Fourier Analysis Handout

Thomas Browning

Fall 2021

1 LCA Groups

An LCA group is a locally compact abelian Hausdorff topological group. If G is an LCA group, then there exists a countably additive measure μ on the Borel σ -algebra of G satisfying the following properties:

- $\mu(S+g) = \mu(S)$ for all $g \in G$ and Borel $S \subseteq G$,
- $\mu(U) > 0$ for all nonempty open $U \subseteq G$,
- $\mu(K) < \infty$ for all compact $K \subseteq G$,
- $\mu(S) = \inf\{\mu(U) : \text{open } U \supseteq S\}$ for all Borel $S \subseteq G$,
- $\mu(U) = \sup\{\mu(K) : \text{compact } K \subseteq U\}$ for all open $U \subseteq G$.

The measure μ is called a Haar measure, and is unique up to rescaling by positive real numbers.

2 Short Exact Sequences

A short exact sequence of LCA groups is a short exact sequence of continuous homomorphisms

 $1 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 1$

such that the topologies on A and C are the subspace and quotient topologies from B. Then A must be a closed subgroup of B, so that $B/A \cong C$ is Hausdorff. Conversely, if A is a closed group of B, then the sequence

$$1 \longrightarrow A \longrightarrow B \longrightarrow B/A \longrightarrow 1$$

is a short exact sequence of LCA groups.

If $1 \to A \to B \to C \to 1$ is a short exact sequence of LCA groups, then Haar measures da, db, dc are said to be compatible if they satisfy

$$\int_{B} f(b) \, db = \int_{C} \int_{A} f(ac) \, da \, dc$$

for all nice¹ functions $f: B \to \mathbb{C}$. The integral $\int_A f(ac) da$ is a function of $c \in B$ that is constant on each coset of A, and thus can be viewed as a function of $c \in C$. Fixing Haar measures on two of these three LCA groups uniquely determines a compatible Haar measure on the third.

¹Nice means Schwartz-Bruhat. When $G = \mathbb{R}$, this condition states that all derivatives are rapidly decreasing.

3 The Fourier Transform

Let G be an LCA group. Let \hat{G} be the group of continuous homomorphisms $G \to \mathbb{T}$ under pointwise multiplication. Then \hat{G} is an LCA group under the compact-open topology, and is called the Pontryagin dual of G. The Pontryagin dual defines a contravariant functor from the category of LCA groups to itself. This functor is exact, is a duality of categories, and is its own inverse.

For a nice function $f: G \to \mathbb{C}$, the Fourier transform of F is the nice function $\widehat{f}: \widehat{G} \to \mathbb{C}$ defined by

$$\widehat{f}(\widehat{g}) = \int_G f(g)\overline{\widehat{g}(g)} \, dg.$$

The Fourier inversion formula states that there exists a unique dual measure $d\hat{g}$ on \hat{G} such that

$$f(g) = \int_{\widehat{G}} \widehat{f}(\widehat{g})\widehat{g}(g) \, d\widehat{g}.$$

4 The Poisson Summation Formula

Let $1 \to A \to B \to C \to 1$ be a short exact sequence of LCA groups.

Lemma 1. Let $f: B \to \mathbb{C}$ be a nice function. If the Haar measures da, db, dc are compatible, then the nice function $F: C \to \mathbb{C}$ defined by $F(c) = \int_A f(ac) da$ satisfies $\widehat{F}(\hat{c}) = \widehat{f}(\hat{c})$.

Proof. Compatibility of the Haar measures da, db, dc gives

$$\widehat{F}(\widehat{c}) = \int_{C} F(c)\overline{\widehat{c}(c)} \, dc = \int_{C} \int_{A} f(ac)\overline{\widehat{c}(c)} \, da \, dc = \int_{C} \int_{A} f(ac)\overline{\widehat{c}(ac)} \, da \, dc = \int_{B} f(b)\overline{\widehat{c}(b)} \, db = \widehat{f}(\widehat{c}). \qquad \Box$$

Theorem 2 (The Poisson Summation Formula). Let $f: B \to \mathbb{C}$ be a nice function. If the Haar measures da, db, dc are compatible, then $\int_A f(a) da = \int_{\widehat{C}} \widehat{f}(\hat{c}) d\hat{c}$.

Proof. The Fourier inversion theorem gives

$$\int_{A} f(a) \, da = F(1) = \int_{\widehat{C}} \widehat{F}(\widehat{c}) \widehat{c}(1) \, dc = \int_{\widehat{C}} \widehat{f}(\widehat{c}) \, dc.$$

5 Volume One

Lemma 3. Let G be a compact LCA group. Then the dual measure on \widehat{G} is $\frac{1}{\operatorname{Vol}(G)}$ times counting measure. Proof. We will apply the Fourier inversion theorem to the constant function $1: G \to \mathbb{C}$. First note that

$$\widehat{1}(\widehat{g}) = \int_{G} \overline{\widehat{g}(g)} \, dg = \begin{cases} \operatorname{Vol}(G), & \text{if } \widehat{g} = 1, \\ 0, & \text{if } \widehat{g} \neq 1. \end{cases}$$

Then we have

$$1 = 1(g) = \int_{\widehat{G}} \widehat{1}(\widehat{g})\widehat{g}(g) \, d\widehat{g} = \operatorname{Vol}(G) \cdot d\widehat{g}(\{\widehat{g}\}),$$

which shows that the dual measure on \widehat{G} is $\frac{1}{\operatorname{Vol}(G)}$ times counting measure.

Let $1 \to A \to B \to C \to 1$ be a short exact sequence of LCA groups. Lemma 4. If the Haar measures da, db, dc are compatible, then the Haar measures $d\hat{a}, d\hat{b}, d\hat{c}$ are compatible. Proof. We have

$$\widehat{f}(\widehat{b}) = \int_B f(b)\overline{\widehat{b}(b)} \, db = \int_C \int_A f(ac)\overline{\widehat{b}(ac)} \, da \, dc,$$

and

$$f(b) = \int_{\widehat{B}} \widehat{f}(\hat{b})\hat{b}(b) \, d\hat{b} = r \int_{\widehat{A}} \int_{\widehat{C}} \widehat{f}(\hat{a}\hat{c})\hat{a}(b)\hat{c}(b) \, d\hat{c} \, d\hat{a}$$

for some r > 0. Combining these gives

$$\begin{split} f(1) &= r \int_{\widehat{A}} \int_{\widehat{C}} \int_{C} \int_{A} f(ac) \overline{(\hat{a}\hat{c})(ac)} \, da \, dc \, d\hat{c} \, d\hat{a} \\ &= r \int_{\widehat{A}} \int_{\widehat{C}} \int_{C} g_{\widehat{a}}(c) \overline{\hat{c}(c)} \, dc \, d\hat{c} \, d\hat{a}, \, \text{where} \, g_{\widehat{a}}(c) = \int_{A} f(ac) \overline{\hat{a}(ac)} \, da \\ &= r \int_{\widehat{A}} \int_{\widehat{C}} \widehat{g_{\widehat{a}}}(\hat{c}) \, d\hat{c} \, d\hat{a} \\ &= r \int_{\widehat{A}} \int_{G} g_{\widehat{a}}(1) \, d\hat{a} \\ &= r \int_{\widehat{A}} \int_{A} f(a) \overline{\hat{a}(a)} \, da \, d\hat{a} \\ &= r \int_{\widehat{A}} \widehat{f}(\hat{a}) \, d\hat{a} \\ &= r f(1), \end{split}$$

which forces r = 1.

Suppose that there are isomorphisms $A \cong \widehat{C}, B \cong \widehat{B}, C \cong \widehat{A}$ making the diagram

commute. We will assume that the composition $B \cong \widehat{B} \cong \widehat{\widehat{B}}$ agrees with the canonical isomorphism $B \cong \widehat{\widehat{B}}$.

Rescaling db by r > 0 will rescale $d\hat{b}$ by $\frac{1}{r}$. Then there exists a unique Haar measure db on B with the property that db matches $d\hat{b}$ across the isomorphism. We will give B this unique self-dual Haar measure.

Proposition 5. If db matches $d\hat{b}$ across the isomorphism $B \cong \hat{B}$, then da matches $d\hat{c}$ across the isomorphism $A \cong \hat{C}$, and dc matches $d\hat{a}$ across the isomorphism $C \cong \hat{A}$.

Proof. When comparing $d\hat{c}$ and da across the isomorphism $A \cong \hat{C}$, suppose that $d\hat{c}$ corresponds to r da. Taking Pontryagin duals gives isomorphisms $\hat{C} \cong \hat{A}, \hat{B} \cong \hat{B}, \hat{A} \cong \hat{C}$ making the diagram

commute. Then we have

$$\int_{A} f(a) \, da = \int_{\widehat{C}} \widehat{f}(\widehat{c}) \, d\widehat{c} = \int_{\widehat{A}} \widehat{\widehat{f}}\left(\widehat{a}\right) d\widehat{a} = r^2 \int_{A} f(-a) \, da = r^2 \int_{A} f(a) \, da,$$

using the assumption that the composition $B \cong \widehat{B} \cong \widehat{\widehat{B}}$ agrees with the canonical isomorphism $B \cong \widehat{\widehat{B}}$. This equation forces r = 1, from which the proposition follows.

Theorem 6. If db matches $d\hat{b}$ across the isomorphism $B \cong \hat{B}$, and if A is discrete with counting measure, then C is compact with volume 1.

Proof. The fact that C is compact follows from the general fact that Pontryagin duality interchanges discrete LCA groups and compact LCA groups. Since counting measure on A matches $\frac{1}{\text{Vol}(C)}$ times counting measure on \hat{C} , we must have Vol(C) = 1.

Example 7. The short exact sequence $0 \to \mathbb{Z} \to \mathbb{R} \to \mathbb{R}/\mathbb{Z} \to 0$ shows that $\operatorname{Vol}(\mathbb{R}/\mathbb{Z}) = 1$.

Example 8. The short exact sequence $0 \to K \to \mathbb{A} \to \mathbb{A}/K \to 0$ shows that $\operatorname{Vol}(\mathbb{A}/K) = 1$.