syntax parsing

mathlib4: Manual porting

26/33

What we are actually doing

A combination of several strategies:
> mathlib4: A from scratch implementation of mathlib
foundations in lean 4
> Tactics implemented here
> Foundational theories like Data.Nat.Basic that are useful
and not too hard to port
> Setting up syntax to be used by the porting tools

27/33

What we are actually doing

A combination of several strategies:
> mathlib4: A from scratch implementation of mathlib
foundations in lean 4

> Tactics implemented here
> Foundational theories like Data.Nat.Basic that are useful
and not too hard to port
> Setting up syntax to be used by the porting tools
> binport: Translating lean 3 proof data into lean 4 oleans

> Useful for getting a context for files in the middle or top of
the dependency graph for added parallelism

27/33

What we are actually doing

A combination of several strategies:

> mathlib4: A from scratch implementation of mathlib
foundations in lean 4
> Tactics implemented here
> Foundational theories like Data.Nat.Basic that are useful
and not too hard to port
> Setting up syntax to be used by the porting tools
> binport: Translating lean 3 proof data into lean 4 oleans
> Useful for getting a context for files in the middle or top of
the dependency graph for added parallelism
» synport: Translating lean 3 AST data into lean 4 source
files
> Uses lean --ast, implemented in a fork of lean 3
> Provides a starting point for manual editing

27/33

Improvements

» Idea: translate elaboration info

> Attach info about elaborated exprs to AST nodes in lean 3
> Produce syntax in synport with the lean 4 elaborator
available

28/33

Improvements

» Idea: translate elaboration info

> Attach info about elaborated exprs to AST nodes in lean 3

> Produce syntax in synport with the lean 4 elaborator
available

> When a syntax is not going to elaborate the way we want,
select a more explicit syntax

28/33

Improvements

> Idea: translate elaboration info
> Attach info about elaborated exprs to AST nodes in lean 3
> Produce syntax in synport with the lean 4 elaborator
available
> When a syntax is not going to elaborate the way we want,
select a more explicit syntax

> _..ornot

28/33

Improvements

> Idea: translate elaboration info
> Attach info about elaborated exprs to AST nodes in lean 3
> Produce syntax in synport with the lean 4 elaborator
available
> When a syntax is not going to elaborate the way we want,
select a more explicit syntax

> _..ornot

» Add more backward compatible syntax to ease manual
translations

28/33

Improvements

> Idea: translate elaboration info
> Attach info about elaborated exprs to AST nodes in lean 3
> Produce syntax in synport with the lean 4 elaborator
available
> When a syntax is not going to elaborate the way we want,
select a more explicit syntax

> ...ornot
» Add more backward compatible syntax to ease manual
translations

> Requires a post processing step to remove the syntax if we
want to change the style guide

28/33

Improvements

» Idea: translate elaboration info

> Attach info about elaborated exprs to AST nodes in lean 3

> Produce syntax in synport with the lean 4 elaborator
available

> When a syntax is not going to elaborate the way we want,
select a more explicit syntax

> ...ornot
» Add more backward compatible syntax to ease manual
translations
> Requires a post processing step to remove the syntax if we
want to change the style guide

> Manage alignments through #align annotations in ported
files

> Useful for binport to be able to stay in sync

28/33

Improvements

» Idea: translate elaboration info

> Attach info about elaborated exprs to AST nodes in lean 3
> Produce syntax in synport with the lean 4 elaborator
available
> When a syntax is not going to elaborate the way we want,
select a more explicit syntax
> ...ornot
» Add more backward compatible syntax to ease manual
translations
> Requires a post processing step to remove the syntax if we
want to change the style guide
> Manage alignments through #align annotations in ported
files

> Useful for binport to be able to stay in sync
> Still usable even if the alignments are not defeq as long as
downstream uses are also realigned

28/33

Translation examples: 1t_or_ge

-- Lean 3
protected lemma lt_or_ge : V (ab : N), a<b Vb<a
| a0 := or.inr (zero_le a)
| a (b+1) :=
match lt_or_ge a b with
| or.inl h := or.inl (le_succ_of_le h)
| or.inr h :=

match nat.eq_or_lt_of_le h with
| or.inl h1 := or.inl (h1 » 1lt_succ_self b)
| or.inr h1 := or.inr hi
end
end

-- Lean 4
protected theorem 1lt_or_ge : (ab : N) » a<bVb<a
| a, @ => Or.inr (zero_le a)
| a, b +1 =
match lt_or_ge a b with
| Or.inl h => Or.inl (le_succ_of_le h)
| Or.inr h =>
match nat.eq_or_lt_of_le h with
| Or.inl h1 => Or.inl (h1 » 1lt_succ_self b)
| Or.inr h1 => Or.inr hi

29/33

Translation examples: div_inv_monoid

-- Lean 3
/== A ~div_inv_monoid™ is a “monoid” with operations “/° and ARERIY
@[protect_proj, ancestor monoid has_inv has_div]
class div_inv_monoid (G : Type u) extends monoid G, has_inv G, has_div G :=
(div :=Aab, axb’l)
(div_eq_mul_inv : Y ab : G, a/b=ax* b1 . try_refl_tac)
(gpow : Z — G — G := gpow_rec)
(gpow_zero' : VY (a : G), gpow @ a = 1 . try_refl_tac)
(gpow_succ'
Y (n: IN) (a : G), gpow (int.of_nat n.succ) a = a * gpow (int.of_nat n) a . try_refl_tac)
(gpow_neg"' :
Y (n: IN) (a: G), gpow (-[1+ n]) a = (gpow n.succ a) -1 try_refl_tac)

-- Lean 4

/== A “DivInvMonoid™ is a “Monoid™ with operations ~/° and ALY/

@[protectProj]

class DivInvMonoid (G : Type u) extends Monoid G, Inv G, Div G where
div := fun a b => a * b~!

div_egq_mul_inv : (ab :G) - a/b=a=x* b1 := by try_refl_tac

gpow : Z — G — G := gpow_rec

gpow_zero' : (a : G) — gpow @ a = 1 := by try_refl_tac

gpow_succ' : (n : N) — (a : G) — gpow (int.of_nat n.succ) a = a * gpow (int.of_nat n) a
:= by try_refl_tac

gpow_neg' : (n : N) — (a : G) — gpow -[1+ n] a = (gpow n.succ a)_1 := by try_refl_tac

30/33

Translation examples: nat.mod_1t

-- Lean 3
lemma mod_1t (x : nat) {y : nat} (h : @ <y) : x %y <y :=
begin
induction x using nat.case_strong_induction_on with x ih,
{ rw zero_mod, assumption },
{ by_cases h; : succ x <y,

{ rwa [mod_eq_of_1t hi] 3},

{ have hy : succ x %y = (succ x - y) %y := mod_eq_sub_mod (not_1lt.1 hy),
have : succ x - y < x := le_of_lt_succ (sub_lt (succ_pos x) h),
have hy : (succ x - y) %y <y :=ih _ this,
rwa [« hi] at hy } %}

end

-- Lean 4
theorem mod_1t (x : Nat) {y : Nat} (h : @ <y) : x %y <y :=by
induction' x using Nat.case_strong_induction_on with x ih
rw [zero_mod]; assumption
byCases h; : succ x <y
rwa [mod_eq_of_1t hi]
have h; : succ x %y = (succ x - y) %y := mod_eqg_sub_mod (not_lt.1 hy)
have : succ x -y < x := le_of_lt_succ (sub_lt (succ_pos x) h)
have hy : (succ x - y) %y <y :=ih _ this
rwa [« hy] at hy

31/33

Conclusion

» This is quite possibly the largest source-level proof porting
project ever

» Mathlib’s high (and growing) activity rate and many
contributors lead to some logistical challenges

» The techniques discussed here apply generally to any
source-level translations
> Lean 3 is in many ways a worst case for this kind of job
> even translating Coq or Isabelle to Lean would follow a
similar path

32/33

Conclusion

» This is quite possibly the largest source-level proof porting
project ever

» Mathlib’s high (and growing) activity rate and many
contributors lead to some logistical challenges

» The techniques discussed here apply generally to any
source-level translations

> Lean 3 is in many ways a worst case for this kind of job
> even translating Coq or Isabelle to Lean would follow a
similar path

> We really hope we don’t have to do this again in lean 5

32/33

Resources

» Lean/mathlib: http://leanprover-community.github.io/
> Lean 4: https://github.com/leanprover/lean4/

» Mathport: https://github.com/dselsam/mathport
» Zulip: https://leanprover.zulipchat.com/
> Porting discussions are on #lean4 and #mathlib4 streams

Thanks!

33/33

http://leanprover-community.github.io/
https://github.com/leanprover/lean4/
https://github.com/dselsam/mathport
https://leanprover.zulipchat.com/

