
An introduction to linters

Damiano Testa

University of Warwick

2025 Lean Together

January 14, 2025

Damiano Testa Lint Together 2025 Lean Together 1 / 14

What are linters

Wikipedia has a Lint (software) entry:

Lint is the computer science term for a static code analysis
tool used to flag programming errors, bugs, stylistic errors and
suspicious constructs.

The word was used by Stephen C. Johnson, while debugging the yacc.

If you used Mathlib, you may be familiar with two kinds of linters:

environment linters, and

syntax linters.

Damiano Testa Lint Together 2025 Lean Together 2 / 14

https://en.wikipedia.org/wiki/Lint_(software)
https://en.wikipedia.org/wiki/Yacc
https://github.com/leanprover-community/mathlib4

Environment and syntax linters

There are currently 17 environment and 29 syntax linters in Mathlib
and dependencies (including the ones in Lean itself).

Environment linters

perform essentially arbitrary code on each declaration;

have natural access to the Environment, not the Syntax;

warn you after the fact;

good for global validation (e.g. simp normal form checks).

Syntax linters

perform essentially arbitrary code on each Syntax tree;

have natural access to the Environment;

warn you right away;

good for local validation (e.g. the refine' “deprecation”).

Damiano Testa Lint Together 2025 Lean Together 3 / 14

https://github.com/leanprover-community/mathlib4
[`](https://lean-lang.org/)
https://leanprover-community.github.io/mathlib4_docs/Lean/Environment.html#Lean.Environment
https://leanprover-community.github.io/mathlib4_docs/Init/Prelude.html#Lean.Syntax
https://leanprover-community.github.io/mathlib4_docs/Init/Prelude.html#Lean.Syntax
https://leanprover-community.github.io/mathlib4_docs/Lean/Environment.html#Lean.Environment

What happens when you type example : True := trivial?

Lean converts this command into a syntax tree

Elaborates it to the type True and the value trivial : True.

(Lots of other computations.)

Eventually, discards everything, since this was an example.

Damiano Testa Lint Together 2025 Lean Together 4 / 14

In the previous summary,

environment linters see the final state;

syntax linters see the whole process.

An environment linter would have a hard time detecting

set_option pp.all true, see setOptionLinter;

lemma vs theorem, see lemmaThmLinter;

non-terminal simps, see flexibleLinter.

Environment linters are on-demand: when you want to run their code,
you should do something.

Syntax linters are live: their code runs after every command.

Damiano Testa Lint Together 2025 Lean Together 5 / 14

[setOption](https://leanprover-community.github.io/mathlib4_docs/Mathlib/Tactic/Linter/Style.html#Mathlib.Linter.Style.setOption.setOptionLinter)
https://leanprover-community.github.io/mathlib4_docs/Mathlib/Tactic/Linter/FlexibleLinter.html#Mathlib.Linter.Flexible.flexibleLinter

Typically, you build your whole project and then you use the
environment linters to see what you’ve done.

This is great for large scale, far-away interactions between declarations.

A good example of this sort of check is the simp-normal-form linter,
that performs some checks to ensure that the simp attribute is used

consistently,

confluently and

minimally

in Mathlib.

Before this, every single command that you typed while developing the
project would have been inspected by all the syntax linters.

Damiano Testa Lint Together 2025 Lean Together 6 / 14

https://github.com/leanprover-community/mathlib4

Example: grep and linters

Our task is to figure out how many examples there are in Mathlib.

$ git grep 'example' Mathlib/* | wc -l

1502

-- rule out, e.g., 'examples'

$ git grep 'example ' Mathlib/* | wc -l

930

-- typically, declarations that are 'example's begin a line

$ git grep '^example ' Mathlib/* | wc -l

572

What about noncomputable example?

grep/regular expressions are great for a quick estimate: there are
somewhere between 500 and 1000 examples in Mathlib1.

Damiano Testa Lint Together 2025 Lean Together 7 / 14

https://github.com/leanprover-community/mathlib4
https://www.gnu.org/software/grep/manual/grep.html
https://github.com/leanprover-community/mathlib4

For the “linter way”, let’s look at syntax trees.

example : True := trivial theorem X : True := trivial

1Answer: 387! See branch#adomani/count examples.
Damiano Testa Lint Together 2025 Lean Together 8 / 14

https://github.com/leanprover-community/mathlib4/compare/adomani/count_examples?expand=1

What else can we do with (syntax) linters?

Check for duplicated namespace;

flag unused tactics;

deprecate refine' vs refine, admit vs sorry, $ vs <|, . vs ·;

highlight variables that have been named, but not used;

long lines, long files, copyright validation, non-terminal simps,
unfocused goals, large imports, pp options, ...

and so on!

Besides Syntax trees and the Environment, linters can (and often do)
also inspect InfoTrees, gaining access to more information.

I may say something about this, if time permits, later on.

Damiano Testa Lint Together 2025 Lean Together 9 / 14

https://leanprover-community.github.io/mathlib4_docs/Init/Prelude.html#Lean.Syntax
https://leanprover-community.github.io/mathlib4_docs/Lean/Environment.html#Lean.Environment
https://leanprover-community.github.io/mathlib4_docs/Lean/Elab/InfoTree/Types.html#Lean.Elab.InfoTree

MinImports linter

The minImports linter flags each command in each file that requires
more imports than what the imports so far are.

The data produced by this linter is then posted weekly on the Zulip
Late importers report channel.

Limitation. Linters can access the environment, but all2 modifications
get reverted when their execution ends.

This linter has a mechanism for persisting the information of what
imports have been used so far that assumes that the file is parsed
linearly.

2All except for emitted messages, of course!
Damiano Testa Lint Together 2025 Lean Together 10 / 14

https://leanprover-community.github.io/mathlib4_docs/Mathlib/Tactic/Linter/MinImports.html#Mathlib.Linter.linter.minImports
https://leanprover.zulipchat.com/#narrow/channel/287929-mathlib4/topic/Late.20importers.20report

What may future linters do?

Linters in-progress/prototypes

Papercut – warns about subtraction in N and more

MetaTesting – expands test suites for tactics

Refactors – extract “connected” declarations for minimization and
debugging

Identify unused code, such as unnecessary variables,
set_options, opens, nolints,...

Repeated typeclass assumptions – e.g. warning on
variable [Add R] [Ring R]

Damiano Testa Lint Together 2025 Lean Together 11 / 14

InfoTrees

I talked mostly about Syntax and Environment.

Some of the linters that I mentioned earlier would not really be able to
perform their tasks without another crucial source of information:
access to InfoTrees.

An InfoTree is another tree-like structure, like Syntax and Expressions.

It contains information about everything: Syntax, typing information
for declarations, metavariables, local contexts, tactics, goal states...

Damiano Testa Lint Together 2025 Lean Together 12 / 14

https://leanprover-community.github.io/mathlib4_docs/Init/Prelude.html#Lean.Syntax
https://leanprover-community.github.io/mathlib4_docs/Lean/Environment.html#Lean.Environment
https://leanprover-community.github.io/mathlib4_docs/Lean/Elab/InfoTree/Types.html#Lean.Elab.InfoTree
https://leanprover-community.github.io/mathlib4_docs/Lean/Elab/InfoTree/Types.html#Lean.Elab.InfoTree
https://leanprover-community.github.io/mathlib4_docs/Init/Prelude.html#Lean.Syntax
https://leanprover-community.github.io/mathlib4_docs/Lean/Expr.html#Lean.Expr
https://leanprover-community.github.io/mathlib4_docs/Init/Prelude.html#Lean.Syntax

Costs

Nuisance vs helpfulness: it is tricky to strike a balance

formalizing new results,

preparing a PR to Mathlib,

teaching a module,

giving a presentation,

working on a Mathlib dependency,

all have different kinds of expectations from each linter
(header, setOption, multiGoal, haveLet, docPrime).

Performance concerns

Well, they exist!

Hopefully, I will learn about making linters more performant soon!

Damiano Testa Lint Together 2025 Lean Together 13 / 14

https://github.com/leanprover-community/mathlib4
https://github.com/leanprover-community/mathlib4
https://leanprover-community.github.io/mathlib4_docs/Mathlib/Tactic/Linter/Header.html#Mathlib.Linter.Style.header.headerLinter
https://leanprover-community.github.io/mathlib4_docs/Mathlib/Tactic/Linter/Style.html#Mathlib.Linter.Style.setOption.setOptionLinter
https://leanprover-community.github.io/mathlib4_docs/Mathlib/Tactic/Linter/Multigoal.html#Mathlib.Linter.Style.multiGoal.multiGoalLinter
https://leanprover-community.github.io/mathlib4_docs/Mathlib/Tactic/Linter/HaveLetLinter.html#Mathlib.Linter.linter.haveLet
https://leanprover-community.github.io/mathlib4_docs/Mathlib/Tactic/Linter/DocPrime.html#Mathlib.Linter.DocPrime.docPrimeLinter

Thank you!

Questions?

Damiano Testa Lint Together 2025 Lean Together 14 / 14

