
Porting Mathlib

Mario Carneiro

Carnegie Mellon University

July 30, 2021

1 / 33



Acknowledgements

I This is reporting on an unfinished project
I Joint work with Daniel Selsam, Aurélien Saue, Gabriel

Ebner, Wojciech Nawrocki, Kevin Buzzard, David
Renshaw, Jeremy Avigad, Deniz Aydin, Shing Tak Lam

I and many more are likely to enter the project later
I Funded by Microsoft Research

2 / 33



Who am I?

Github: digama0
Zulip: Mario Carneiro

I PhD student in Logic at CMU
I Proof engineering since 2013

I Metamath (maintainer)
I Lean 3 mathlib (founder, maintainer)
I Dabbled in Isabelle, HOL Light, Coq,

Mizar
I Metamath Zero (author)

I Proved 37 of Freek’s 100 theorems list in
Metamath

I Lots of library code in mathlib
I Say hi at

https://leanprover.zulipchat.com

3 / 33

https://leanprover.zulipchat.com


Mathlib

I Library of formalized mathematics and computer science
I Lean 3 proof assistant
I de-facto standard library
I Based on Dependent type theory (CIC)
I Uses classical logic (and choice)
I Active community

I github.com/leanprover-community/mathlib
I leanprover.zulipchat.com

4 / 33



https://leanprover-community.github.io/mathlib stats.html

5 / 33

https://leanprover-community.github.io/mathlib_stats.html


https://leanprover-community.github.io/mathlib stats.html

6 / 33

https://leanprover-community.github.io/mathlib_stats.html


Mathlib goals

Two main goals:
I (CS) To build a standard library for lean as a programming

language
I To support verified programming and proven-correct

algorithms
I To support and provide tactics and decision procedures for

proof automation

I (Math) To build a library of formalized mathematics, and
support users doing the same

These goals complement each other, it is not just two libraries in
one

7 / 33



Mathlib goals: 3 years later

I wrote those goals in a presentation three years ago, and the
Math goal has seen considerably more attention than the CS
goal, for several reasons:
I The name
I Effective marketing to mathematicians by Kevin Buzzard

et al. have skewed the composition of mathlib contributors
much farther towards pure mathematicians than
comparable formal libraries in other communities

I Poor performance of the lean 3 interpreter means that
optimized and verified data structures aren’t really worth it

I expect that Lean 4 will push the balance towards more CS
applications.

8 / 33



More Mathlib projects

A number of notable projects have been done within or using
mathlib:
I Schemes in Lean (v1: Kevin Buzzard, Chris Hughes,

Kenny Lau; v2: Amelia Livingston, Ramon Fernández Mir;
v3: Scott Morrison)

I Formalising perfectoid spaces (Kevin Buzzard, Johan
Commelin, Patrick Massot)

I A formal proof of the independence of the continuum
hypothesis (Jesse Michael Han, Floris van Doorn)

I Liquid Tensor Experiment (Johan Commelin, Peter
Scholze, Patrick Massot, Adam Topaz, Riccardo Brasca,
Kevin Buzzard, Bhavik Mehta, Scott Morrison, Damiano
Testa, Heather Macbeth, Filippo A.E. Nuccio, et al)
I This one has even been the subject of several news articles

9 / 33



A Short History of Lean and mathlib
Several major versions:
I Lean 1 (2013 - no public release)
I Lean 2 (2015) – includes HoTT mode
I Lean 3 (2017)
I Lean 4 (2021, alpha)

I The Lean 2 math library was developed by Jeremy Avigad,
Floris van Doorn, Rob Lewis et al.

I Lean 3 is not backwards compatible with Lean 2, and the
decision was made to start again taking advantage of
significant new features

I mathlib is the latest version of the Lean 3 math library,
developed by hundreds of contributors

I Lean 4 is not backwards compatible with Lean 3, and the
decision was made to port the library

10 / 33



The Lean 2→ Lean 3 transition
I Lean 3 added a number of features around the

metaprogramming framework
I But the elaborator was scaled back significantly to avoid

excessive backtracking that caused bad error messages and
flaky scripts

I Reinterpreted Lean 2 files would generally have an error
on every other lemma, and there were some small syntax
differences as well, so manual porting required heavy
touch-ups

I Mathlib was loosely based on the lean 2 library, but was
written by hand from scratch

I Lean 2 library is about 40K lines; this was all eventually
ported to mathlib within the first year (important stuff
right away, other stuff later for completeness)

I Mathlib is now 600K lines, up from 450K at Jan 2021

11 / 33



The Lean 2→ Lean 3 transition
I Lean 3 added a number of features around the

metaprogramming framework
I But the elaborator was scaled back significantly to avoid

excessive backtracking that caused bad error messages and
flaky scripts

I Reinterpreted Lean 2 files would generally have an error
on every other lemma, and there were some small syntax
differences as well, so manual porting required heavy
touch-ups

I Mathlib was loosely based on the lean 2 library, but was
written by hand from scratch

I Lean 2 library is about 40K lines; this was all eventually
ported to mathlib within the first year (important stuff
right away, other stuff later for completeness)

I Mathlib is now 600K lines, up from 450K at Jan 2021

11 / 33



Lean 4

I A complete reimplementation of Lean in Lean by
Leonardo de Moura and Sebastian Ullrich

I Implementation started in 2018, first stable version
released Jan 2021

I Endlessly extensible - third party libraries like mathlib can
override or extend almost any part of the system

I Compiles to C, so no more slow interpreted tactics
I A much more powerful macro / syntax engine, for first

class DSL support
I do notation is significantly more powerful

12 / 33



Lean 3→ Lean 4 differences

I Lean 4 is “inspired” by lean 3, it is not a direct upgrade and
there is no backward compatibility
I The basic concepts of theorems, definitions, expressions,

tactics, attributes all have equivalents, but many things are
moved around

I The lean 4 kernel is (mostly) an extension of the lean 3
kernel
I Nested and mutual inductives
I Natural number and string literals (with builtin bignum

arithmetic)
I Lean 3 “macros” are handled differently
I Opaque definitions (constant)
I A kernel primitive for trusting the evaluation of a compiled

lean expression

13 / 33



Lean 3→ Lean 4 differences

I Lots of minor syntax changes
I by tacs instead of begin tacs end
I match doesn’t have an end
I fun x => e instead of λ x, e
I Much more reliance on whitespace sensitivity over

punctuation delimiters

I Tactics are now integrated with macros
I Elaboration is sometimes stronger, sometimes weaker
I Typeclass inference is different
I Many lean 3 tactics don’t exist yet in lean 4

I Some are omitted on purpose, either because they can be
implemented by users (aka mathlib) or we have a better but
incompatible design now

14 / 33



Porting strategies

15 / 33



binport: Porting kernel terms

I The plan:
I Run lean 3
I Get elaborated expressions
I Typecheck them with the lean 4 kernel

I This works, although it is very sensitive to unfolding
heuristics matching between lean 3 and lean 4

I We have ported all of mathlib this way!
I The result is a set of compiled .olean files that can be

imported into lean 4 files

16 / 33



binport: Porting kernel terms

I The plan:
I Run lean 3
I Get elaborated expressions
I Typecheck them with the lean 4 kernel

I This works, although it is very sensitive to unfolding
heuristics matching between lean 3 and lean 4

I We have ported all of mathlib this way!
I The result is a set of compiled .olean files that can be

imported into lean 4 files

16 / 33



binport: Porting kernel terms

I The plan:
I Run lean 3
I Get elaborated expressions
I Typecheck them with the lean 4 kernel

I This works, although it is very sensitive to unfolding
heuristics matching between lean 3 and lean 4

I We have ported all of mathlib this way!

I The result is a set of compiled .olean files that can be
imported into lean 4 files

16 / 33



binport: Porting kernel terms

I The plan:
I Run lean 3
I Get elaborated expressions
I Typecheck them with the lean 4 kernel

I This works, although it is very sensitive to unfolding
heuristics matching between lean 3 and lean 4

I We have ported all of mathlib this way!
I The result is a set of compiled .olean files that can be

imported into lean 4 files

16 / 33



Drawbacks of binport
I It doesn’t produce source files

I Hybrid build process?
I but lean 3 files can’t refer to lean 4 files
I Potential for gradual top-down manual translation

I A lot of very important extra-logical metadata is lost
I Tactics
I Elaboration hints for definition unfolding
I Attributes / simp lemmas
I Notations

I Lean 4 already has definitions for builtins, like Nat, that we
want to align
I This is necessary to get the benefits of e.g. Nat.add
I Every alignment has to be defeq or it can break the

translation
I Some necessary alignments are not defeq
I Some alignments are completely different, e.g. + is

heterogeneous in lean 4

17 / 33



Drawbacks of binport
I It doesn’t produce source files

I Hybrid build process?

I but lean 3 files can’t refer to lean 4 files
I Potential for gradual top-down manual translation

I A lot of very important extra-logical metadata is lost
I Tactics
I Elaboration hints for definition unfolding
I Attributes / simp lemmas
I Notations

I Lean 4 already has definitions for builtins, like Nat, that we
want to align
I This is necessary to get the benefits of e.g. Nat.add
I Every alignment has to be defeq or it can break the

translation
I Some necessary alignments are not defeq
I Some alignments are completely different, e.g. + is

heterogeneous in lean 4

17 / 33



Drawbacks of binport
I It doesn’t produce source files

I Hybrid build process?
I but lean 3 files can’t refer to lean 4 files

I Potential for gradual top-down manual translation
I A lot of very important extra-logical metadata is lost

I Tactics
I Elaboration hints for definition unfolding
I Attributes / simp lemmas
I Notations

I Lean 4 already has definitions for builtins, like Nat, that we
want to align
I This is necessary to get the benefits of e.g. Nat.add
I Every alignment has to be defeq or it can break the

translation
I Some necessary alignments are not defeq
I Some alignments are completely different, e.g. + is

heterogeneous in lean 4

17 / 33



Drawbacks of binport
I It doesn’t produce source files

I Hybrid build process?
I but lean 3 files can’t refer to lean 4 files
I Potential for gradual top-down manual translation

I A lot of very important extra-logical metadata is lost
I Tactics
I Elaboration hints for definition unfolding
I Attributes / simp lemmas
I Notations

I Lean 4 already has definitions for builtins, like Nat, that we
want to align
I This is necessary to get the benefits of e.g. Nat.add
I Every alignment has to be defeq or it can break the

translation
I Some necessary alignments are not defeq
I Some alignments are completely different, e.g. + is

heterogeneous in lean 4

17 / 33



Drawbacks of binport
I It doesn’t produce source files

I Hybrid build process?
I but lean 3 files can’t refer to lean 4 files
I Potential for gradual top-down manual translation

I A lot of very important extra-logical metadata is lost
I Tactics
I Elaboration hints for definition unfolding
I Attributes / simp lemmas
I Notations

I Lean 4 already has definitions for builtins, like Nat, that we
want to align
I This is necessary to get the benefits of e.g. Nat.add
I Every alignment has to be defeq or it can break the

translation
I Some necessary alignments are not defeq
I Some alignments are completely different, e.g. + is

heterogeneous in lean 4

17 / 33



Drawbacks of binport
I It doesn’t produce source files

I Hybrid build process?
I but lean 3 files can’t refer to lean 4 files
I Potential for gradual top-down manual translation

I A lot of very important extra-logical metadata is lost
I Tactics
I Elaboration hints for definition unfolding
I Attributes / simp lemmas
I Notations

I Lean 4 already has definitions for builtins, like Nat, that we
want to align
I This is necessary to get the benefits of e.g. Nat.add

I Every alignment has to be defeq or it can break the
translation

I Some necessary alignments are not defeq
I Some alignments are completely different, e.g. + is

heterogeneous in lean 4

17 / 33



Drawbacks of binport
I It doesn’t produce source files

I Hybrid build process?
I but lean 3 files can’t refer to lean 4 files
I Potential for gradual top-down manual translation

I A lot of very important extra-logical metadata is lost
I Tactics
I Elaboration hints for definition unfolding
I Attributes / simp lemmas
I Notations

I Lean 4 already has definitions for builtins, like Nat, that we
want to align
I This is necessary to get the benefits of e.g. Nat.add
I Every alignment has to be defeq or it can break the

translation

I Some necessary alignments are not defeq
I Some alignments are completely different, e.g. + is

heterogeneous in lean 4

17 / 33



Drawbacks of binport
I It doesn’t produce source files

I Hybrid build process?
I but lean 3 files can’t refer to lean 4 files
I Potential for gradual top-down manual translation

I A lot of very important extra-logical metadata is lost
I Tactics
I Elaboration hints for definition unfolding
I Attributes / simp lemmas
I Notations

I Lean 4 already has definitions for builtins, like Nat, that we
want to align
I This is necessary to get the benefits of e.g. Nat.add
I Every alignment has to be defeq or it can break the

translation
I Some necessary alignments are not defeq

I Some alignments are completely different, e.g. + is
heterogeneous in lean 4

17 / 33



Drawbacks of binport
I It doesn’t produce source files

I Hybrid build process?
I but lean 3 files can’t refer to lean 4 files
I Potential for gradual top-down manual translation

I A lot of very important extra-logical metadata is lost
I Tactics
I Elaboration hints for definition unfolding
I Attributes / simp lemmas
I Notations

I Lean 4 already has definitions for builtins, like Nat, that we
want to align
I This is necessary to get the benefits of e.g. Nat.add
I Every alignment has to be defeq or it can break the

translation
I Some necessary alignments are not defeq
I Some alignments are completely different, e.g. + is

heterogeneous in lean 4

17 / 33



olean-port: Reconstructed syntax porting

I The plan:
I Run lean 3
I Get compiled olean files
I Reconstruct lean 4 syntax which would have the same effect

I Lean 3 uses olean files to communicate from one file to the
next, so they have much better coverage of notations,
attributes, etc.

I Can get a result similar to the lean 3 #print command
I Tactics generally have characteristic proofs, so we can

reconstruct the tactics that produced the terms
I And if they don’t, we can make them leave more explicit

annotations

18 / 33



olean-port: Reconstructed syntax porting

I The plan:
I Run lean 3
I Get compiled olean files
I Reconstruct lean 4 syntax which would have the same effect

I Lean 3 uses olean files to communicate from one file to the
next, so they have much better coverage of notations,
attributes, etc.

I Can get a result similar to the lean 3 #print command
I Tactics generally have characteristic proofs, so we can

reconstruct the tactics that produced the terms
I And if they don’t, we can make them leave more explicit

annotations

18 / 33



olean-port: Reconstructed syntax porting

I The plan:
I Run lean 3
I Get compiled olean files
I Reconstruct lean 4 syntax which would have the same effect

I Lean 3 uses olean files to communicate from one file to the
next, so they have much better coverage of notations,
attributes, etc.

I Can get a result similar to the lean 3 #print command

I Tactics generally have characteristic proofs, so we can
reconstruct the tactics that produced the terms
I And if they don’t, we can make them leave more explicit

annotations

18 / 33



olean-port: Reconstructed syntax porting

I The plan:
I Run lean 3
I Get compiled olean files
I Reconstruct lean 4 syntax which would have the same effect

I Lean 3 uses olean files to communicate from one file to the
next, so they have much better coverage of notations,
attributes, etc.

I Can get a result similar to the lean 3 #print command
I Tactics generally have characteristic proofs, so we can

reconstruct the tactics that produced the terms

I And if they don’t, we can make them leave more explicit
annotations

18 / 33



olean-port: Reconstructed syntax porting

I The plan:
I Run lean 3
I Get compiled olean files
I Reconstruct lean 4 syntax which would have the same effect

I Lean 3 uses olean files to communicate from one file to the
next, so they have much better coverage of notations,
attributes, etc.

I Can get a result similar to the lean 3 #print command
I Tactics generally have characteristic proofs, so we can

reconstruct the tactics that produced the terms
I And if they don’t, we can make them leave more explicit

annotations

18 / 33



Drawbacks of olean-port

I Tactics are completely erased in proofs stored in oleans,
and reconstruction is hard

I This does not capture file-local structuring commands:
I local notations
I variables
I sections and namespaces
I local attributes, or attributes that remove themselves

I Many autogenerated definitions are mixed in with the
“real” definitions
I Definitional lemmas
I Theorems generated by the inductive command
I Theorems generated by tactics in a definition
I Theorems generated by attributes

I Definitions by pattern matching are already compiled

19 / 33



Drawbacks of olean-port

I Tactics are completely erased in proofs stored in oleans,
and reconstruction is hard

I This does not capture file-local structuring commands:
I local notations
I variables
I sections and namespaces
I local attributes, or attributes that remove themselves

I Many autogenerated definitions are mixed in with the
“real” definitions
I Definitional lemmas
I Theorems generated by the inductive command
I Theorems generated by tactics in a definition
I Theorems generated by attributes

I Definitions by pattern matching are already compiled

19 / 33



Drawbacks of olean-port

I Tactics are completely erased in proofs stored in oleans,
and reconstruction is hard

I This does not capture file-local structuring commands:
I local notations
I variables
I sections and namespaces
I local attributes, or attributes that remove themselves

I Many autogenerated definitions are mixed in with the
“real” definitions
I Definitional lemmas
I Theorems generated by the inductive command
I Theorems generated by tactics in a definition
I Theorems generated by attributes

I Definitions by pattern matching are already compiled

19 / 33



Drawbacks of olean-port

I Tactics are completely erased in proofs stored in oleans,
and reconstruction is hard

I This does not capture file-local structuring commands:
I local notations
I variables
I sections and namespaces
I local attributes, or attributes that remove themselves

I Many autogenerated definitions are mixed in with the
“real” definitions
I Definitional lemmas
I Theorems generated by the inductive command
I Theorems generated by tactics in a definition
I Theorems generated by attributes

I Definitions by pattern matching are already compiled

19 / 33



lean3-port: Lean 3 re-parsing

I The plan:
I Use lean 4 to write a lean 3 parser
I Use it on lean 3 files or snippets

I This is a very flexible approach, since it means we can just
have #lang lean3 sections in a lean 4 file

I Or we can target it on full files, and either translate them to
lean 4 syntax or just run and import them

I Lean 4 has a focus on versatile syntax parsing, and it is
already being used to implement a parser very similar to
lean 3 (namely lean 4)

20 / 33



lean3-port: Lean 3 re-parsing

I The plan:
I Use lean 4 to write a lean 3 parser
I Use it on lean 3 files or snippets

I This is a very flexible approach, since it means we can just
have #lang lean3 sections in a lean 4 file

I Or we can target it on full files, and either translate them to
lean 4 syntax or just run and import them

I Lean 4 has a focus on versatile syntax parsing, and it is
already being used to implement a parser very similar to
lean 3 (namely lean 4)

20 / 33



lean3-port: Lean 3 re-parsing

I The plan:
I Use lean 4 to write a lean 3 parser
I Use it on lean 3 files or snippets

I This is a very flexible approach, since it means we can just
have #lang lean3 sections in a lean 4 file

I Or we can target it on full files, and either translate them to
lean 4 syntax or just run and import them

I Lean 4 has a focus on versatile syntax parsing, and it is
already being used to implement a parser very similar to
lean 3 (namely lean 4)

20 / 33



lean3-port: Lean 3 re-parsing

I The plan:
I Use lean 4 to write a lean 3 parser
I Use it on lean 3 files or snippets

I This is a very flexible approach, since it means we can just
have #lang lean3 sections in a lean 4 file

I Or we can target it on full files, and either translate them to
lean 4 syntax or just run and import them

I Lean 4 has a focus on versatile syntax parsing, and it is
already being used to implement a parser very similar to
lean 3 (namely lean 4)

20 / 33



Drawbacks of lean3-port
I The lean 3 grammar is not at all context free

I There is an approximate BNF description but it lies a lot

I The expression grammar is extensible, even locally to an
expression

I The parser is very stateful: each command is executed as
soon as it is parsed

I The parser can also run VM code, even IO actions
I The VM code needs an emulation of the lean 3 environment

I Yes, parsing is definitely Turing-complete
In short, to parse lean 3 you have to be lean 3

I Lean 4 parsers are more restricted
I parsing happens all at once before execution
I parsers can’t do IO
I parsers can’t change the environment (they are

non-monadic)

21 / 33



Drawbacks of lean3-port
I The lean 3 grammar is not at all context free

I There is an approximate BNF description but it lies a lot
I The expression grammar is extensible, even locally to an

expression

I The parser is very stateful: each command is executed as
soon as it is parsed

I The parser can also run VM code, even IO actions
I The VM code needs an emulation of the lean 3 environment

I Yes, parsing is definitely Turing-complete
In short, to parse lean 3 you have to be lean 3

I Lean 4 parsers are more restricted
I parsing happens all at once before execution
I parsers can’t do IO
I parsers can’t change the environment (they are

non-monadic)

21 / 33



Drawbacks of lean3-port
I The lean 3 grammar is not at all context free

I There is an approximate BNF description but it lies a lot
I The expression grammar is extensible, even locally to an

expression

I The parser is very stateful: each command is executed as
soon as it is parsed

I The parser can also run VM code, even IO actions
I The VM code needs an emulation of the lean 3 environment

I Yes, parsing is definitely Turing-complete
In short, to parse lean 3 you have to be lean 3

I Lean 4 parsers are more restricted
I parsing happens all at once before execution
I parsers can’t do IO
I parsers can’t change the environment (they are

non-monadic)

21 / 33



Drawbacks of lean3-port
I The lean 3 grammar is not at all context free

I There is an approximate BNF description but it lies a lot
I The expression grammar is extensible, even locally to an

expression

I The parser is very stateful: each command is executed as
soon as it is parsed

I The parser can also run VM code, even IO actions

I The VM code needs an emulation of the lean 3 environment

I Yes, parsing is definitely Turing-complete
In short, to parse lean 3 you have to be lean 3

I Lean 4 parsers are more restricted
I parsing happens all at once before execution
I parsers can’t do IO
I parsers can’t change the environment (they are

non-monadic)

21 / 33



Drawbacks of lean3-port
I The lean 3 grammar is not at all context free

I There is an approximate BNF description but it lies a lot
I The expression grammar is extensible, even locally to an

expression

I The parser is very stateful: each command is executed as
soon as it is parsed

I The parser can also run VM code, even IO actions
I The VM code needs an emulation of the lean 3 environment

I Yes, parsing is definitely Turing-complete
In short, to parse lean 3 you have to be lean 3

I Lean 4 parsers are more restricted
I parsing happens all at once before execution
I parsers can’t do IO
I parsers can’t change the environment (they are

non-monadic)

21 / 33



Drawbacks of lean3-port
I The lean 3 grammar is not at all context free

I There is an approximate BNF description but it lies a lot
I The expression grammar is extensible, even locally to an

expression

I The parser is very stateful: each command is executed as
soon as it is parsed

I The parser can also run VM code, even IO actions
I The VM code needs an emulation of the lean 3 environment

I Yes, parsing is definitely Turing-complete

In short, to parse lean 3 you have to be lean 3

I Lean 4 parsers are more restricted
I parsing happens all at once before execution
I parsers can’t do IO
I parsers can’t change the environment (they are

non-monadic)

21 / 33



Drawbacks of lean3-port
I The lean 3 grammar is not at all context free

I There is an approximate BNF description but it lies a lot
I The expression grammar is extensible, even locally to an

expression

I The parser is very stateful: each command is executed as
soon as it is parsed

I The parser can also run VM code, even IO actions
I The VM code needs an emulation of the lean 3 environment

I Yes, parsing is definitely Turing-complete
In short, to parse lean 3 you have to be lean 3

I Lean 4 parsers are more restricted
I parsing happens all at once before execution
I parsers can’t do IO
I parsers can’t change the environment (they are

non-monadic)

21 / 33



Drawbacks of lean3-port
I The lean 3 grammar is not at all context free

I There is an approximate BNF description but it lies a lot
I The expression grammar is extensible, even locally to an

expression

I The parser is very stateful: each command is executed as
soon as it is parsed

I The parser can also run VM code, even IO actions
I The VM code needs an emulation of the lean 3 environment

I Yes, parsing is definitely Turing-complete
In short, to parse lean 3 you have to be lean 3

I Lean 4 parsers are more restricted

I parsing happens all at once before execution
I parsers can’t do IO
I parsers can’t change the environment (they are

non-monadic)

21 / 33



Drawbacks of lean3-port
I The lean 3 grammar is not at all context free

I There is an approximate BNF description but it lies a lot
I The expression grammar is extensible, even locally to an

expression

I The parser is very stateful: each command is executed as
soon as it is parsed

I The parser can also run VM code, even IO actions
I The VM code needs an emulation of the lean 3 environment

I Yes, parsing is definitely Turing-complete
In short, to parse lean 3 you have to be lean 3

I Lean 4 parsers are more restricted
I parsing happens all at once before execution

I parsers can’t do IO
I parsers can’t change the environment (they are

non-monadic)

21 / 33



Drawbacks of lean3-port
I The lean 3 grammar is not at all context free

I There is an approximate BNF description but it lies a lot
I The expression grammar is extensible, even locally to an

expression

I The parser is very stateful: each command is executed as
soon as it is parsed

I The parser can also run VM code, even IO actions
I The VM code needs an emulation of the lean 3 environment

I Yes, parsing is definitely Turing-complete
In short, to parse lean 3 you have to be lean 3

I Lean 4 parsers are more restricted
I parsing happens all at once before execution
I parsers can’t do IO

I parsers can’t change the environment (they are
non-monadic)

21 / 33



Drawbacks of lean3-port
I The lean 3 grammar is not at all context free

I There is an approximate BNF description but it lies a lot
I The expression grammar is extensible, even locally to an

expression

I The parser is very stateful: each command is executed as
soon as it is parsed

I The parser can also run VM code, even IO actions
I The VM code needs an emulation of the lean 3 environment

I Yes, parsing is definitely Turing-complete
In short, to parse lean 3 you have to be lean 3

I Lean 4 parsers are more restricted
I parsing happens all at once before execution
I parsers can’t do IO
I parsers can’t change the environment (they are

non-monadic)

21 / 33



synport: AST syntax parsing

I The plan:
I Modify the lean 3 parser to construct an AST on the side
I Export the AST in a common format
I Load the AST into lean 4 and translate it to lean 4 syntax

I This ensures that we perfectly mimic any lean 3 parser
oddities, since lean 3 is doing the parsing

I We can get access to all sorts of syntax not available with
previous approaches:
I Tactic block structure
I Pattern matching definitions
I Variables, sections, local notations

22 / 33



synport: AST syntax parsing

I The plan:
I Modify the lean 3 parser to construct an AST on the side
I Export the AST in a common format
I Load the AST into lean 4 and translate it to lean 4 syntax

I This ensures that we perfectly mimic any lean 3 parser
oddities, since lean 3 is doing the parsing

I We can get access to all sorts of syntax not available with
previous approaches:
I Tactic block structure
I Pattern matching definitions
I Variables, sections, local notations

22 / 33



synport: AST syntax parsing

I The plan:
I Modify the lean 3 parser to construct an AST on the side
I Export the AST in a common format
I Load the AST into lean 4 and translate it to lean 4 syntax

I This ensures that we perfectly mimic any lean 3 parser
oddities, since lean 3 is doing the parsing

I We can get access to all sorts of syntax not available with
previous approaches:
I Tactic block structure
I Pattern matching definitions
I Variables, sections, local notations

22 / 33



Drawbacks of synport

I We have to instrument lean 3

(done )
I How to adjust to elaboration changes?

I Lean 3 uses a different elaboration strategy for recursors
than lean 4, so most applications of e.g. Nat.rec fail

I How to adjust to tactic changes?
I e.g. We know the lean 3 code used simp here but it doesn’t

work in lean 4
I We need implementations for all lean 3 tactics

I The meta framework is very different, so we are not
planning to port meta code directly

I Some commands manipulate lean 3 state that is expressed
differently in lean 4, like precedence
I Should we just delete these?

23 / 33



Drawbacks of synport

I We have to instrument lean 3 (done )

I How to adjust to elaboration changes?
I Lean 3 uses a different elaboration strategy for recursors

than lean 4, so most applications of e.g. Nat.rec fail
I How to adjust to tactic changes?

I e.g. We know the lean 3 code used simp here but it doesn’t
work in lean 4

I We need implementations for all lean 3 tactics
I The meta framework is very different, so we are not

planning to port meta code directly
I Some commands manipulate lean 3 state that is expressed

differently in lean 4, like precedence
I Should we just delete these?

23 / 33



Drawbacks of synport

I We have to instrument lean 3 (done )
I How to adjust to elaboration changes?

I Lean 3 uses a different elaboration strategy for recursors
than lean 4, so most applications of e.g. Nat.rec fail

I How to adjust to tactic changes?
I e.g. We know the lean 3 code used simp here but it doesn’t

work in lean 4
I We need implementations for all lean 3 tactics

I The meta framework is very different, so we are not
planning to port meta code directly

I Some commands manipulate lean 3 state that is expressed
differently in lean 4, like precedence
I Should we just delete these?

23 / 33



Drawbacks of synport

I We have to instrument lean 3 (done )
I How to adjust to elaboration changes?

I Lean 3 uses a different elaboration strategy for recursors
than lean 4, so most applications of e.g. Nat.rec fail

I How to adjust to tactic changes?
I e.g. We know the lean 3 code used simp here but it doesn’t

work in lean 4

I We need implementations for all lean 3 tactics
I The meta framework is very different, so we are not

planning to port meta code directly
I Some commands manipulate lean 3 state that is expressed

differently in lean 4, like precedence
I Should we just delete these?

23 / 33



Drawbacks of synport

I We have to instrument lean 3 (done )
I How to adjust to elaboration changes?

I Lean 3 uses a different elaboration strategy for recursors
than lean 4, so most applications of e.g. Nat.rec fail

I How to adjust to tactic changes?
I e.g. We know the lean 3 code used simp here but it doesn’t

work in lean 4
I We need implementations for all lean 3 tactics

I The meta framework is very different, so we are not
planning to port meta code directly

I Some commands manipulate lean 3 state that is expressed
differently in lean 4, like precedence
I Should we just delete these?

23 / 33



Drawbacks of synport

I We have to instrument lean 3 (done )
I How to adjust to elaboration changes?

I Lean 3 uses a different elaboration strategy for recursors
than lean 4, so most applications of e.g. Nat.rec fail

I How to adjust to tactic changes?
I e.g. We know the lean 3 code used simp here but it doesn’t

work in lean 4
I We need implementations for all lean 3 tactics

I The meta framework is very different, so we are not
planning to port meta code directly

I Some commands manipulate lean 3 state that is expressed
differently in lean 4, like precedence
I Should we just delete these?

23 / 33



The manual approach: mathlib4

I The plan:
I Take inspiration from lean 3 mathlib
I Write lean 4 files by hand

I Best quality results
I Able to adapt to areas where lean 4 is just too different
I No startup cost besides training people to write lean 4 code

24 / 33



The manual approach: mathlib4

I The plan:
I Take inspiration from lean 3 mathlib
I Write lean 4 files by hand

I Best quality results

I Able to adapt to areas where lean 4 is just too different
I No startup cost besides training people to write lean 4 code

24 / 33



The manual approach: mathlib4

I The plan:
I Take inspiration from lean 3 mathlib
I Write lean 4 files by hand

I Best quality results
I Able to adapt to areas where lean 4 is just too different

I No startup cost besides training people to write lean 4 code

24 / 33



The manual approach: mathlib4

I The plan:
I Take inspiration from lean 3 mathlib
I Write lean 4 files by hand

I Best quality results
I Able to adapt to areas where lean 4 is just too different
I No startup cost besides training people to write lean 4 code

24 / 33



Drawbacks of manual porting

I Obviously doesn’t scale: the porting process itself will take
a month or more

What to do about ongoing changes? Mathlib gets 10 PRs a day
I Stop the world and port everything?

I Could be done if we get everyone together to work on it
I The skillset needed for porting is not the same as for

authoring
I Freeze parts of mathlib and port bottom-up

I Easy for theorems to get lost in the shuffle
I Fork mathlib, keep both versions in sync

I Easy for theorems to get lost in the shuffle

25 / 33



Drawbacks of manual porting

I Obviously doesn’t scale: the porting process itself will take
a month or more

What to do about ongoing changes? Mathlib gets 10 PRs a day

I Stop the world and port everything?
I Could be done if we get everyone together to work on it
I The skillset needed for porting is not the same as for

authoring
I Freeze parts of mathlib and port bottom-up

I Easy for theorems to get lost in the shuffle
I Fork mathlib, keep both versions in sync

I Easy for theorems to get lost in the shuffle

25 / 33



Drawbacks of manual porting

I Obviously doesn’t scale: the porting process itself will take
a month or more

What to do about ongoing changes? Mathlib gets 10 PRs a day
I Stop the world and port everything?

I Could be done if we get everyone together to work on it
I The skillset needed for porting is not the same as for

authoring
I Freeze parts of mathlib and port bottom-up

I Easy for theorems to get lost in the shuffle
I Fork mathlib, keep both versions in sync

I Easy for theorems to get lost in the shuffle

25 / 33



Drawbacks of manual porting

I Obviously doesn’t scale: the porting process itself will take
a month or more

What to do about ongoing changes? Mathlib gets 10 PRs a day
I Stop the world and port everything?

I Could be done if we get everyone together to work on it

I The skillset needed for porting is not the same as for
authoring

I Freeze parts of mathlib and port bottom-up
I Easy for theorems to get lost in the shuffle

I Fork mathlib, keep both versions in sync
I Easy for theorems to get lost in the shuffle

25 / 33



Drawbacks of manual porting

I Obviously doesn’t scale: the porting process itself will take
a month or more

What to do about ongoing changes? Mathlib gets 10 PRs a day
I Stop the world and port everything?

I Could be done if we get everyone together to work on it
I The skillset needed for porting is not the same as for

authoring

I Freeze parts of mathlib and port bottom-up
I Easy for theorems to get lost in the shuffle

I Fork mathlib, keep both versions in sync
I Easy for theorems to get lost in the shuffle

25 / 33



Drawbacks of manual porting

I Obviously doesn’t scale: the porting process itself will take
a month or more

What to do about ongoing changes? Mathlib gets 10 PRs a day
I Stop the world and port everything?

I Could be done if we get everyone together to work on it
I The skillset needed for porting is not the same as for

authoring
I Freeze parts of mathlib and port bottom-up

I Easy for theorems to get lost in the shuffle
I Fork mathlib, keep both versions in sync

I Easy for theorems to get lost in the shuffle

25 / 33



Drawbacks of manual porting

I Obviously doesn’t scale: the porting process itself will take
a month or more

What to do about ongoing changes? Mathlib gets 10 PRs a day
I Stop the world and port everything?

I Could be done if we get everyone together to work on it
I The skillset needed for porting is not the same as for

authoring
I Freeze parts of mathlib and port bottom-up

I Easy for theorems to get lost in the shuffle

I Fork mathlib, keep both versions in sync
I Easy for theorems to get lost in the shuffle

25 / 33



Drawbacks of manual porting

I Obviously doesn’t scale: the porting process itself will take
a month or more

What to do about ongoing changes? Mathlib gets 10 PRs a day
I Stop the world and port everything?

I Could be done if we get everyone together to work on it
I The skillset needed for porting is not the same as for

authoring
I Freeze parts of mathlib and port bottom-up

I Easy for theorems to get lost in the shuffle
I Fork mathlib, keep both versions in sync

I Easy for theorems to get lost in the shuffle

25 / 33



Drawbacks of manual porting

I Obviously doesn’t scale: the porting process itself will take
a month or more

What to do about ongoing changes? Mathlib gets 10 PRs a day
I Stop the world and port everything?

I Could be done if we get everyone together to work on it
I The skillset needed for porting is not the same as for

authoring
I Freeze parts of mathlib and port bottom-up

I Easy for theorems to get lost in the shuffle
I Fork mathlib, keep both versions in sync

I Easy for theorems to get lost in the shuffle

25 / 33



What we are actually doing

I binport: Porting kernel terms
I olean-port: Reconstructed syntax porting
I lean3-port: Lean 3 re-parsing
I synport: AST syntax parsing
I mathlib4: Manual porting

26 / 33



What we are actually doing

I binport: Porting kernel terms
I olean-port: Reconstructed syntax porting
I lean3-port: Lean 3 re-parsing
I synport: AST syntax parsing
I mathlib4: Manual porting

26 / 33



What we are actually doing

A combination of several strategies:
I mathlib4: A from scratch implementation of mathlib

foundations in lean 4
I Tactics implemented here
I Foundational theories like Data.Nat.Basic that are useful

and not too hard to port
I Setting up syntax to be used by the porting tools

I binport: Translating lean 3 proof data into lean 4 oleans
I Useful for getting a context for files in the middle or top of

the dependency graph for added parallelism
I synport: Translating lean 3 AST data into lean 4 source

files
I Uses lean --ast, implemented in a fork of lean 3
I Provides a starting point for manual editing

27 / 33



What we are actually doing

A combination of several strategies:
I mathlib4: A from scratch implementation of mathlib

foundations in lean 4
I Tactics implemented here
I Foundational theories like Data.Nat.Basic that are useful

and not too hard to port
I Setting up syntax to be used by the porting tools

I binport: Translating lean 3 proof data into lean 4 oleans
I Useful for getting a context for files in the middle or top of

the dependency graph for added parallelism

I synport: Translating lean 3 AST data into lean 4 source
files
I Uses lean --ast, implemented in a fork of lean 3
I Provides a starting point for manual editing

27 / 33



What we are actually doing

A combination of several strategies:
I mathlib4: A from scratch implementation of mathlib

foundations in lean 4
I Tactics implemented here
I Foundational theories like Data.Nat.Basic that are useful

and not too hard to port
I Setting up syntax to be used by the porting tools

I binport: Translating lean 3 proof data into lean 4 oleans
I Useful for getting a context for files in the middle or top of

the dependency graph for added parallelism
I synport: Translating lean 3 AST data into lean 4 source

files
I Uses lean --ast, implemented in a fork of lean 3
I Provides a starting point for manual editing

27 / 33



Improvements

I Idea: translate elaboration info
I Attach info about elaborated exprs to AST nodes in lean 3
I Produce syntax in synport with the lean 4 elaborator

available

I When a syntax is not going to elaborate the way we want,
select a more explicit syntax
I . . . or not

I Add more backward compatible syntax to ease manual
translations
I Requires a post processing step to remove the syntax if we

want to change the style guide
I Manage alignments through #align annotations in ported

files
I Useful for binport to be able to stay in sync
I Still usable even if the alignments are not defeq as long as

downstream uses are also realigned

28 / 33



Improvements

I Idea: translate elaboration info
I Attach info about elaborated exprs to AST nodes in lean 3
I Produce syntax in synport with the lean 4 elaborator

available
I When a syntax is not going to elaborate the way we want,

select a more explicit syntax

I . . . or not
I Add more backward compatible syntax to ease manual

translations
I Requires a post processing step to remove the syntax if we

want to change the style guide
I Manage alignments through #align annotations in ported

files
I Useful for binport to be able to stay in sync
I Still usable even if the alignments are not defeq as long as

downstream uses are also realigned

28 / 33



Improvements

I Idea: translate elaboration info
I Attach info about elaborated exprs to AST nodes in lean 3
I Produce syntax in synport with the lean 4 elaborator

available
I When a syntax is not going to elaborate the way we want,

select a more explicit syntax
I . . . or not

I Add more backward compatible syntax to ease manual
translations
I Requires a post processing step to remove the syntax if we

want to change the style guide
I Manage alignments through #align annotations in ported

files
I Useful for binport to be able to stay in sync
I Still usable even if the alignments are not defeq as long as

downstream uses are also realigned

28 / 33



Improvements

I Idea: translate elaboration info
I Attach info about elaborated exprs to AST nodes in lean 3
I Produce syntax in synport with the lean 4 elaborator

available
I When a syntax is not going to elaborate the way we want,

select a more explicit syntax
I . . . or not

I Add more backward compatible syntax to ease manual
translations

I Requires a post processing step to remove the syntax if we
want to change the style guide

I Manage alignments through #align annotations in ported
files
I Useful for binport to be able to stay in sync
I Still usable even if the alignments are not defeq as long as

downstream uses are also realigned

28 / 33



Improvements

I Idea: translate elaboration info
I Attach info about elaborated exprs to AST nodes in lean 3
I Produce syntax in synport with the lean 4 elaborator

available
I When a syntax is not going to elaborate the way we want,

select a more explicit syntax
I . . . or not

I Add more backward compatible syntax to ease manual
translations
I Requires a post processing step to remove the syntax if we

want to change the style guide

I Manage alignments through #align annotations in ported
files
I Useful for binport to be able to stay in sync
I Still usable even if the alignments are not defeq as long as

downstream uses are also realigned

28 / 33



Improvements

I Idea: translate elaboration info
I Attach info about elaborated exprs to AST nodes in lean 3
I Produce syntax in synport with the lean 4 elaborator

available
I When a syntax is not going to elaborate the way we want,

select a more explicit syntax
I . . . or not

I Add more backward compatible syntax to ease manual
translations
I Requires a post processing step to remove the syntax if we

want to change the style guide
I Manage alignments through #align annotations in ported

files
I Useful for binport to be able to stay in sync

I Still usable even if the alignments are not defeq as long as
downstream uses are also realigned

28 / 33



Improvements

I Idea: translate elaboration info
I Attach info about elaborated exprs to AST nodes in lean 3
I Produce syntax in synport with the lean 4 elaborator

available
I When a syntax is not going to elaborate the way we want,

select a more explicit syntax
I . . . or not

I Add more backward compatible syntax to ease manual
translations
I Requires a post processing step to remove the syntax if we

want to change the style guide
I Manage alignments through #align annotations in ported

files
I Useful for binport to be able to stay in sync
I Still usable even if the alignments are not defeq as long as

downstream uses are also realigned

28 / 33



Translation examples: lt or ge
-- Lean 3
protected lemma lt_or_ge : ∀ (a b : N), a < b ∨ b ≤ a
| a 0 := or.inr (zero_le a)
| a (b+1) :=

match lt_or_ge a b with
| or.inl h := or.inl (le_succ_of_le h)
| or.inr h :=
match nat.eq_or_lt_of_le h with
| or.inl h1 := or.inl (h1 . lt_succ_self b)
| or.inr h1 := or.inr h1
end

end

-- Lean 4
protected theorem lt_or_ge : (a b : N) → a < b ∨ b ≤ a
| a, 0 => Or.inr (zero_le a)
| a, b + 1 =>

match lt_or_ge a b with
| Or.inl h => Or.inl (le_succ_of_le h)
| Or.inr h =>
match nat.eq_or_lt_of_le h with
| Or.inl h1 => Or.inl (h1 . lt_succ_self b)
| Or.inr h1 => Or.inr h1

29 / 33



Translation examples: div inv monoid

-- Lean 3

/-- A `div_inv_monoid` is a `monoid` with operations `/` and `−1`... -/

@[protect_proj, ancestor monoid has_inv has_div]

class div_inv_monoid (G : Type u) extends monoid G, has_inv G, has_div G :=

(div := λ a b, a * b−1)

(div_eq_mul_inv : ∀ a b : G, a / b = a * b−1 . try_refl_tac)

(gpow : Z → G → G := gpow_rec)

(gpow_zero' : ∀ (a : G), gpow 0 a = 1 . try_refl_tac)

(gpow_succ' :

∀ (n : N) (a : G), gpow (int.of_nat n.succ) a = a * gpow (int.of_nat n) a . try_refl_tac)

(gpow_neg' :

∀ (n : N) (a : G), gpow (-[1+ n]) a = (gpow n.succ a) −1 . try_refl_tac)

-- Lean 4

/-- A `DivInvMonoid` is a `Monoid` with operations `/` and `−1`... -/

@[protectProj]

class DivInvMonoid (G : Type u) extends Monoid G, Inv G, Div G where

div := fun a b => a * b−1

div_eq_mul_inv : (a b : G) → a / b = a * b−1 := by try_refl_tac

gpow : Z → G → G := gpow_rec

gpow_zero' : (a : G) → gpow 0 a = 1 := by try_refl_tac

gpow_succ' : (n : N) → (a : G) → gpow (int.of_nat n.succ) a = a * gpow (int.of_nat n) a

:= by try_refl_tac

gpow_neg' : (n : N) → (a : G) → gpow -[1+ n] a = (gpow n.succ a)−1 := by try_refl_tac

30 / 33



Translation examples: nat.mod lt

-- Lean 3

lemma mod_lt (x : nat) {y : nat} (h : 0 < y) : x % y < y :=

begin

induction x using nat.case_strong_induction_on with x ih,

{ rw zero_mod, assumption },

{ by_cases h1 : succ x < y,

{ rwa [mod_eq_of_lt h1] },

{ have h1 : succ x % y = (succ x - y) % y := mod_eq_sub_mod (not_lt.1 h1),

have : succ x - y ≤ x := le_of_lt_succ (sub_lt (succ_pos x) h),

have h2 : (succ x - y) % y < y := ih _ this,

rwa [← h1] at h2 } }

end

-- Lean 4

theorem mod_lt (x : Nat) {y : Nat} (h : 0 < y) : x % y < y := by

induction' x using Nat.case_strong_induction_on with x ih

· rw [zero_mod]; assumption

· byCases h1 : succ x < y

· rwa [mod_eq_of_lt h1]

· have h1 : succ x % y = (succ x - y) % y := mod_eq_sub_mod (not_lt.1 h1)

have : succ x - y ≤ x := le_of_lt_succ (sub_lt (succ_pos x) h)

have h2 : (succ x - y) % y < y := ih _ this

rwa [← h1] at h2

31 / 33



Conclusion

I This is quite possibly the largest source-level proof porting
project ever

I Mathlib’s high (and growing) activity rate and many
contributors lead to some logistical challenges

I The techniques discussed here apply generally to any
source-level translations
I Lean 3 is in many ways a worst case for this kind of job
I even translating Coq or Isabelle to Lean would follow a

similar path

I We really hope we don’t have to do this again in lean 5

32 / 33



Conclusion

I This is quite possibly the largest source-level proof porting
project ever

I Mathlib’s high (and growing) activity rate and many
contributors lead to some logistical challenges

I The techniques discussed here apply generally to any
source-level translations
I Lean 3 is in many ways a worst case for this kind of job
I even translating Coq or Isabelle to Lean would follow a

similar path

I We really hope we don’t have to do this again in lean 5

32 / 33



Resources

I Lean/mathlib: http://leanprover-community.github.io/
I Lean 4: https://github.com/leanprover/lean4/
I Mathport: https://github.com/dselsam/mathport
I Zulip: https://leanprover.zulipchat.com/

I Porting discussions are on #lean4 and #mathlib4 streams

Thanks!

33 / 33

http://leanprover-community.github.io/
https://github.com/leanprover/lean4/
https://github.com/dselsam/mathport
https://leanprover.zulipchat.com/

