
import Lean

Introduction
What’s the goal of this book?
This book aims to build up enough knowledge about metaprogramming in Lean
4 so you can be comfortable enough to start building your own meta helpers.

We by no means intend to provide an exhaustive exploration/explanation of
the entire Lean 4 metaprogramming API. We also don’t cover the topic of
monadic programming in Lean 4. However, the examples provided will be simple
enough for you to follow and comprehend without a super deep understanding
of monadic programming.

What does it mean to be in meta?
When we write code in most programming languages such as Python, C, Java
or Scala, we usually have to stick to a pre-defined syntax otherwise the compiler
or the interpreter won’t be able to figure out what we’re trying to say. In Lean,
that would be defining an inductive type, implementing a function, proving
a theorem etc. The compiler, then, has to parse the code, build an abstract
syntax tree and elaborate its syntax nodes into terms that can be processed by
the language kernel. We say that such activities performed by the compiler are
done in the meta-level, which will be studied throughout the book. And we
also say that the common usage of the language syntax is done in the object-
level.

In most systems, the meta-level activities are done in a different language to the
one that we use to write code. In Isabelle, the meta-level language is ML and
Scala. In Coq, it’s OCAML. In AGDA it’s Haskell. In Lean 4, the meta code is
mostly written in Lean itself, with a few components written in C++.

One cool thing about Lean, though, is that it allows us to define custom syntax
nodes and to implement our own meta-level routines to elaborate those in the
very same development environment that we use to perform object-level activi-
ties. So for example, one can write their own notation to instantiate a term of
a certain type and use it right away, on the same file! This concept is generally
called reflection. We can say that, in Lean, the meta-level is reflected to the
object-level.

Since the objects defined in the meta-level are not the ones we’re most interested
in proving theorems about, it can sometimes be overly tedious to prove that
they are type correct. For example, we don’t care about proving that a recursive
function to traverse an expression is well founded. Thus, we can use the partial
keyword if we’re convinced that our function terminates. In the worst case
scenario, our function gets stuck in a loop but the kernel is not reached/affected.
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Let’s see some exemple use cases of metaprogramming in Lean.

Metaprogramming examples
The following examples are meant for mere illustration. Don’t worry if you don’t
understand the details for now.

Building a command

Suppose we want to build a helper command #assertType which tells whether
a given term is of a certain type. The usage will be:

#assertType <term> : <type>

elab "#assertType " termStx:term " : " typeStx:term : command =>
open Lean.Elab Command Term in
liftTermElabM `assertTypeCmd
try

let tp ← elabType typeStx
let tm ← elabTermEnsuringType termStx tp
synthesizeSyntheticMVarsNoPostponing
logInfo "success"

catch | _ => throwError "failure"

#assertType 5 : Nat -- success
#assertType [] : Nat -- failure

We started by using elab to define a command syntax, which, when parsed by the
compiler, will trigger the incoming computation.

At this point, the code should be running in the CommandElabM monad. We
then use liftTermElabM to access the TermElabM monad, which allows us to use
elabType and elabTermEnsuringType in order to build expressions out of the
syntax nodes typeStx and termStx.

First we elaborate the expected type tp : Expr and then we use it to elaborate
the term tm : Expr, which should have the type tp otherwise an error will be
thrown.

We also add synthesizeSyntheticMVarsNoPostponing, which forces Lean to elab-
orate metavariables right away. Without that line, #assertType 5 : ?_ would
result in success.

If no error is thrown until now then the elaboration succeeded and we can use
logInfo to output “success”. If, instead, some error is caught, then we use
throwError with the appropriate message.
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Building a DSL and a syntax for it

Let’s parse a classic grammar, the grammar of arithmetic expressions with ad-
dition, multiplication, naturals, and variables. We’ll define an AST, and use
operators + and * to denote building an arithmetic AST. Here’s the AST that
we will be parsing:

inductive Arith : Type where
| add : Arith → Arith → Arith -- e + f
| mul : Arith → Arith → Arith -- e * f
| nat : Nat → Arith -- constant
| var : String → Arith -- variable

Now we declare a syntax category to describe the grammar that we will be
parsing. Notice that we control the precedence of + and * by writing syntax:75
for multiplication indicating that multiplication binds tighter than addition (the
higher the number, the tighter the binding). This allows us to declare precedence
when defining new syntax.

declare_syntax_cat arith
syntax num : arith -- nat for Arith.nat
syntax str : arith -- strings for Arith.var
syntax arith " + " arith : arith -- Arith.add
syntax:75 arith " * " arith : arith -- Arith.mul
syntax " ( " arith " ) " : arith -- bracketed expressions

-- Auxiliary notation for translating `arith` into `term`
syntax " ⟪ " arith " ⟫ " : term

-- Our macro rules perform the "obvious" translation:
macro_rules

| `(⟪ $s:str ⟫) => `(Arith.var $s)
| `(⟪ $num:num ⟫) => `(Arith.nat $num)
| `(⟪ $x:arith + $y:arith ⟫) => `(Arith.add ⟪ $x ⟫ ⟪ $y ⟫)
| `(⟪ $x:arith * $y:arith ⟫) => `(Arith.mul ⟪ $x ⟫ ⟪ $y ⟫)
| `(⟪ ( $x ) ⟫) => `( ⟪ $x ⟫ )

#check ⟪ "x" * "y" ⟫
-- Arith.mul (Arith.symbol "x") (Arith.symbol "y")

#check ⟪ "x" + "y" ⟫
-- Arith.add (Arith.symbol "x") (Arith.symbol "y")

#check ⟪ "x" + 20 ⟫
-- Arith.add (Arith.symbol "x") (Arith.int 20)

#check ⟪ "x" + "y" * "z" ⟫ -- precedence
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-- Arith.add (Arith.symbol "x") (Arith.mul (Arith.symbol "y") (Arith.symbol "z"))

#check ⟪ "x" * "y" + "z" ⟫ -- precedence
-- Arith.add (Arith.mul (Arith.symbol "x") (Arith.symbol "y")) (Arith.symbol "z")

#check ⟪ ("x" + "y") * "z" ⟫ -- brackets
-- Arith.mul (Arith.add (Arith.symbol "x") (Arith.symbol "y")) (Arith.symbol "z")

Writing our own tactic

Let’s create a tactic that adds a new hypothesis to the context with a given
name and postpones the need for its proof to the very end. It’s going to be
called suppose and is used like this:

suppose <name> : <type>

open Lean Meta Elab Tactic Term in
elab "suppose " n:ident " : " t:term : tactic => do

let n : Name := n.getId
let mvarId ← getMainGoal
withMVarContext mvarId do
let t ← elabType t
let p ← mkFreshExprMVar t MetavarKind.syntheticOpaque n
let (_, mvarIdNew) ← intro1P $ ← assert mvarId n t p
replaceMainGoal [p.mvarId!, mvarIdNew]

evalTactic $ ← `(tactic|rotate_left)

example : 0 + a = a := by
suppose add_comm : 0 + a = a + 0
rw [add_comm]; rfl -- closes the initial main goal
rw [Nat.zero_add]; rfl -- proves `add_comm`

We start by storing the main goal in mvarId and using it as a parameter of
withMVarContext to make sure that our elaborations will work with types that
depend on other variables in the context.

This time we’re using mkFreshExprMVar to create a metavariable expression for
the proof of t, which we can introduce to the context using intro1P and assert.

To require the proof of the new hypothesis as a goal, we call replaceMainGoal
passing a list with p.mvarId! in the head. And then we can use the rotate_left
tactic to move the recently added top goal to the bottom.

import Lean
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Expressions
–todo * matching (there’s some content in temp) * normalisation, transparency
* discrimination trees

Expressions (terms of type Expr) carry the data used to communicate with the
Lean kernel for core tasks such as type inference and definitional equality checks.

In Lean, terms and types are represented by expressions. For instance, let’s
consider 1 of type Nat. The type Nat is represented as a constant with the
name “Nat”. And then 1 is an application of the function Nat.succ to the term
Nat.zero, so all this is represented as an application, given a constant named
“Nat.succ” and a constant named “Nat.zero”.

That example gives us an idea of what we’re aiming at: we use expressions to
represent all Lean terms at the meta level. Let’s check the precise definition of
Expr.

namespace Playground

inductive Expr where
| bvar : Nat → Data → Expr -- bound variables
| fvar : FVarId → Data → Expr -- free variables
| mvar : MVarId → Data → Expr -- meta variables
| sort : Level → Data → Expr -- Sort
| const : Name → List Level → Data → Expr -- constants
| app : Expr → Expr → Data → Expr -- application
| lam : Name → Expr → Expr → Data → Expr -- lambda abstraction
| forallE : Name → Expr → Expr → Data → Expr -- (dependent) arrow
| letE : Name → Expr → Expr → Expr → Data → Expr -- let expressions
-- less essential constructors:
| lit : Literal → Data → Expr -- literals
| mdata : MData → Expr → Data → Expr -- metadata
| proj : Name → Nat → Expr → Data → Expr -- projection

end Playground

What is each of these constructors doing?

• bvar is a bound variable. For example, the x in fun x => x + 2 or ∑
x, x². This is any occurrence of a variable in an expression where there
is a binder above it. Why is the argument a Nat? This is called a de-
Bruijn index and will be explained ahead. You can figure out the type of
a bound variable by looking at its binder, since the binder always has the
type information for it.

• fvar is a free variable. These are variables which are not bound by a
binder. An example is x in x + 2. Note that you can’t just look at a
free variable x and tell what its type is, there needs to be a context which
contains a declaration for x and its type. A free variable has an ID that
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tells you where to look for it in a LocalContext. In Lean 3, free variables
were called “local constants” or “locals”.

• mvar is a metavariable. There will be much more on these later, but you
can think of it as a placeholder or a ‘hole’ in an expression that needs to
be filled at a later point.

• sort is used for Type u, Prop etc.
• const is a constant that has been defined earlier in the Lean document.
• app is a function application. Multiple arguments are done using partial

application: f x y ↝ app (app f x) y.
• lam n t b is a lambda expression (fun ($n : $t) => $b). The b argument

is called the body. Note that you have to give the type of the variable
you are binding.

• forallE n t b is a dependent arrow expression (($n : $t) → $b). This
is also sometimes called a Π-type or Π-expression. Note that the non-
dependent arrow α → β is a special case of (a : α) → β where β doesn’t
depend on a. The E on the end of forallE is to distinguish it from the
forall keyword.

• letE n t v b is a let binder (let ($n : $t) := $v in $b).
• lit is a literal, this is a number or string literal like 4 or "hello world".

These are not strictly necessary for the kernel, but they are kept mainly
for convenience. (Ie in Lean 3, there were a load of tricks needed to store
11234 : Nat as something more efficient than succ $ succ $ succ ... $
succ zero)

• mdata is just a way of storing extra information on expressions that might
be useful, without changing the nature of the expression.

• proj is for projection. Suppose you have a structure such as p : α × β,
rather than storing the projection π₁ p as app π₁ p, it is expressed as
proj Prod 0 p. This is for efficiency reasons ([todo] find link to docstring
explaining this).

Expression Data
If you look at the file where Expr is defined, you will see that every constructor
also has a Data argument to it. This Data field contains some extra cached
information about the expression that is useful for speeding up some common
operations. These are things like: a hash of the Expr, whether or not the Expr
contains free variables, metavariables or bound variables and also it is where
the BinderInfo is stored for forallE and lam.

This data param means that you should never construct instances of Expr di-
rectly using the Expr constructors but instead use the helper methods (mkLambda,
mkApp etc) that compute Data for you.
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de-Bruijn Indexes
Consider the following lambda expression (λ f x => f x x) (λ x y => x + y) 5,
we have to be very careful when we reduce this, because we get a clash in the
variable x.

To avoid variable name-clash carnage, Exprs use a nifty trick called de-Bruijn
indexes. In de-Bruijn indexing, each variable bound by a lam or a forallE is
converted into a number #n. The number says how many binders up the Expr
tree we should look to find the binder which binds this variable. So our above
example would become (putting wildcards _ in the type arguments for now for
brevity): app (app (lam `f _ (lam `x _ (app (app #1 #0) #0))) (lam `x _ (lam
`y _ (app (app plus #1) #0)))) five Now we don’t need to rename variables
when we perform �-reduction. We also really easily check if two Exprs containing
bound expressions are equal.

This is why the signature of the bvar case is Nat → Expr and not Name → Expr. If
in our Expr, all bvars are bound, we say that the Expr is closed. The process of
replacing all instances of an unbound bvar with an Expr is called instantiation.
Going the other way is called abstraction.

Constructing Expressions
As mentioned above, you should never construct instances of Expr directly using
the Expr constructors but instead use helper methods that not only compute
Data but also take care of other things for you. Here we give examples and brief
descriptions of some basic helpers.

The simplest expressions we can construct are constants. We use mkConst with
argument a name. Below are two examples of this, both giving an expression
for the natural number 0.

The second form (with double backticks) is better, as it resolves the name to a
global name, checking, in the process that it is valid.

open Lean

def z' := mkConst `Nat.zero
#eval z' -- Lean.Expr.const `Nat.zero [] (Expr.mkData 3114957063 (bi := Lean.BinderInfo.default))

def z := mkConst ``Nat.zero
#eval z -- Lean.Expr.const `Nat.zero [] (Expr.mkData 3114957063 (bi := Lean.BinderInfo.default))

To illustrate the difference, here are two further examples. The first definition
is unsafe as it is not valid without open Nat in the context. On the other hand,
the second resolves correctly.

open Nat

def z₁ := mkConst `zero
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#eval z₁ -- Lean.Expr.const `zero [] (Expr.mkData 790182631 (bi := Lean.BinderInfo.default))

def z₂ := mkConst ``zero
#eval z₂ -- Lean.Expr.const `Nat.zero [] (Expr.mkData 3114957063 (bi := Lean.BinderInfo.default))

The next class of expressions we consider are function applications. These can
be built using mkApp with the first argument being an expression for the function
and the second being an expression for the argument.

Here are two examples. The first is simply a constant applied to another. The
second is a recursive definition giving an expression as a function of a natural
number.

def one := mkApp (mkConst ``Nat.succ) z
#eval one
-- Lean.Expr.app
-- (Lean.Expr.const `Nat.succ [] (Expr.mkData 3403344051 (bi := Lean.BinderInfo.default)))
-- (Lean.Expr.const `Nat.zero [] (Expr.mkData 3114957063 (bi := Lean.BinderInfo.default)))
-- (Expr.mkData 3354277877 (approxDepth := 1) (bi := Lean.BinderInfo.default))

def natExpr: Nat → Expr
| 0 => z
| n + 1 => mkApp (mkConst ``Nat.succ) (natExpr n)

Next we use the variant mkAppN which allows application with multiple argu-
ments.

def sumExpr : Nat → Nat → Expr
| n, m => mkAppN (mkConst ``Nat.add) #[natExpr n, natExpr m]

We next consider the helper mkLambda to construct a simple function named cz
which takes any natural number and returns Nat.zero. The argument Binder-
Info.default for the constructor says that the argument is explicit.

def constZero : Expr :=
mkLambda `cz BinderInfo.default (mkConst ``Nat) (mkConst ``Nat.zero)

As you may have noticed, we didn’t show #eval outputs for the three last func-
tion. That’s because, as you may have guessed, those resulting expressions can
grow so large that it’s hard to make sense of them.

In the next chapter we shall explore some functions that compute in the MetaM
monad, opening room for more powerful tricks involving expressions. And we
will start off by visiting reduce, a function that can simplify bigger expressions
such as the ones we’d get from using the functions above.

import Lean
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MetaM

–todo – better thread of thought

Smart constructors for expressions
The MetaM monad provides even more smart constructors to help us build expres-
sions. The API also contains functions that help us explore certain expressions
more easily. In this chapter we will visit some of those.

But first, let’s recap the definition of natExpr

open Lean Meta

def natExpr : Nat → Expr
| 0 => mkConst ``Nat.zero
| n + 1 => mkApp (mkConst ``Nat.succ) (natExpr n)

#eval natExpr 1
-- Lean.Expr.app
-- (Lean.Expr.const `Nat.succ [] (Expr.mkData 3403344051 (bi := Lean.BinderInfo.default)))
-- (Lean.Expr.const `Nat.zero [] (Expr.mkData 3114957063 (bi := Lean.BinderInfo.default)))
-- (Expr.mkData 3354277877 (approxDepth := 1) (bi := Lean.BinderInfo.default))

That’s already a long expression for the natural number 1! Let’s see what reduce
: Expr → MetaM Expr can do about it

#eval reduce $ natExpr 1
-- Lean.Expr.lit (Lean.Literal.natVal 1) (Expr.mkData 4289331193 (bi := Lean.BinderInfo.default))

The following example would yield an even longer expression, but reduce can
clean it up for us:

def sumExprM (n m : Nat) : MetaM Expr := do
reduce $ mkAppN (mkConst ``Nat.add) #[natExpr n, natExpr m]

#eval sumExprM 2 3 --Lean.Expr.lit (Lean.Literal.natVal 5) (Expr.mkData 1441793 (bi := Lean.BinderInfo.default))

We next construct a �-expression for the function double : Nat → Nat given
by double n = n + n. To construct such an expression, we introduce a free
variable n, we define an expression in terms of this variable, and we construct
the �-expression.

The variable is introduced by passing the code using it as a continuation to
withLocalDecl. The arguments of withLocalDecl are: * The name of the variable
* The binder that determines whether it is explicit or not * The type of the
variable * The function that turns an expression into something else (in our
case, into another expression). This function does not need to be pure.

The �-expression is constructed using mkLambdaFVars, with the first argument
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being an array of free variables (just one in this case) with respect to which we
take �. The second argument is the body of the �-expression.

def doubleM : MetaM Expr :=
withLocalDecl `n BinderInfo.default (mkConst ``Nat)

fun n : Expr => mkLambdaFVars #[n] $ mkAppN (mkConst ``Nat.add) #[n, n]

Let’s check if doubleM can indeed compute the expression for n + n

def appDoubleM (n : Nat) : MetaM Expr := do
reduce $ mkApp (← doubleM) (natExpr n)

#eval appDoubleM 3 -- Lean.Expr.lit (Lean.Literal.natVal 6) (Expr.mkData 393219 (bi := Lean.BinderInfo.default))

A powerful feature of lean is its unifier. There is an easy way to use this while
meta-programming, namely the method mkAppM (and a similar method mkAppM').
For example, we can construct an expression for the length of a list using mkAppM.
Recall that List.length has an implicit parameter α : Type u. This is deduced
by unification, as are universe levels.

def lenExprM (list: Expr) : MetaM Expr := do
reduce $ ← mkAppM ``List.length #[list]

We test the unification in this definition.

def egList := [1, 3, 7, 8]

def egLenM : MetaM Expr :=
lenExprM (mkConst ``egList)

#eval egLenM -- Lean.Expr.lit (Lean.Literal.natVal 4) (Expr.mkData 2490367 (bi := Lean.BinderInfo.default))

Analogous to the construction of �-expressions, we can construct �-expressions
(i.e., Π-expressions) for types. We simply replace mkLambdaFVars with mkForallF-
Vars.

A special case of Π-types are function types A → B. These can be constructed
using the function mkArrow. Another very useful meta-level function is mkEq,
which constructs equalities.

We illustrate all these, as well as the construction of a �-expression, by construct-
ing the proposition ∀ n: Nat, f n = f (n + 1) as a function of f. Formally this
is λ f, ∀ n, f n = f (n + 1). We break this into many steps to illustrate the
different ingredients.

First we build the expression for our proposition:

def propM : MetaM Expr := do
let funcType ← mkArrow (mkConst ``Nat) (mkConst ``Nat)
withLocalDecl `f BinderInfo.default funcType fun f => do
let feqn ← withLocalDecl `n BinderInfo.default (mkConst ``Nat) fun n => do
let lhs := mkApp f n
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let rhs := mkApp f (← mkAppM ``Nat.succ #[n])
let eqn ← mkEq lhs rhs
mkForallFVars #[n] eqn

mkLambdaFVars #[f] feqn

Now let’s elaborate the expression into a term so we can see the result of what
we did more easily. This will be further explored in the next chapter

elab "myProp" : term => propM

#check myProp -- fun f => ∀ (n : Nat), f n = f (Nat.succ n) : (Nat → Nat) → Prop
#reduce myProp -- fun f => ∀ (n : Nat), f n = f (Nat.succ n)
#reduce myProp Nat.succ -- ∀ (n : Nat), Nat.succ n = Nat.succ (Nat.succ n)

Meta variables
Meta-variables are variables that can be created and assigned to only at the meta
level, and not the object/term level. They are used principally as placeholders,
especially for goals. They can be assigned expressions in terms of other meta
variables. However, before being assigned to a pure (i.e., not meta) definition,
the assignments should be resolvable to a value not involving meta-variables.

One way to create a meta-variable representing an expression is to use the
mkFreshExprMVar function. This function creates a meta-variable that can be
assigned an expression. One can optionally specify a type for the meta-variable.
In the example below, we create three meta-variables, mvar1, mvar2, and mvar3,
with mvar1 and mvar3 assigned type Nat and mvar2 assigned the type Nat → Nat.

We assign expressions to the meta-variables using the assignExprMVar function.
Like many functions dealing with meta-variables, this takes the id of the meta-
variable as an argument. Below we assign to mvar1 the result of function ap-
plication of mvar2 to mvar3. We then assign to mvar2 the constant expression
Nat.succ and to mvar3 the constant expression Nat.zero. Clearly this means
we have assigned Nat.succ (Nat.zero), i.e., 1 to mvar1. We return mvar1 in
the function metaOneM. We can see, using an elaborator, that indeed when the
expression metaOneM is assigned to a term, the result is 1.

def oneMetaVar : MetaM Expr := do
let zero := mkConst ``Nat.zero
let mvar1 ← mkFreshExprMVar (some (mkConst ``Nat))
let mvar2 ← mkFreshExprMVar (some (mkConst ``Nat))
let funcType ← mkArrow (mkConst ``Nat) (mkConst ``Nat)
let mvar3 ← mkFreshExprMVar (some funcType)
IO.println "the initial state of each metavariable:"
IO.println $ ← instantiateMVars mvar1
IO.println $ ← instantiateMVars mvar2
IO.println $ ← instantiateMVars mvar3
IO.println "--------------------------------"
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assignExprMVar mvar1.mvarId! (mkApp mvar3 mvar2)
IO.println "after turning `mvar1` into an application:"
IO.println $ ← instantiateMVars mvar1
IO.println $ ← instantiateMVars mvar2
IO.println $ ← instantiateMVars mvar3
IO.println "--------------------------------"
assignExprMVar mvar2.mvarId! zero
IO.println "after turning the application argument into `Nat.zero`:"
IO.println $ ← instantiateMVars mvar1
IO.println $ ← instantiateMVars mvar2
IO.println $ ← instantiateMVars mvar3
IO.println "--------------------------------"
assignExprMVar mvar3.mvarId! (mkConst ``Nat.succ)
IO.println "after turning the application function into `Nat.succ`:"
IO.println $ ← instantiateMVars mvar1
IO.println $ ← instantiateMVars mvar2
IO.println $ ← instantiateMVars mvar3
IO.println "--------------------------------"
return mvar1

elab "one!" : term => oneMetaVar

#eval one! -- 1
-- the initial state of each metavariable:
-- ?_uniq.3411
-- ?_uniq.3412
-- ?_uniq.3413
-- --------------------------------
-- after turning `mvar1` into an application:
-- ?_uniq.3413 ?_uniq.3412
-- ?_uniq.3412
-- ?_uniq.3413
-- --------------------------------
-- after turning the application argument into `Nat.zero`:
-- ?_uniq.3413 Nat.zero
-- Nat.zero
-- ?_uniq.3413
-- --------------------------------
-- after turning the application function into `Nat.succ`:
-- Nat.succ Nat.zero
-- Nat.zero
-- Nat.succ
-- --------------------------------
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Telescopes
Before going further, let’s take a step back and think about the Expr.lam con-
structor:

Expr.lam : Name → Expr → Expr → Data → Expr

The first Expr is the type of the function’s input and the second is its body. Then
we ask ourselves: how do we build a function with multiple input variables? Well,
we use the same constructor multiple times, one for each input variable.

As an example, let’s see an approximation of how we’d build the function fun
(x : Nat) (y : Nat) => x + y:

Expr.lam `x (mkConst ``Nat) (Expr.lam `y (mkConst ``Nat) b) d') d

It’s done by nesting a new Expr.lam as the body of another Expr.lam. Thus, if
we wanted to, say, perform a computation that involves all the input types of a
function as well as its body, we would have to unfold the expression recursively
until the last nested Expr.lam just to gather everything we need to do what we
want. And that’s when lambdaTelescope comes into play.

def lambdaTelescope (e : Expr) (k : Array Expr → Expr → m α) : m α

It makes it easier for us to do our computation with the data that we need. All
we need to do is provide a k function, whose first argument is an array of input
types and the second argument is the function body.

There are multiple telescopes in the API and we don’t intend to be exhaustive
here. Something to note is that m is not necessarily the MetaM monad, but we
are covering this subject here because telescopes are defined in Lean.Meta and
also because we are already in MetaM when we want to use more powerful tools
to deal with expressions.

import Lean

Syntax
This chapter is concerned with the means to declare and operate on syntax in
Lean. Since there are a multitude of ways to operate on it, we will not go into
great detail about this yet and postpone quite a bit of this to later chapters.

Declaring Syntax
Declaration helpers

Some readers might be familiar with the infix or even the notation commands,
for those that are not here is a brief recap:

-- XOR, denoted \oplus
infixl:60 " ⊕ " => fun l r => (!l && r) || (l && !r)
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#eval true ⊕ true -- false
#eval true ⊕ false -- true
#eval false ⊕ true -- true
#eval false ⊕ false -- false

-- with `notation`, "left XOR"
notation:10 l:10 " LXOR " r:11 => (!l && r)

#eval true LXOR true -- false
#eval true LXOR false -- false
#eval false LXOR true -- true
#eval false LXOR false -- false

As we can see the infixl command allows us to declare a notation for a binary
operation that is infix, meaning that the operator is in between the operands (as
opposed to e.g. before which would be done using the prefix command). The l
at the end of infixl means that the notation is left associative so a ⊕ b ⊕ c gets
parsed as (a ⊕ b) ⊕ c as opposed to a ⊕ (b ⊕ c) which would be achieved by
infixr. On the right hand side it expects a function that operates on these two
parameters and returns some value. The notation command on the other hand
allows us some more freedom, we can just “mention” the parameters right in
the syntax definition and operate on them on the right hand side. It gets even
better though, we can in theory create syntax with 0 up to as many parameters
as we wish using the notation command, it is hence also often referred to as
“mixfix” notation.

The three unintuitive parts about these two are: - The fact that we are leaving
spaces around our operators: ” � “,” XOR “. This is so that, when Lean pretty
prints our syntax later on, it also uses spaces around the operators, otherwise
the syntax would just be presented as l⊕r as opposed to l ⊕ r. - The 60 and
10 right after the respective commands – these denote the operator precedence,
meaning how strong they bind to their arguments, let’s see this in action

#eval true ⊕ false LXOR false -- false
#eval (true ⊕ false) LXOR false -- false
#eval true ⊕ (false LXOR false) -- true

As you can see the Lean interpreter analyzed the first term without parentheses
like the second instead of the third one. This is because the ⊕ notation has
higher precedence than LXOR (60 > 10 after all) and is thus evaluated before it.
This is also how you might implement rules like * being evaluated before +.

Lastly at the notation example there are also these :precedence bindings at
the arguments: l:10 and r:11. This conveys that the left argument must have
precedence at least 10 or greater, and the right argument must have precedence
at 11 or greater. This forces left associativity like infixl above. To understand
this, let’s compare two hypothetical parses:
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-- a LXOR b LXOR c
(a:10 LXOR b:11):10 LXOR c
a LXOR (b:10 LXOR c:11):10

In the parse tree of (a:10 LXOR b:11):10 LXOR c, we see that the right argument
(b LXOR c) is given the precedence 10, because a rule is always given the lowest
precedence of any of its subrules. However, the rule for LXOR expects the right
argument to have a precedence of at least 11, as witnessed by the r:11 at the
right-hand-side of notation:10 l:10 " LXOR " r:11. Thus this rule ensures that
LXOR is left associative.

Can you make it right associative?

Free form syntax declarations

With the above infix and notation commands you can get quite far with declar-
ing ordinary mathematical syntax already. Lean does however allow you to
introduce arbitrarily complex syntax as well. This is done using two main com-
mands syntax and declare_syntax_cat. A syntax command allows you add a
new syntax rule to an already existing, so called, syntax category. The most
common syntax categories are: - term, this category will be discussed in detail
in the elaboration chapter, for now you can think of it as “the syntax of every-
thing that has a value” - command, this is the category for top level commands
like #check, def etc. - TODO: …

Let’s see this in action:

syntax "MyTerm" : term

We can now write MyTerm in place of things like 1 + 1 and it will be syntactically
valid, this does not mean the code will compile yet, it just means that the Lean
parser can understand it:

def Playground1.test := MyTerm
-- elaboration function for 'termMyTerm' has not been implemented
-- MyTerm

Implementing this so called “elaboration function”, which will actually give
meaning to this syntax, is topic of the elaboration and macro chapter. An
example of one we have already seen however would be the notation and infix
command.

We can of course also involve other syntax into our own declarations in order to
build up syntax trees, for example we could try to build our own little boolean
expression language:

namespace Playground2

-- The scoped modifier makes sure the syntax declarations remain in this `namespace`
-- because we will keep modifying this along the chapter
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scoped syntax "⊥" : term -- ⊥ for false
scoped syntax "⊤" : term -- ⊤ for true
scoped syntax:40 term " OR " term : term
scoped syntax:50 term " AND " term : term
#check ⊥ OR (⊤ AND ⊥) -- elaboration function hasn't been implemented but parsing passes

end Playground2

While this does work, it allows arbitrary terms to the left and right of our
AND and OR operation. If we want to write a mini language that only accepts
our boolean language on a syntax level we will have to declare our own syntax
category on top. This is done using the declare_syntax_cat command:

declare_syntax_cat boolean_expr
syntax "⊥" : boolean_expr -- ⊥ for false
syntax "⊤" : boolean_expr -- ⊤ for true
syntax boolean_expr " OR " boolean_expr : boolean_expr
syntax boolean_expr " AND " boolean_expr : boolean_expr

Now that we are working in our own syntax category, we are completely discon-
nected from the rest of the system. And these cannot be used in place of terms
anymore:

#check ⊥ AND ⊤ -- expected term

In order to integrate our syntax category into the rest of the system we will
have to extend an already existing one with new syntax, in this case we will
re-embed it into the term category:

syntax "[Bool|" boolean_expr "]" : term
#check [Bool| ⊥ AND ⊤] -- elaboration function hasn't been implemented but parsing passes

Syntax combinators

In order to declare more complex syntax it is often very desirable to have some
basic operations on syntax already built-in, these include: - helper parsers with-
out syntax categories (i.e. not extendable) - alternatives - repetetive parts -
optional parts While all of these do have an encoding based on syntax cate-
gories this can make things quite ugly at times so Lean provides a way to do all
of these.

In order to see all of these in action briefly we will define a simple binary
expression syntax. First things first, declaring named parsers that don’t belong
to a syntax category, this is quite similar to ordinary defs:

syntax binOne := "O"
syntax binZero := "Z"

These named parsers can be used in the same positions as syntax categories from
above, their only difference to them is, that they are not extensible. There does
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also exist a number of built-in named parsers that are generally useful, most
notably: - str for string literals - num for number literals - ident for identifiers -
… TODO: better list or link to compiler docs

Next up we want to declare a parser that understands digits, a binary digit is
either 0 or 1 so we can write:

syntax binDigit := binZero <|> binOne

Where the <|> operator implements the “accept the left or the right” behaviour.
We can also chain them to achieve parsers that accept arbitrarily many, arbi-
trarly complex other ones. Now we will define the concept of a binary number,
usually this would be written as digits directly after each other but we will
instead use comma separated ones to showcase the repetetion feature:

-- the "+" denotes "one or many", in order to achieve "zero or many" use "*" instead
-- the "," denotes the separator between the `binDigit`s, if left out the default separator is a space
syntax binNumber := binDigit,+

Since we can just use named parsers in place of syntax categories, we can now
easily add this to the term category:

syntax "bin(" binNumber ")" : term
#check bin(Z, O, Z, Z, O) -- elaboration function hasn't been implemented but parsing passes
#check bin() -- fails to parse because `binNumber` is "one or many": expected 'O' or 'Z'

syntax binNumber' := binDigit,* -- note the *
syntax "emptyBin(" binNumber' ")" : term
#check emptyBin() -- elaboration function hasn't been implemented but parsing passes

Note that nothing is limiting us to only using one syntax combinator per parser,
we could also have written all of this inline:

syntax "binCompact(" ("Z" <|> "O"),+ ")" : term
#check binCompact(Z, O, Z, Z, O) -- elaboration function hasn't been implemented but parsing passes

As a final feature, lets add an optional string comment that explains the binary
literal being declared:

-- The (...)? syntax means that the part in parentheses optional
syntax "binDoc(" (str ";")? binNumber ")" : term
#check binDoc(Z, O, Z, Z, O) -- elaboration function hasn't been implemented but parsing passes
#check binDoc("mycomment"; Z, O, Z, Z, O) -- elaboration function hasn't been implemented but parsing passes

Operating on Syntax
As explained above we will not go into detail in this chapter on how to teach
Lean about the meaning you want to give your syntax. We will however take a
look at how to write functions that operate on it. Like all things in Lean, syntax
is represented by the inductive type Lean.Syntax, on which we can operate. It
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does contain quite some information, but most of what we are interested in, we
can condense in the following simplified view:

namespace Playground2

inductive Syntax where
| missing : Syntax
| node (kind : Lean.SyntaxNodeKind) (args : Array Syntax) : Syntax
| atom : String -> Syntax
| ident : Lean.Name -> Syntax

end Playground2

Lets go through the definition one constructor at a time: - missing is used when
there is something the Lean compiler cannot parse, it is what allows Lean to
have a syntax error in one part of the file but recover from it and understand
the rest of it. This also means we pretty much don’t care about this constructor.
- node is, as the name suggests a node in the syntax tree, it has a so called kind
: SyntaxNodeKind where SyntaxNodeKind is just a Lean.Name. Basically each of
our syntax declarations receives an automatically generated SyntaxNodeKind (we
can also explicitly specify the name with syntax (name := foo) ... : cat) so
we can tell Lean “this function is responsible for processing this specific syntax
construct”. Furthermore, like all nodes in a tree, it has children, in this case
in the form of an Array Syntax. - atom represents (with the exception of one)
every syntax object that is at the bottom of the hierarchy. For example, our
operators ⊕ and LXOR from above will be represented as atoms. - ident is the
mentioned exception to this rule. The difference between ident and atom is also
quite obvious: an identifier has a Lean.Name instead of a String that represents
is. Why a Lean.Name is not just a String is related to a concept called macro
hygiene that will be discussed in detail in the macro chapter. For now, you can
consider them basically equivalent.

Constructing new Syntax

Now that we know how syntax is represented in Lean we could of course write
programs that generate all of these inductive trees by hand which would be
incredibly tedious and is something we most definitely want to avoid. Luckily
for us there is quite an extensive API hidden inside the Lean.Syntax namespace
we can explore:

open Lean
#check Syntax -- Syntax. autocomplete

The interesting functions for creating Syntax are the Syntax.mk ones, they allow
us to create both very basic Syntax objects like idents but also more complex
ones like Syntax.mkApp which we can use to create the Syntax object that would
amount to applying the function from the first argument to the argument list
(all given as Syntax) in the second one. Let’s see a few examples:
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-- Name literals are written with this little ` infront of the name
#eval Syntax.mkApp (mkIdent `Nat.add) #[Syntax.mkNumLit "1", Syntax.mkNumLit "1"] -- is the syntax of `Nat.add 1 1`
#eval mkNode `«term_+_» #[Syntax.mkNumLit "1", Syntax.mkNumLit "1"] -- is the syntax for `1 + 1`

-- note that the `«term_+_» is the auto generated SyntaxNodeKind for the + syntax

If you don’t like this way of creating Syntax at all you are not alone. However,
there are a few things involved with the machinery of doing this in a pretty
and correct (the machinery is mostly about the correct part) way which will be
explained in the macro chapter.

Matching on Syntax

Just like constructing Syntax is an important topic, especially with macros,
matching on syntax is equally (or in fact even more) interesting. Luckily we
don’t have to match on the inductive type itself either, we can instead use so
called syntax patterns. They are quite simple, their syntax is just ‘(the syntax
I want to match on). Let’s see one in action:

def isAdd11 : Syntax → Bool
| `(Nat.add 1 1) => true
| _ => false

#eval isAdd11 (Syntax.mkApp (mkIdent `Nat.add) #[Syntax.mkNumLit "1", Syntax.mkNumLit "1"]) -- true
#eval isAdd11 (Syntax.mkApp (mkIdent `Nat.add) #[mkIdent `foo, Syntax.mkNumLit "1"]) -- false

The next level with matches is to capture variables from the input instead of
just matching on literals, this is done with a slightly fancier looking syntax:

def isAdd : Syntax → Option (Syntax × Syntax)
| `(Nat.add $x $y) => some (x, y)
| _ => none

#eval isAdd (Syntax.mkApp (mkIdent `Nat.add) #[Syntax.mkNumLit "1", Syntax.mkNumLit "1"]) -- some ...
#eval isAdd (Syntax.mkApp (mkIdent `Nat.add) #[mkIdent `foo, Syntax.mkNumLit "1"]) -- some ...
#eval isAdd (Syntax.mkApp (mkIdent `Nat.add) #[mkIdent `foo]) -- none

Note that x and y in this example are of type Syntax not Nat. This is simply
because we are still at the Syntax level: the concept of a type doesn’t quite
exist yet. What we can however do is limit the parsers/categories we want to
match on, for example if we only want to match on number literals in order to
implement some constant folding:

def isLitAdd : Syntax → Option Nat
| `(Nat.add $x:num $y:num) => some (x.toNat + y.toNat)
| _ => none

#eval isLitAdd (Syntax.mkApp (mkIdent `Nat.add) #[Syntax.mkNumLit "1", Syntax.mkNumLit "1"]) -- some 2
#eval isLitAdd (Syntax.mkApp (mkIdent `Nat.add) #[mkIdent `foo, Syntax.mkNumLit "1"]) -- none
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As you can see in the code even though we explicitly matched on the num parser
we still have to explicitly convert x and y to Nat because again, we are on Syntax
level, types do not exist.

One last important note about the matching on syntax: In this basic form it
only works on syntax from the term category. If you want to use it to match on
your own syntax categories you will have to use `(category| ...).

Mini Project

As a final mini project for this chapter we will declare the syntax of a mini
arithmetic expression language and a function of type Syntax → Nat to evaluate
it. We will see more about some of the concepts presented below in future
chapters.

declare_syntax_cat arith

syntax num : arith
syntax arith "-" arith : arith
syntax arith "+" arith : arith
syntax "(" arith ")" : arith

partial def denoteArith : Syntax → Nat
| `(arith| $x:num) => x.toNat
| `(arith| $x:arith + $y:arith) => denoteArith x + denoteArith y
| `(arith| $x:arith - $y:arith) => denoteArith x - denoteArith y
| `(arith| ($x:arith)) => denoteArith x
| _ => 0

-- You can ignore Elab.TermElabM, what is important for us is that it allows
-- us to use the ``(arith| (12 + 3) - 4)` notation to construct `Syntax`
-- instead of only being able to match on it like this.
def test : Elab.TermElabM Nat := do

let stx ← `(arith| (12 + 3) - 4)
pure (denoteArith stx)

#eval test -- 11

Feel free to play around with this example and extend it in whatever way you
want to. The next chapters will mostly be about functions that operate on
Syntax in some way.

import Lean
open Lean
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Macros
What is a macro
Macros in Lean are Syntax → MacroM Syntax functions. MacroM is the macro
monad which allows macros to have some static guarantees we will discuss in
the next section, you can mostly ignore it for now.

Macros are registered as handlers for a specific syntax declaration using the
macro attribute. The compiler will take care of applying these function to the
syntax for us before performing actual analysis of the input. This means that
the only thing we have to do is declare our syntax with a specific name and bind
a function of type Lean.Macro to it. Let’s try to reproduce the LXOR notation
from the Syntax chapter:

syntax:10 (name := lxor) term:10 " LXOR " term:11 : term

@[macro lxor] def lxorImpl : Macro
| `($l:term LXOR $r:term) => `(!$l && $r) -- we can use the quoting mechanism to create `Syntax` in macros
| _ => Macro.throwUnsupported

#eval true LXOR true -- false
#eval true LXOR false -- false
#eval false LXOR true -- true
#eval false LXOR false -- false

That was quite easy! The Macro.throwUnsupported function can be used by a
macro to indicate that “it doesn’t feel responsible for this syntax”. In this case
it’s merely used to fill a wildcard pattern that should never be reached anyways.

However we can in fact register multiple macros for the same syntax this way
if we desire, they will be tried one after another (the later registered ones have
higher priority) – is “higher” correct? until one throws either a real error using
Macro.throwError or succeeds, that is it does not Macro.throwUnsupported. Let’s
see this in action:

@[macro lxor] def lxorImpl2 : Macro
-- special case that changes behaviour of the case where the left and
-- right hand side are these specific identifiers
| `(true LXOR true) => `(true)
| _ => Macro.throwUnsupported

#eval true LXOR true -- true, handled by new macro
#eval true LXOR false -- false, still handled by the old

This capability is obviously very powerful! It should not be used lightly and
without careful thinking since it can introduce weird behaviour while writing
code later on. The following example illustrates this weird behaviour:
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#eval true LXOR true -- true, handled by new macro

def foo := true
#eval foo LXOR foo -- false, handled by old macro, after all the identifiers have a different name

Without knowing exactly how this macro is implemented this behaviour will be
very confusing to whoever might be debugging an issue based on this. The rule
of thumb for when to use a macro vs. other mechanisms like elaboration is that
as soon as you are building real logic like in the 2nd macro above, it should
most likely not be a macro but an elaborator (explained in the elaboration
chapter). This means ideally we want to use macros for simple syntax to syntax
translations, that a human could easily write out themselves as well but is too
lazy to.

Simplifying macro declaration
Now that we know the basics of what a macro is and how to register it we can
take a look at slightly more automated ways to do this (in fact all of the ways
about to be presented are implemented as macros themselves).

First things first there is macro_rules which basically desugars to functions like
the ones we wrote above, for example:

syntax:10 term:10 " RXOR " term:11 : term

macro_rules
| `($l:term RXOR $r:term) => `($l && !$r)

As you can see, it figures out lot’s of things on it’s own for us: - the name of
the syntax declaration - the macro attribute registration - the throwUnsupported
wildcard

apart from this it just works like a function that is using pattern matching
syntax, we can in theory encode arbitrarily complex macro functions on the
right hand side.

If this is still not short enough for you there is a next step using the macro macro:

macro l:term:10 " ⊕ " r:term:11 : term => `((!$l && $r) || ($l && !$r))

#eval true ⊕ true -- false
#eval true ⊕ false -- true
#eval false ⊕ true -- true
#eval false ⊕ false -- false

As you can see macro is quite close to notation already: - it performed syntax
declaration for us - automatically wrote a macro_rules style function to match
on it
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The are of course differences as well: - notation is limited to the term syntax
category - notation can not have arbitrary macro code on the right hand side

Hygiene issues and how to solve them
If you are familiar with macro systems in other languages like C you probably
know about so called macro hygiene issues already. A hygiene issue is, when a
macro introduced an identifier that collides with an identifier from some syntax
that it is including, for example:

macro "const" e:term : term => `(fun x => $e)

def x : Nat := 42

#eval (const x) 10 -- 42

Given the fact that macros perform only syntactic translation one might expect
the above eval to return 10 instead of 42, after all the resulting syntax should
be (fun x => x) 10. While this was of course not the intention of the author
this is what would happen in more primitive macro systems like the one of
C. So how does Lean avoid these hygiene issues? You can read about this in
detail in the excellent Beyond Notations paper which discusses the idea and
implementation in Lean in detail, we will merely give an overview of the topic
since the details are not that interesting to practical use. The idea described in
beyond notations comes down to a concept called “macro scopes”. Whenever a
new macro is invoked a new macro scope (basically a unique number) is added
to a list of all the macro scopes that are active right now. When the current
macro introduces a new identifier what is actually getting added is an identifier
of the form:

<actual name>._@.(<module_name>.<scopes>)*.<module_name>._hyg.<scopes>

For example if the module name is Init.Data.List.Basic, and name is foo.bla,
and macros copes are [2, 5] we get:

foo.bla._@.Init.Data.List.Basic._hyg.2.5

Since macro scopes are unique numbers the list of macro scopes appended in
the end of the name will always be unique across all macro invocations, hence
macro hygience issues like the ones above are not possible.

If you are wondering why there is more than just the macro scopes to this
name generation, that is because we may have to combine scopes from different
files/modules. The main modules being processed is always the right most one.
This situation may happen when we execute a macro generated in an imported
file in the current file.

foo.bla._@.Init.Data.List.Basic.2.1.Init.Lean.Expr_hyg.4
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The delimiter _hyg in the end is used just to improve performance of the function
Lean.Name.hasMacroScopes, the format could also work without it.

This was a lot of technical details, you do not have to understand them in order
to use macros, if you want you can just keep in mind that Lean will not allow
name clashes like the one in the const example.

MonadQuotation and MonadRef

This macro hygiene mechanism is the reason that while we are able to use
pattern matching on syntax with `(syntax) we cannot just create Syntax with
the same syntax in pure functions because someone has to keep track of macro
scopes for us. In this case this is done by the MacroM monad but can be done by
any monad that implements Lean.MonadQuotation so it’s worth to take a brief
look at it:

namespace Playground

class MonadRef (m : Type → Type) where
getRef : m Syntax
withRef {α} : Syntax → m α → m α

class MonadQuotation (m : Type → Type) extends MonadRef m where
getCurrMacroScope : m MacroScope
getMainModule : m Name
withFreshMacroScope {α : Type} : m α → m α

end Playground

Since MonadQuotation is based on MonadRef let’s take a look at it first. The idea
here is quite simple, it’s meant to be seen as an extension to the Monad typeclass
which can give us a reference to a Syntax value with getRef and evaluate a
function of type Syntax → m α to m α by the return value of getRef to this Syntax
parameter and evaluting the m α parameter with that new state.

On it’s own MonadRef isn’t exactly interesting but once combined with MonadQuo-
tation it makes sense.

As you can see MonadQuotation extends MonadRef and adds 3 new functions: -
getCurrMacroScope which obtains the latest MacroScope that was created - get-
MainModule which (obviously) obtains the name of the main module, both of
these are used to create these hygienic identifiers explained above - withFresh-
MacroScope which will compute the next macro scope and run some computation
m α that performs syntax quotation with this new macro scope in order to avoid
name clashes. While this is mostly meant to be used internally whenver a new
macro invocation happens it can sometimes make sense to use this in our own
macros, for example when we are generating some syntax block repeatedly and
want to avoid name clashes.
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How MonadRef comes into play here is that Lean requires a way to indicate errors
at certain positions to the user. One thing that wasn’t introduced in the Syntax
chapter is that values of type Syntax actually carry their position in the file
around as well, when an error is detected it is usually bound to a Syntax value
which tells Lean where to indicate the error in the file. What Lean will do
when using withFreshMacroScope apply the position of the result of getRef to
each introduced symbol, which then results in better error positions than not
applying any position.

To see error positioning in action we can write a little macro that makes use of
it:

syntax "error_position" ident : term

macro_rules
| `(error_position all) => Macro.throwError "Ahhh"
-- `%$tk` syntax gives us the Syntax of the thing before the %,
-- in this case `error_position`, giving it the name `tk`
| `(error_position%$tk first) => withRef tk (Macro.throwError "Ahhh")

#eval error_position all -- the error is indicated at `error_position all`
#eval error_position first -- the error is only indicated at `error_position`

Obviously controlling the positions of errors in this way is quite important for
a good user experience.

Mini project
As a final mini project for this section we will re-build the arithmetic DSL from
the syntax chapter in a slightly more advanced way, using a macro this time so
we can actually fully integrate it into the Lean syntax.

declare_syntax_cat arith

syntax num : arith
syntax arith "-" arith : arith
syntax arith "+" arith : arith
syntax "(" arith ")" : arith
syntax "[Arith|" arith "]" : term

macro_rules
| `([Arith| $x:num]) => `($x)
| `([Arith| $x:arith + $y:arith]) => `([Arith| $x] + [Arith| $y]) -- recursive macros are possible
| `([Arith| $x:arith - $y:arith]) => `([Arith| $x] - [Arith| $y])
| `([Arith| ($x:arith)]) => `([Arith| $x])

#eval [Arith| (12 + 3) - 4] -- 11
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Again feel free to play around with it, if you want to build more complex things
like expressions with variables maybe consider building an inductive type using
the macros instead. Once you got your arithmetic expression term as an induc-
tive you could then write a function that takes some form of variable assignment
and evaluates the given expression for this assignment. You could also try to
embed arbitrary terms into your arith language using some special syntax or
whatever else comes to your mind.

Reading further
If you want to know more about macros you can read: - the API docs: TODO
link - the source code: the lower parts of Init.Prelude as you can see they are
declared quite early in Lean because of their importance of to building up syntax
- the aforementioned Beyond Notations paper

import Lean
open Lean Elab Command Term Meta

Elaboration
The elaborator is the component in charge of turning the user facing Syntax
into something rest of the compiler can work with. Most of the time this means
translating Syntax into Exprs but there are also other use cases such as #check
or #eval. Hence the elaborator is quite a large piece of code, it lives here.

Command elaboration
A command is the highest level of Syntax, a Lean file is made up of a list of
commands. The most commonly used commands are declarations, for example:
- def - inductive - structure

but there are also other ones, most notably #check, #eval and friends. All
commands live in the command syntax category so in order to declare custom
commands, their syntax has to be registered in that category.

Giving meaning to commands

The next step is giving some semantics to the syntax, with commands this is
done by registering a so called command elaborator.

Command elaborators have type CommandElab which is an alias for: Syntax →
CommandElabM Unit. What they do is take the Syntax that represents whatever
the user used to call the command and produce some sort of side effect on the
CommandElabM monad, after all the return value is always Unit. The CommandE-
labM monad has 4 main kinds of side effects: 1. Logging messages to the user
via the Monad extensions MonadLog and AddMessageContext, like #check. This is
done via functions that can be found in Lean.Elab.Log, the most notable ones
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being: logInfo, logWarning and logError. 2. Interacting with the Environment
via the Monad extension MonadEnv. This is the place where all of the relevant
information for the compiler is stored, all known declarations, their types, doc
string, values etc. The current environment can be obtained via getEnv and set
it via setEnv once it has been modified. Note that quite often wrappers around
setEnv like addDecl are the correct way to add information to the Environment.
3. Performing IO, CommandElabM is capable of running any IO operation. For
example reading from files and based on their contents perform a declarations.
4. Throwing errors, since it can run any kind of IO it is only natural to be able
to throw errors via throwError.

Furthermore there are a bunch of other Monad extensions that are supported
by CommandElabM: - MonadRef and MonadQuotation for Syntax quotations like in
macros - MonadOptions to interact with the options framework - MonadTrace for
debug trace information - TODO: There are a few others though I’m not sure
whether they are relevant, see the instance in Lean.Elab.Command

Command elaboration

Now that we understand the type of command elaborators let’s take a brief look
at how the elaboration process actually works: 1. Otherwise check whether any
macros can be applied to the current Syntax. If there is a macro that does apply
and does not throw an error the resulting Syntax is recursively elaborated as a
command again 2. If no macro can be applied we search for all CommandElabs that
have been registered for the SyntaxKind of the Syntax we are elaborating, using
the commandElabAttribute. 3. All of these CommandElab are then tried in order
until one of them does not throw an unsupportedSyntaxException, this indicates
that the elaborator “feels responsible” for this specific Syntax construct. Note
that it can still throw a regular error to indicate to the user that something is
wrong. If no responsible elaborator is found the command elaboration is aborted
with a unexpected syntax error message.

As you can see the general idea behind the procedure is quite similar to ordinary
macro expansion.

Making our own

Now that we know both what a CommandElab is and how they are used we can
start into looking to write our own. The steps for this, as we learned above,
are: 1. Declaring the syntax 2. Declaring the elaborator 3. Registering the
elaborator as responsible for the syntax via commandElabAttribute

Let’s see how this is done:

syntax (name := mycommand1) "#mycommand1" : command -- declare the syntax

@[commandElab mycommand1]
def mycommand1Impl : CommandElab := fun stx => do -- declare and register the elaborator
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logInfo "Hello World"

#mycommand1 -- Hello World

You might think that this is a little boiler-platey and it turns out the Lean devs
did as well so they added a macro for this!

elab "#mycommand2" : command =>
logInfo "Hello World"

#mycommand2 -- Hello World

Note that due to the fact that command elaboration supports multiple registered
elaborators for the same syntax we can in fact overload syntax if we want to.

@[commandElab mycommand1]
def myNewImpl : CommandElab := fun stx => do

logInfo "new!"

#mycommand1 -- new!

Furthermore it is also possible to only overload parts of syntax by throwing an
unsupportedSyntaxException in the cases we want the default handler to deal
with or just letting the elab command handle it

Note that this is not extending the original #check syntax but adding a new
SyntaxKind for this specific syntax construct, however it behaves basically the
same to the user.

elab "#check" "mycheck" : command => do
logInfo "Got ya!"

This is actually extending the original #check

@[commandElab Lean.Parser.Command.check] def mySpecialCheck : CommandElab := fun stx => do
if let some str := stx[1].isStrLit? then

logInfo s!"Specially elaborated string literal!: {str} : String"
else

throwUnsupportedSyntax

#check mycheck -- Got ya!
#check "Hello" -- Specially elaborated string literal!: Hello : String
#check Nat.add -- Nat.add : Nat → Nat → Nat

Mini project

As a final mini project for this section let’s build a command elaborator that
is actually useful. It will take a command and use the same mechanisms as
elabCommand (the entry point for command elaboration) to tell us which macros
or elaborators are relevant to the command we gave it
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We will not go through the effort of actually reimplementing elabCommand though

elab "#findCElab " c:command : command => do
let macroRes ← liftMacroM <| expandMacroImpl? (←getEnv) c
match macroRes with
| some (name, _) => logInfo s!"Next step is a macro: {name.toString}"
| none =>
let kind := c.getKind
let elabs := commandElabAttribute.getEntries (←getEnv) kind
match elabs with
| [] => logInfo s!"There is no elaborators for your syntax, looks like its bad :("
| _ => logInfo s!"Your syntax may be elaborated by: {elabs.map (fun el => el.declName.toString)}"

#findCElab def lala := 12 -- Your syntax may be elaborated by: [Lean.Elab.Command.elabDeclaration]
#findCElab abbrev lolo := 12 -- Your syntax may be elaborated by: [Lean.Elab.Command.elabDeclaration]
#findCElab #check foo -- even our own syntax!: Your syntax may be elaborated by: [mySpecialCheck, Lean.Elab.Command.elabCheck]
#findCElab open Hi -- Your syntax may be elaborated by: [Lean.Elab.Command.elabOpen]
#findCElab namespace Foo -- Your syntax may be elaborated by: [Lean.Elab.Command.elabNamespace]
#findCElab #findCElab open Bar -- even itself!: Your syntax may be elaborated by: [«_aux_lean_elaboration___elabRules_command#findCElab__1»]

TODO: Maybe we should also add a mini project that demonstrates a non #
style command aka a declaration, although nothing comes to mind right now.

Term elaboration
A term is a Syntax object that represents some sort of Expr. Term elaborators
are the ones, that do the work for most of the code we write, most notably they
elaborate all the values of things like definitions, types (since these are also just
Expr) etc.

All terms live in the term syntax category (which we have seen in action in the
macro chatper already) so in order to declare custom terms, their syntax has to
be registered in that category.

Giving meaning to terms

As with command elaboration the next step is giving some semantics to the
syntax, with terms this is done by registering a so called term elaborator.

Term elaborators have type TermElab which is an alias for: Syntax → Option
Expr → TermElabM Expr. This type is already quite different from command
elaboration: - As with command elaboration the Syntax is whatever the user
used to create this term - The Option Expr is the expected type of the term, since
this cannot always be known it is only an Option argument - Unlike command
elaboration term elaboration is not only executed because of its side effects, the
TermElabM Expr return value does actually contain something of interest, the
Expr that represents the Syntax object.
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TermElabM is basically an upgrade to CommandElabM in every regard, it supports al
the capablities we mentioned above and two more. The first one is quite simple:
On top of running IO code it is also capable of running MetaM code so Exprs can
be constructed nicely. The second one is very specific to the term elaboration
loop.

Term elaboration

The basic idea of term elaboration is the same as command elaboration, expand
macros and recurse or run term elaborators that have been registered for the
Syntax via the termElabAttribute (they might in turn run term elaboration)
until we are done. There is however one special thing a term elaborator can do
during its execution.

A term elaborator may throw Except.postpone, this indicates it requires more
information to continue its work. In order to represent this missing information
Lean uses so called synthetic meta variables, as you know from before metavari-
ables are holes in Exprs that are waiting to be filled. The special thing about
synthetic ones is, that they have a certain way associated that is to be used to
solve them, the SyntheticMVarKind, right now there are four of these: - type-
Class, the meta variable should be solved with typeclass synthesis - coe, the
meta variable should be solved via coercion (a special case of typeclass) - tac-
tic, the meta variable is a tactic term that should be solved by running the
tactic - postponed, the ones that are created at Except.postpone

Once such a synthetic meta variable is created, the next higher level term elab-
orator will continue. At some point execution of the term elaborator that post-
poned execution will be resumed, in hopes that it can now complete its execution.
We can try to see this in action with the following example:

#check set_option trace.Elab.postpone true in List.foldr .add 0 [1,2,3] -- [Elab.postpone] .add : ?m.5695 → ?m.5696 → ?m.5696

What happened here is that the elaborator for function applications started
at List.foldr which is a generic function so it created meta variables for the
implicit type parameters. Then it attempted to elaborate the first argument
.add.

In case you don’t know how .name works, the basic idea is that quite often (like
in this case) Lean should be able to infer the output type of a function (in this
case Nat), the .name feature will then simply search for a function named name in
the namespace Nat. This is especially useful when you want to use constructors
of a type without referring to its namespace or opening it but can also be used
like above.

Now back to our example, while Lean does at this point already know that .add
needs to have type: ?m1 → ?m2 → ?m2 (where ?x is notation for a meta variable)
the elaborator for .add does need to know the actual value of ?m2 so the term
elaborator postpones execution (by internally creating a synthetic meta variable
in place of .add), the elaboration of the other two arguments then yields the
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fact that ?m2 has to be Nat so once the .add elaborator is continued it can work
with this information to complete elaboration.

We can also easily provoke cases where this does not work out, for example:

#check set_option trace.Elab.postpone true in List.foldr .add
-- [Elab.postpone] .add : ?m.5808 → ?m.5809 → ?m.5809
-- invalid dotted identifier notation, expected type is not of the form (... → C ...) where C is a constant

-- ?m.5808 → ?m.5809 → ?m.5809

In this case .add first postponed its execution, then got called again but didn’t
have enough information to finish elaboration and thus failed.

Making our own

Adding new term elaborators works basically the same way as adding new com-
mand elaborators so we’ll only take a very brief look:

syntax (name := myterm1) "myterm 1" : term

def mytermValues := [1, 2]

@[termElab myterm1]
def myTerm1Impl : TermElab := fun stx type? =>

mkAppM ``List.get! #[mkConst ``mytermValues, mkNatLit 0] -- `MetaM` code

#eval myterm 1 -- 1

-- Also works with `elab`
elab "myterm 2" : term => do

mkAppM ``List.get! #[mkConst ``mytermValues, mkNatLit 1] -- `MetaM` code

#eval myterm 2 -- 2

Mini project

As a final min project for this chapter we will recreate one of the most com-
monly used Lean syntax sugars, the ⟨a,b,c⟩ notation as a short hand for single
constructor types:

-- slightly different notation so no ambiguity happens
syntax (name := myanon) "⟨⟨" term,* "⟩⟩" : term

def getCtors (typ : Name) : MetaM (List Name) := do
let env ← getEnv
match env.find? typ with
| some (ConstantInfo.inductInfo val) =>
pure val.ctors

| _ => pure []
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@[termElab myanon]
def myanonImpl : TermElab := fun stx typ? => do

-- Attempt to postpone execution if the type is not known.
-- Term elaborators can only postpone execution once so the elaborator
-- doesnt end up in an infinite loop.
tryPostponeIfNoneOrMVar typ?
-- If we haven't found the type after postponing just error
let some typ := typ? | throwError "expected type must be known"
let Expr.const base .. := typ.getAppFn | throwError s!"type is not of the expected form {typ}"
let [ctor] ← getCtors base | throwError "type doesn't have exactly one constructor"
let args := stx[1].getSepArgs
let stx ← `($(mkIdent ctor) $args*) -- syntax quotations
elabTerm stx typ -- call term elaboration recursively

#check (⟨⟨1, sorry⟩⟩ : Fin 12) -- { val := 1, isLt := (_ : 1 < 12) } : Fin 12
#check ⟨⟨1, sorry⟩⟩ -- type is not of the expected form ?_uniq.5991

As a final note, we can shorten the postponing act by using an additional syntax
sugar of the elab syntax instead:

-- This `t` syntax will effectively perform the first two lines of `myanonImpl`
elab "⟨⟨" args:term,* "⟩⟩" : term <= t => do

sorry

Embedding DSLs By Elaboration
In this chapter we will learn how to use elaboration to build a DSL. We will not
explore the full power of MetaM, and simply gesture at how to get access to this
low-level machinery.

More precisely, we shall enable Lean to understand the syntax of IMP, which
is a simple imperative language, often used for teaching operational and deno-
tational semantics.

DSLs in Lean via TermElabM
Let’s begin with the usual incantations, where we import Lean and open Lean,
Lean.Elab, and Lean.Meta.

import Lean

open Lean Syntax Meta Elab Command

• We begin by defining the AST of the language: We have arithmetic ex-
pressions, boolean expressions, and commands.
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Arithmetic Expressions Arithmetic expressions are naturals, variables, or
sums of other arithmetic expressions.

inductive AExp
| ANat: Nat → AExp
| AVar: String → AExp
| APlus: AExp → AExp → AExp
deriving Inhabited

Boolean Expressions Boolean expressions are either booleans (true/false),
variables, an and (&&) of two booleans, or a less than comparison (<) between
two arithmetic expressions.

inductive BExp
| BBool: Bool → BExp
| BVar: String → BExp
| BAnd: BExp → BExp → BExp
| BLess: AExp → AExp → BExp
deriving Inhabited

Command Commands can be either a skip command to skip the execution,
an assign command to assign a value to a variable, a seq(;;) to sequence com-
mands, an if for conditionals, and while for looping.

inductive Command
| Skip: Command
| Assign: String → AExp → Command
| Seq: Command → Command → Command
| If: BExp → Command → Command → Command
| While: BExp → Command → Command
deriving Inhabited

Embedding a DSL via Low-level Syntax Elaboration
In this section, we shall contrast the previously explained macro-based approach
(which has type Syntax → MacroM Syntax) with the lower level elaborator (which
has type Syntax → TermElabM Expr) that is the focus of this section.

Parsing AExp via Syntax Elaboration

declare_syntax_cat imp_aexp
syntax num : imp_aexp
syntax ident : imp_aexp
syntax imp_aexp "+" imp_aexp : imp_aexp

Recall that if we were doing this via lean macros, we would write out an “inter-
pretation” macro such as [imp_aexp|...], and the declare the translation as a
macro rule:
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syntax "[imp_aexp|" imp_aexp "]" : term

macro_rules
| `([imp_aexp| $n:num ]) => `(AExp.ANat $n)

def eg_AExp_num_macro: AExp := [imp_aexp| 42]
#reduce eg_AExp_num_macro

In contrast to this approach, when we write an elaborator, we are returning
values in Expr, which is the core Lean data type that Syntax is finally reduced
down to. Expr only contains the bare minimum to express a dependently typed
language, so as we shall see, building Exprs will be more laborious.

We shall use a match syntax which is of the form:

match <syntax-node> with
| `(<syntax-category>| <match-pattern>) => <rhs>

This means that we are looking for Syntax nodes whose syntax category is
<syntax-category>, which match the <match-pattern>.

To write a low level elaborator for num, we write a combinator mkApp': Name →
Expr → Expr that create an Expr denoting the function application of a name
name to an expression e.

def elab_AExp_num : Syntax → TermElabM Expr
| `(imp_aexp| $n:num) =>
-- build an Expr by hand
mkAppM ``AExp.ANat #[mkNatLit n.toNat]

| _ => do
dbg_trace "elab_AExp_num failed"
throwUnsupportedSyntax

Note that we are building a raw Expr by hand. Also note that we throwUnsup-
portedSyntax, to tell Lean that we were unable to parse the Syntax node, and
would like Lean to try other parsers that might be able to parse the given Syntax.
This makes the infrastructure extensible.

To test that our parser works, let’s write an “evaluator” elaborator, much as we
do when writing macros, called [imp_aexp'|...] which takes an imp_aexp and
produces an Expr:

elab "[imp_aexp'|" s:imp_aexp "]" : term => elab_AExp_num s

We invoke this on the number 42, and we do get out an AExp.ANat 42:

def eg_AExp_num_elab: AExp := [imp_aexp'| 42]
#reduce eg_AExp_num_elab
-- AExp.ANat 42

Let’s write a macro_rules for converting identifiers. We see that we need to
grab the string as nameStr, then quote the string back into Syntax, and then we
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finally build the AExp.Avar.

macro_rules
| `([imp_aexp| $name:ident ]) => do

let nameStr : String := name.getId.toString
let nameStx : Syntax := Lean.quote nameStr
`(AExp.AVar $(nameStx))

def eg_AExp_ident_macro: AExp := [imp_aexp| foo]
#reduce eg_AExp_ident_macro
-- AExp.AVar "foo"

In contrast to the macro_rules based solution, see that we build the expression
node by hand, using lower level functions such as mkAppM to build a function
application, and mkStrLit: String → Expr to convert a string into an Expr.

def elab_aexp_ident : Syntax → TermElabM Expr
| `(imp_aexp| $n:ident) =>
mkAppM ``AExp.AVar #[mkStrLit n.getId.toString]

| _ => do
dbg_trace "elab_aexp_ident failed."
throwUnsupportedSyntax

We add our elab rule, which says that we can try to elaborate a s:imp_aexp
with elab_aexp_ident.

elab "[imp_aexp'|" s:imp_aexp "]" : term =>
elab_aexp_ident s

def eg_AExp_ident_elab: AExp :=
[imp_aexp'| foo]

#reduce eg_AExp_ident_elab
-- AExp.AVar "foo"

We test that our new elaboration rule did not interfere with our previous rule
to parse numbers:

def eg_AExp_num2_elab: AExp := [imp_aexp'| 43]
#reduce eg_AExp_num2_elab
-- elab_aexp_ident failed.
-- AExp.AVar "43"

See that we have not lost the ability to parse numbers when we introduced our
new elab_aexp_ident rule, even though the two declarations look identical on
the left-hand-side of the rule:

elab "[imp_aexp'|" s:imp_aexp "]" : term => elab_aexp_num name
elab "[imp_aexp'|" s:imp_aexp "]" : term => elab_aexp_ident name
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This is because, as we discussed above, introducing new elab rules ensures
that these rules are run in sequence, and this allows for the Lean syntax to be
extended gracefully in an open-ended fashion.

We can see from the output that Lean did try to runthe rule elab_aexp_ident
which failed. It then fell back to running elab_aexp_num, which succeeded.

We can try a piece of grammar that has not been handled yet, and see how both
elaborators will be invoked in succession:

def eg_AExp_fail: AExp :=
[imp_aexp'| 42 + 43]

-- elab_aexp_ident failed.
-- elab_aexp_num failed

Clearly, both parses elab_aexp_ident and elab_aexp_num are tried in succession,
and both fail, leading to an error.

We shall fix this omission, and finally parse the addition node. We go directly
to parsing with elab, since the macro_rules approach does not have anything
more interesting to say.

def elab_aexp_plus : Syntax → TermElabM Expr
| `(imp_aexp| $x:imp_aexp + $y:imp_aexp) => do
-- recrsively expand xExpr, yExpr via `Term.elabTerm`
let xExpr ← Term.elabTerm (← `([imp_aexp'| $x])) (expectedType? := none)
let yExpr ← Term.elabTerm (← `([imp_aexp'| $y])) (expectedType? := none)
mkAppM ``AExp.APlus #[xExpr, yExpr]

| _ => do
dbg_trace "elab_aexp_plus failed"
throwUnsupportedSyntax

Note that we make use of a couple of features here: 1. TermElabM allows us
to use macros, so we build the piece of syntax [imp_aexp'| $x]. We can see
that TermElabM in this way already subsumes macroM. 2. To recursively expand
imp_aexp, we use Term.elabTerm.
3. See that there is an option, expectedType? : Option Expr which allows us
to declare the type we expect the elaborated term to be. We ignore this in the
tutorial, but make a point to note it, since this shows that TermElabM really is
capable of reasoning about types, and not just Syntax.

elab "[imp_aexp'|" s:imp_aexp "]" : term => elab_aexp_plus s

def eg_aexp_plus_elab: AExp := [imp_aexp'| foo + bar]
#print eg_aexp_plus_elab
-- AExp.APlus (AExp.AVar "foo") (AExp.AVar "bar")

Parsing BExp We repeat the same process, this time for BExp. This time, we
show a different method to writing the elaboration function elab_bexp: Syntax
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→ TermElabM Expr, where we write the function for all BExps at once. This allows
us to write it as a regular lean function, and use regular recursion to elaborate
our BExp.

declare_syntax_cat imp_bexp
syntax ident : imp_bexp
syntax imp_aexp "<" imp_aexp : imp_bexp
syntax imp_bexp "&&" imp_bexp : imp_bexp

We first create a helper to function to convert Booleans into Exprs.

def mkBoolLit: Bool → Expr
| true => mkConst ``Bool.true
| false => mkConst ``Bool.false

We then write the elaborator for BExp as elab_bexp. We first handle true, false,
and identifiers in the natural way:

partial def elab_bexp : Syntax → TermElabM Expr
| `(imp_bexp| $n:ident) =>
let str := n.getId.toString
match str with
| "true" => mkAppM ``BExp.BBool #[mkBoolLit true]
| "false" => mkAppM ``BExp.BBool #[mkBoolLit false]
| n => mkAppM ``BExp.BVar #[mkStrLit str]

To elaborate the less than (<) operator on aexps, we wrie a helper called
elab_aexp, that calls elabTerm on the term [imp_aexp'| $s]. This produces an
Expr node, which we use to build a BExp.BLess

| `(imp_bexp| $x:imp_aexp < $y:imp_aexp) => do
let elab_aexp (s: Syntax) : TermElabM Expr := do

Term.elabTerm (← `([imp_aexp'| $s])) none
let x ← elab_aexp x
let y ← elab_aexp y
mkAppM ``BExp.BLess #[x, y]

To elaborate the logical and (&&) operator on bexps, we recursively call elab_bexp
to elaborate the left and the right hand side, and we then finally create a
BExp.BAnd term.

| `(imp_bexp| $x:imp_bexp && $y:imp_bexp) => do
let x ← elab_bexp x -- recursion
let y ← elab_bexp y -- recursion
mkAppM ``BExp.BAnd #[x, y]

| _ => throwUnsupportedSyntax

Finally, we write the elaborator rule that invokes the function elab_bexp upon
seeing an [imp_bexp|...].
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elab "[imp_bexp|" s:imp_bexp "]" : term => elab_bexp s

def eg_bexp_true : BExp := [imp_bexp| true]
#print eg_bexp_true
-- BExp.BBool true

def eg_bexp_false : BExp := [imp_bexp| false]
#print eg_bexp_false
-- BExp.BBool false

def eg_bexp_ident : BExp := [imp_bexp| var]
#print eg_bexp_ident
-- BExp.BVar "var"

def eg_bexp_lt_1 : BExp := [imp_bexp| 1 < 2]
#print eg_bexp_lt_1
-- BExp.BLess (AExp.ANat 1) (AExp.ANat 2)

def eg_bexp_lt_2 : BExp := [imp_bexp| 1 + 1 < 2 + 2]
#print eg_bexp_lt_2
-- BExp.BLess (AExp.ANat 1) (AExp.ANat 2)

def eg_bexp_and_1: BExp := [imp_bexp| true && true]
#print eg_bexp_and_1
-- BExp.BAnd (BExp.BBool true) (BExp.BBool true)

def eg_bexp_and_2: BExp := [imp_bexp| a < b && c < d]
#print eg_bexp_and_2
-- BExp.BAnd (BExp.BLess (AExp.AVar "a") (AExp.AVar "b"))
-- (BExp.BLess (AExp.AVar "c") (AExp.AVar "d"))

def eg_bexp_and_3: BExp := [imp_bexp| x + y < z && p + q < r]
#print eg_bexp_and_3
-- BExp.BAnd
-- (BExp.BLess (AExp.APlus (AExp.AVar "x") (AExp.AVar "y"))
-- (AExp.AVar "z"))
-- (BExp.BLess (AExp.APlus (AExp.AVar "p") (AExp.AVar "q"))
-- (AExp.AVar "r"))

Parsing Commands We’ll parse the final piece of the puzzle, the commands.
It’s going to be old hat at this point, and we follow the hopefully well-understood
formula.

declare_syntax_cat imp_command
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syntax ident "=" imp_aexp : imp_command
syntax "if" imp_bexp "then" imp_command "else" imp_command "fi" : imp_command
syntax "while" imp_bexp "do" imp_command "od" : imp_command

partial def elabCommand : Syntax → TermElabM Expr
| `(imp_command| $x:ident = $e:imp_aexp) => do

let xString : String := x.getId.toString
let elab_aexp (s: Syntax): TermElabM Expr := do

Term.elabTerm (← `([imp_aexp'| $s])) none
let e ← elab_aexp e
mkAppM ``Command.Assign #[(mkStrLit xString),e]

| `(imp_command| if $b:imp_bexp then $c:imp_command else $c':imp_command fi) => do
let b ← elab_bexp b
let c ← elabCommand c -- recursion
let c' ← elabCommand c' -- recursion
mkAppM ``Command.If #[b, c, c']

| `(imp_command| while $b:imp_bexp do $c:imp_command od) => do
let b ← elab_bexp b
let c ← elabCommand c
mkAppM ``Command.While #[b, c]

| _ => throwUnsupportedSyntax

elab "[imp_command|" s:imp_command "]" : term => elabCommand s

def eg_command_assign : Command := [imp_command| x = 11 + 20]
#print eg_command_assign
-- Command.Assign "x" (AExp.APlus (AExp.ANat 10) (AExp.ANat 20))

def eg_command_if : Command := [imp_command| if 1 < 2 then x = 10 else x = 20 fi]
#print eg_command_if
-- Command.If (BExp.BLess (AExp.ANat 1) (AExp.ANat 2))
-- (Command.Assign "x" (AExp.ANat 10))
-- (Command.Assign "x" (AExp.ANat 20))
def eg_command_while : Command := [imp_command| while x < 3 do x = x + 10 od]
#print eg_command_while
-- Command.While
-- (BExp.BLess (AExp.AVar "x") (AExp.ANat 3))
-- (Command.Assign "x" (AExp.APlus (AExp.AVar "x") (AExp.ANat 10)))

-- | TODO: is this too low level? Should we just use sepBy and call it a day?

A placeholder with precedence p accepts only notations with precedence at least
p in that place. Thus the string a + b + c cannot be parsed as the equivalent
of a + (b + c) because the right-hand side operand of an infixl notation has
precedence one greater than the notation itself.
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syntax:60 imp_command:61 ";;" imp_command:60 : imp_command

Once again, we hijack the elaborator by adding a new rule to the elaboration

partial def elabCompound : Syntax → TermElabM Expr
| `(imp_command| $a:imp_command ;; $b:imp_command) => do

let a ← elabCompound a
let b ← elabCompound b
mkAppM ``Command.Seq #[a, b]

| other => elabCommand other -- hook into previous elaborator.

elab "[imp_command|" x:imp_command "]" : term => elabCompound x

def eg_command_seq : Command := [imp_command| x = 1 ;; x = 2 ;; x = 3 ;; x = 4]
#print eg_command_seq
-- Command.Seq (Command.Assign "x" (AExp.ANat 1))
-- (Command.Seq (Command.Assign "x" (AExp.ANat 2)) (Command.Assign "x" (AExp.ANat 3)))

At this point, we have defined the full parsing infrastructure.

def eg_command_all := [imp_command|
x = 1 ;;
y = 0 ;;
while x < 10 do

y = y + 1
od ;;
if x < 10
then y = y + 2
else y = y + 3
fi

]
#print eg_command_all
-- Command.Seq (Command.Assign "x" (AExp.ANat 1))
-- (Command.Seq (Command.Assign "y" (AExp.ANat 0))
-- (Command.Seq
-- (Command.While (BExp.BLess (AExp.AVar "x") (AExp.ANat 10))
-- (Command.Assign "y" (AExp.APlus (AExp.AVar "y") (AExp.ANat 1))))
-- (Command.If (BExp.BLess (AExp.AVar "x") (AExp.ANat 10))
-- (Command.Assign "y" (AExp.APlus (AExp.AVar "y") (AExp.ANat 2)))
-- (Command.Assign "y" (AExp.APlus (AExp.AVar "y") (AExp.ANat 3))))))

In this section, we have understood the difference between macro_rules and elab.
We saw how to build Expr nodes, which are the lowest level of encoding of Lean
terms, as opposed to Syntax nodes which can undergo further elaboration.

import Lean.Elab.Tactic
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Tactics
We’ve finally come to what may be considered by many the end goal of this
book. The reason why this chapter is placed after the DSL chapter is because
the tactic mode in Lean 4 is itself a DSL.

Tactics too are Lean programs that manipulate a custom state. All tactics are,
in the end, of type TacticM Unit. This has the type:

-- Lean/Elab/Tactic/Basic.lean
TacticM = ReaderT Context $ StateRefT State TermElabM

We will start by implementing tactics that compute in TacticM and then we
shall see how some tactics can be implemented as macros.

The simplest tactic: sorry

In this section, we wish to write a tactic that fills the proof with sorry:

theorem wrong : 1 = 2 := by
custom_sorry

#print wrong
-- theorem wrong : 1 = 2 :=
-- sorryAx (1 = 2)

We begin by declaring such a tactic:

elab "custom_sorry_0" : tactic => do
let goal ← Lean.Elab.Tactic.getMainGoal
dbg_trace f!"1) goal: {goal.name}"

theorem wrong : 1 = 2 := by
custom_sorry_0

-- 1) goal: _uniq.461
-- unsolved goals: ⊢ 1 = 2

This defines a syntax extension to Lean, where we are naming the piece of syntax
admit as living in tactic syntax category. This informs the elaborator that in
the context of elaborating tactics, the piece of syntax admit must be elaborated
as what we write to the right-hand-side of the => (we fill the ... with the body
of the tactic).

Next, we write a term in TacticM Unit which fills in the goal with a sorryAx _.
To do this, we first access the goal, and then we fill the goal in with a sorryAx.
We access the goal with Lean.Elab.Tactic.getMainGoal : Tactic MVarId, which
returns the main goal, represented as a metavariable. Recall that under types-
as-propositions, the type of our goal must be the proposition that 1 = 2. We
check this by printing the type of goal.
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elab "custom_sorry_1" : tactic => do
let goal ← Lean.Elab.Tactic.getMainGoal
dbg_trace f!"1) goal: {goal.name}"
let goal_declaration ← Lean.Meta.getMVarDecl goal
let goal_type := goal_declaration.type
dbg_trace f!"2) goal type: {goal_type}"

theorem wrong_1 : 1 = 2 := by
custom_sorry_1

-- 1) goal: _uniq.757
-- 2) goal type:
-- Eq.{1} Nat
-- (OfNat.ofNat.{0} Nat 1 (instOfNatNat 1))
-- (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))
-- unsolved goals: ⊢ 1 = 2

To sorry the goal, we can use the helper Lean.Elab.admitGoal:

elab "custom_sorry_2" : tactic => do
let goal ← Lean.Elab.Tactic.getMainGoal
let goal_declaration ← Lean.Meta.getMVarDecl goal
let goal_type := goal_declaration.type
Lean.Elab.admitGoal goal

theorem wrong_2 : 1 = 2 := by
custom_sorry_2

#print wrong_2
-- theorem wrong_2 : 1 = 2 :=
-- sorryAx (1 = 2)

And we no longer have the error unsolved goals: ⊢ 1 = 2.

The custom_trivial tactic: Accessing Hypotheses
In this section, we will learn how to access the hypotheses to prove a goal. In
particular, we shall attempt to implement a tactic custom_trivial, which looks
for an exact match of the goal amongst the hypotheses, and solves the theorem
if possible.

In the example below, we expect custom_trivial to use (H2 : 2 = 2) to solve
the goal (2 = 2):

theorem trivial_correct (H1 : 1 = 1) (H2 : 2 = 2): 2 = 2 := by
custom_trivial

#print trivial_correct
-- theorem trivial_correct : 1 = 1 → 2 = 2 → 2 = 2 :=
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-- fun H1 H2 => H2

When we do not have a matching hypothesis to the goal, we expect the tactic
custom_trivial to throw an error, telling us that we cannot find a hypothesis
of the type we are looking for:

theorem trivial_wrong (H1 : 1 = 1): 2 = 2 := by
custom_trivial

#print trivial_wrong
-- tactic 'custom_trivial' failed, unable to find matching hypothesis of type (2 = 2)
-- H1 : 1 = 1
-- ⊢ 2 = 2

We begin by accessing the goal and the type of the goal so we know what we
are trying to prove:

elab "custom_trivial_0" : tactic => do
let goal ← Lean.Elab.Tactic.getMainGoal
dbg_trace f!"1) goal: {goal.name}"
let goal_type ← Lean.Elab.Tactic.getMainTarget
dbg_trace f!"2) goal type: {goal_type}"

theorem trivial_correct_0 (H1 : 1 = 1) (H2 : 2 = 2): 2 = 2 := by
custom_trivial_0

-- 1) goal: _uniq.638
-- 2) goal type: Eq.{1} Nat (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))
-- unsolved goals
-- H1 : 1 = 1
-- H2 : 2 = 2
-- ⊢ 2 = 2

#print trivial_correct_0
-- theorem trivial_correct_0 : 1 = 1 → 2 = 2 → 2 = 2 :=
-- fun H1 H2 => sorryAx (2 = 2)

theorem trivial_wrong_0 (H1 : 1 = 1): 2 = 2 := by
custom_trivial_0

-- 1) goal: _uniq.713
-- 2) goal type: Eq.{1} Nat (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))
-- unsolved goals
-- H1 : 1 = 1
-- ⊢ 2 = 2

#print trivial_wrong_0
-- theorem trivial_wrong : 1 = 1 → 2 = 2 :=
-- fun H1 => sorryAx (2 = 2)
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Next, we access the list of hypotheses, which are stored in a data structure called
LocalContext. This is accessed via Lean.MonadLCtx.getLCtx. The LocalContext
contains LocalDeclarations, from which we can extract information such as the
name that is given to declarations (.userName), the expression of the declaration
(.toExpr). Let’s write a tactic called list_local_decls that prints the local
declarations:

elab "list_local_decls_1" : tactic => do
let lctx ← Lean.MonadLCtx.getLCtx -- get the local context.
lctx.forM fun ldecl: Lean.LocalDecl => do

let ldecl_expr := ldecl.toExpr -- Find the expression of the declaration.
let ldecl_name := ldecl.userName -- Find the name of the declaration.
dbg_trace f!"+ local decl: name: {ldecl_name} | expr: {ldecl_expr}"

theorem test_list_local_decls_1 (H1 : 1 = 1) (H2 : 2 = 2): 1 = 1 := by
list_local_decls_1

-- + local decl: name: test_list_local_decls_1 | expr: _uniq.3339
-- + local decl: name: H1 | expr: _uniq.3340
-- + local decl: name: H2 | expr: _uniq.3341

sorry

Recall that we are looking for a local declaration that has the same type as the
hypothesis. We get the type of LocalDefinition by calling Lean.Meta.inferType
on the local declaration’s expression.

elab "list_local_decls_2" : tactic => do
let lctx ← Lean.MonadLCtx.getLCtx -- get the local context.
lctx.forM fun ldecl: Lean.LocalDecl => do
let ldecl_expr := ldecl.toExpr -- Find the expression of the declaration.
let ldecl_name := ldecl.userName -- Find the name of the declaration.
let ldecl_type ← Lean.Meta.inferType ldecl_expr -- **NEW:** Find the type.
dbg_trace f!"+ local decl: name: {ldecl_name} | expr: {ldecl_expr} | type: {ldecl_type}"

theorem test_list_local_decls_2 (H1 : 1 = 1) (H2 : 2 = 2): 1 = 1 := by
list_local_decls_2
-- + local decl: name: test_list_local_decls_2 | expr: _uniq.4263 | type: (Eq.{1} Nat ...)
-- + local decl: name: H1 | expr: _uniq.4264 | type: Eq.{1} Nat ...)
-- + local decl: name: H2 | expr: _uniq.4265 | type: Eq.{1} Nat ...)
sorry

We check if the type of the LocalDefinition is equal to the goal type with
Lean.Meta.isExprDefEq. See that we check if the types are equal at eq?, and we
print that H1 has the same type as the goal (local decl[EQUAL? true]: name: H1),
and we print that H2 does not have the same type (local decl[EQUAL? false]:
name: H2):

elab "list_local_decls_3" : tactic => do
let goal ← Lean.Elab.Tactic.getMainGoal
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let goal_declaration ← Lean.Meta.getMVarDecl goal
let goal_type := goal_declaration.type
let lctx ← Lean.MonadLCtx.getLCtx -- get the local context.
lctx.forM fun ldecl: Lean.LocalDecl => do

let ldecl_expr := ldecl.toExpr -- Find the expression of the declaration.
let ldecl_name := ldecl.userName -- Find the name of the declaration.
let ldecl_type ← Lean.Meta.inferType ldecl_expr -- Find the type.
let eq? ← Lean.Meta.isExprDefEq ldecl_type goal_type -- **NEW** Check if type equals goal type.
dbg_trace f!"+ local decl[EQUAL? {eq?}]: name: {ldecl_name}"

theorem test_list_local_decls_3 (H1 : 1 = 1) (H2 : 2 = 2): 1 = 1 := by
list_local_decls_3

-- + local decl[EQUAL? false]: name: test_list_local_decls_3
-- + local decl[EQUAL? true]: name: H1
-- + local decl[EQUAL? false]: name: H2

sorry

Finally, we put all of these parts together to write a tactic that loops
over all declarations and finds one with the correct type. We loop over
declarations with lctx.findDeclM?. We infer the type of declarations with
Lean.Meta.inferType. We check that the declaration has the same type as the
goal with Lean.Meta.isExprDefEq:

elab "custom_trivial_1" : tactic => do
let goal ← Lean.Elab.Tactic.getMainGoal
let goal_type ← Lean.Elab.Tactic.getMainTarget
let lctx ← Lean.MonadLCtx.getLCtx
-- Iterate over the local declarations...
let option_matching_expr ← lctx.findDeclM? fun ldecl: Lean.LocalDecl => do
let ldecl_expr := ldecl.toExpr -- Find the expression of the declaration.
let ldecl_type ← Lean.Meta.inferType ldecl_expr -- Find the type.
if (← Lean.Meta.isExprDefEq ldecl_type goal_type) -- Check if type equals goal type.
then return Option.some ldecl_expr -- If equal, success!
else return Option.none -- Not found.

dbg_trace f!"matching_expr: {option_matching_expr}"

theorem trivial_correct_1 (H1 : 1 = 1) (H2 : 2 = 2): 2 = 2 := by
custom_trivial_1

-- matching_expr: some _uniq.6241
sorry

#print trivial_correct_1
-- theorem trivial_correct_1 : 1 = 1 → 2 = 2 → 2 = 2 :=
-- fun H1 H2 => sorryAx (2 = 2) false

theorem trivial_wrong_1 (H1 : 1 = 1): 2 = 2 := by
custom_trivial_1
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-- matching_expr: none
sorry

#print trivial_wrong_1
-- theorem trivial_wrong_1 : 1 = 1 → 2 = 2 :=
-- fun H1 => sorryAx (2 = 2) false

Now that we are able to find the matching expression, we need to close the
theorem by using the match. We do this with Lean.Elab.Tactic.closeMainGoal.
When we do not have a matching expression, we throw an error with
Lean.Meta.throwTacticEx, which allows us to report an error corresponding to a
given goal. When throwing this error, we format the error using m!"..." which
builds a MessageData. This provides nicer error messages than using f!"..."
which builds a Format. This is because MessageData also runs delaboration,
which allows it to convert raw Lean terms like (Eq.{1} Nat (OfNat.ofNat.{0}
Nat 2 (instOfNatNat 2)) (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2))) into
readable strings like(2 = 2). The full code listing given below shows how to do
this:

elab "custom_trivial_2" : tactic => do
let goal ← Lean.Elab.Tactic.getMainGoal
let goal_type ← Lean.Elab.Tactic.getMainTarget
let lctx ← Lean.MonadLCtx.getLCtx
let option_matching_expr ← lctx.findDeclM? fun ldecl: Lean.LocalDecl => do
let ldecl_expr := ldecl.toExpr
let ldecl_type ← Lean.Meta.inferType ldecl_expr
if ← Lean.Meta.isExprDefEq ldecl_type goal_type

then return Option.some ldecl_expr
else return Option.none

match option_matching_expr with
| some e => Lean.Elab.Tactic.closeMainGoal e
| none => do
Lean.Meta.throwTacticEx `custom_trivial_2 goal (m!"unable to find matching hypothesis of type ({goal_type})")

theorem trivial_correct_2 (H1 : 1 = 1) (H2 : 2 = 2): 2 = 2 := by
custom_trivial_2

#print trivial_correct_2
-- theorem trivial_correct_2 : 1 = 1 → 2 = 2 → 2 = 2 :=
-- fun H1 H2 => H2

theorem trivial_wrong_2 (H1 : 1 = 1): 2 = 2 := by
custom_trivial_2

-- tactic 'custom_trivial_2' failed, unable to find matching hypothesis of type (2 = 2)
-- H1 : 1 = 1
-- ⊢ 2 = 2
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Tweaking the context
Until now, we’ve only performed read-like operations with the context. But
what if we want to change it?

In this section we will see how to change the order of goals and how to add
content to it (new hypotheses).

For the first task, we can use Lean.Elab.Tactic.getGoals and Lean.Elab.Tactic.setGoals:

elab "reverse_goals" : tactic => do
let goals : List Lean.MVarId ← Lean.Elab.Tactic.getGoals
Lean.Elab.Tactic.setGoals goals.reverse

theorem test_reverse_goals : (1 = 2 ∧ 3 = 4) ∧ 5 = 6 := by
constructor
constructor

-- case left.left
-- ⊢ 1 = 2
-- case left.right
-- ⊢ 3 = 4
-- case right
-- ⊢ 5 = 6

reverse_goals
-- case right
-- ⊢ 5 = 6
-- case left.right
-- ⊢ 3 = 4
-- case left.left
-- ⊢ 1 = 2

Now let’s try to simulate a let and a have. For this task, first we will need to
use Lean.Elab.Tactic.withMainContext, which can run commands taking into
consideration the entire goal state. This is important because if the user has
some n : Nat in the context and wants to do custom_have h : n = n := rfl
then our tactic will need to elaborate the type n = n while knowing what n is.

Then, after elaborating our terms, we will need to use the helper function
Lean.Elab.Tactic.liftMetaTactic, which allows us to run computations in MetaM
while also giving us the goal MVarId for us to play with. In the end of our com-
putation, liftMetaTactic expects us to return a List MVarId as the resulting
list of goals.

The only substantial difference between custom_let and custom_have is that the
former uses Lean.Meta.define and the later uses Lean.Meta.assert:

open Lean.Elab.Tactic in
elab "custom_let " n:ident " : " t:term " := " v:term : tactic =>

withMainContext do
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let t ← elabTerm t none
let v ← elabTermEnsuringType v t
liftMetaTactic fun mvarId => do

let mvarIdNew ← Lean.Meta.define mvarId n.getId t v
let (_, mvarIdNew) ← Lean.Meta.intro1P mvarIdNew
return [mvarIdNew]

open Lean.Elab.Tactic in
elab "custom_have " n:ident " : " t:term " := " v:term : tactic =>

withMainContext do
let t ← elabTerm t none
let v ← elabTermEnsuringType v t
liftMetaTactic fun mvarId => do

let mvarIdNew ← Lean.Meta.assert mvarId n.getId t v
let (_, mvarIdNew) ← Lean.Meta.intro1P mvarIdNew
return [mvarIdNew]

theorem test_faq_have : True := by
custom_let n : Nat := 5
custom_have h : n = n := rfl

-- n : Nat := 5
-- h : n = n
-- ⊢ True

sorry

Tactics by Macro Expansion
Just like many other parts of the Lean 4 infrastructure, tactics too can be
declared by lightweight macro expansion.

For example, we build an example of a custom_sorry_macro that elaborates into
a sorry. We write this as a macro expansion, which expands the piece of syntax
custom_sorry_macro into the piece of syntax sorry:

macro "custom_sorry" : tactic => `(tactic| sorry)

theorem test_sorry_custom_macro: 1 = 42 := by
custom_sorry

#print test_sorry_custom_macro
-- theorem test_sorry_custom_macro : 1 = 42 :=
-- sorryAx (1 = 42) false

Implementing trivial: Extensible Tactics by Macro Expansion

As more complex examples, we can write a tactic such as custom_trivial, which
is initially left completely unimplemented, and can be extended with more tac-
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tics. We start by simply declaring the tactic with no implementation:

syntax "custom_trivial" : tactic

theorem test_custom_trivial_macro_0: 42 = 42 := by
custom_trivial

-- tactic 'tacticCustom_trivial' has not been implemented
sorry

We will now add the rfl tactic into custom_trivial, which will allow us to prove
the previous theorem

macro_rules
| `(tactic| custom_trivial) => `(tactic| rfl)

theorem test_custom_trivial_macro_1: 42 = 42 := by
custom_trivial

-- Goals accomplished �

We can now try a harder problem, that cannot be immediately dispatched by
rfl:

theorem test_custom_trivial_macro_2: 43 = 43 ∧ 42 = 42:= by
custom_trivial

-- tactic 'rfl' failed, equality expected{indentExpr targetType}
-- ⊢ 43 = 43 ∧ 42 = 42

We extend the custom_trivial tactic with a tactic that tries to break And down
with apply And.intro, and then (recursively (!)) applies custom_trivial to the
two cases with (<;> trivial) to solve the generated subcases 43 = 43, 42 = 42.

macro_rules
| `(tactic| custom_trivial) => `(tactic| apply And.intro <;> custom_trivial)

The above declaration uses <;> which is a tactic combinator. Here, a <;> bmeans
“run tactic a, and apply”b” to each goal after running a“. Thus, And.intro <;>
custom_trivial means”run And.intro, and then run custom_trivial on each
goal”. We test it out on our previous theorem and see that we dispatch the
theorem.

theorem test_custom_trivial_macro_3 : 43 = 43 ∧ 42 = 42 := by
custom_trivial

-- Goals accomplished �

In summary, we declared an extensible tactic called custom_trivial. It initially
had no elaboration at all. We added the rfl as an elaboration of custom_trivial,
which allowed it to solve the goal 42 = 42. We then tried a harder theorem, 43
= 43 ∧ 42 = 42 which custom_trivial was unable to solve. We were then able
to enrich custom_trivial to split “and” with And.intro, and also recursively call
custom_trivial in the two subcases.
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Implementing <;>: Tactic Combinators by Macro Expan-
sion
Recall that in the previous section, we say that a <;> b meant “run a, and then
run b for all goals”. In fact, <;> itself is a tactic combinator. In this section, we
will implement the syntax a and_then b which will stand for “run a, and then
run b for all goals”.

-- 1. We declare the syntax `and_then`
syntax tactic " and_then " tactic : tactic

-- 2. We write the expander that expands the tactic
-- into running `a`, and then running `b` on all goals.
macro_rules
| `(tactic| $a:tactic and_then $b:tactic) =>

`(tactic| $a:tactic; all_goals $b:tactic)

-- 3. We test this tactic.
theorem test_and_then: 1 = 1 ∧ 2 = 2 := by

apply And.intro and_then rfl

#print test_and_then
-- theorem test_and_then : 1 = 1 ∧ 2 = 2 :=
-- { left := Eq.refl 1, right := Eq.refl 2 }

FAQ
In this section, we collect common patterns that are used during writing tactics,
to make it easy to find common patterns.

Q: How do I use goals?

A: Goals are represented as metavariables. The module Lean.Elab.Tactic.Basic
has many functions to add new goals, switch goals, etc.

Q: How do I get the main goal?

A: Use Lean.Elab.Tactic.getMainGoal.

elab "faq_main_goal" : tactic => do
let goal ← Lean.Elab.Tactic.getMainGoal
dbg_trace f!"goal: {goal.name}"

theorem test_faq_main_goal: 1 = 1 := by
faq_main_goal

-- goal: _uniq.9298
sorry

Q: How do I get the list of goals?

50



A: Use getGoals.

elab "faq_get_goals" : tactic => do
let goals ← Lean.Elab.Tactic.getGoals
goals.forM $ fun goal => do

let goal_type ← Lean.Meta.getMVarType goal
dbg_trace f!"goal: {goal.name} | type: {goal_type}"

theorem test_faq_get_goals (b: Bool): b = true := by
cases b;
faq_get_goals

-- goal: _uniq.10067 | type: Eq.{1} Bool Bool.false Bool.true
-- goal: _uniq.10078 | type: Eq.{1} Bool Bool.true Bool.true

sorry
sorry

Q: How do I get the current hypotheses for a goal?

A: Use Lean.MonadLCtx.getLCtx which provides the local context, and then iter-
ate on the LocalDeclarations of the LocalContext with accessors such as foldlM
and forM.

elab "faq_get_hypotheses" : tactic => do
let lctx ← Lean.MonadLCtx.getLCtx -- get the local context.
lctx.forM (fun (ldecl: Lean.LocalDecl) => do

let ldecl_expr := ldecl.toExpr -- Find the expression of the declaration.
let ldecl_type := ldecl.type -- Find the expression of the declaration.
let ldecl_name := ldecl.userName -- Find the name of the declaration.
dbg_trace f!" local decl: name: {ldecl_name} | expr: {ldecl_expr} | type: {ldecl_type}"

)

theorem test_faq_get_hypotheses (H1 : 1 = 1) (H2 : 2 = 2): 3 = 3 := by
faq_get_hypotheses
-- local decl: name: test_faq_get_hypotheses | expr: _uniq.10814 | type: ...
-- local decl: name: H1 | expr: _uniq.10815 | type: ...
-- local decl: name: H2 | expr: _uniq.10816 | type: ...
sorry

Q: How do I evaluate a tactic?

A: Use Lean.Elab.Tactic.evalTactic: Syntax → TacticM Unit which evaluates a
given tactic syntax. One can create tactic syntax using the macro (tactic| ⋯).

For example, one could call try rfl with the piece of code:

Lean.Elab.Tactic.evalTactic (← `(tactic| try rfl))

Q: How do I check if two expressions are equal?

A: Use Lean.Meta.isExprDefEq <expr-1> <expr-2>.
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#check Lean.Meta.isExprDefEq
-- Lean.Meta.isExprDefEq : Lean.Expr → Lean.Expr → Lean.MetaM Bool

Q: How do I throw an error from a tactic?

A: Use throwTacticEx <tactic-name> <goal-mvar> <error>.

elab "faq_throw_error" : tactic => do
let goal ← Lean.Elab.Tactic.getMainGoal
Lean.Meta.throwTacticEx `faq_throw_error goal "throwing an error at the current goal"

theorem test_faq_throw_error (b : Bool): b = true := by
cases b;
faq_throw_error
-- case true
-- ⊢ true = true
-- tactic 'faq_throw_error' failed, throwing an error at the current goal
-- case false
-- ⊢ false = true

Q: What is the difference between Lean.Elab.Tactic.* and Lean.Meta.Tactic.*?

A: Lean.Meta.Tactic.* contains low level code that uses the Meta monad to
implement basic features such as rewriting. Lean.Elab.Tactic.* contains high-
level code that connects the low level development in Lean.Meta to the tactic
infrastructure and the parsing front-end.

Lean4 Cheat-sheet
Extracting information

• Extract the goal: Lean.Elab.Tactic.getMainGoal Use as let goal ←
Lean.Elab.Tactic.getMainGoal

• Extract the declaration out of a meta-variable: Lean.Meta.getMVarDecl
mvar when mvar : Lean.MVarId is in context. For instance, mvar could be
the goal extracted using getMainGoal

• Extract the type of a meta-variable: Lean.MetavarDecl.type mvdecl when
mvdecl : Lean.MetavarDecl is in context.

• Extract the type of the main goal: Lean.Elab.Tactic.getMainTarget Use
as let goal_type ← Lean.Elab.Tactic.getMainTarget Achieves the same
as

let goal ← Lean.Elab.Tactic.getMainGoal
let goal_decl ← Lean.Meta.getMVarDecl goal
let goal_type := goal_decl.type

• Extract local context: Lean.MonadLCtx.getLCtx Use as let lctx ←
Lean.MonadLCtx.getLCtx

• Extract the name of a declaration: Lean.LocalDecl.userName ldecl when
ldecl : Lean.LocalDecl is in context

52



• Extract the type of an expression: Lean.Meta.inferType expr when
expr : Lean.Expr is an expression in context Use as let expr_type ←
Lean.Meta.inferType expr

Playing around with expressions

• Convert a declaration into an expression: Lean.LocalDecl.toExpr Use as
ldecl.toExpr, when ldecl : Lean.LocalDecl is in context For instance,
ldecl could be let ldecl ← Lean.MonadLCtx.getLCtx

• Check whether two expressions are definitionally equal: Lean.Meta.isExprDefEq
ex1 ex2 when ex1 ex2 : Lean.Expr are in context. Returns a Lean.MetaM
Bool isDefEq ex1 ex2 appears to be a synonym

• Close a goal: Lean.Elab.Tactic.closeMainGoal expr when expr :
Lean.Expr is in context

Further commands

• meta-sorry: Lean.Elab.admitGoal goal, when goal : Lean.MVarId is the
current goal

Printing and errors

• Print a message: dbg_trace f!"1) goal: {goal.name}" Use as dbg_trace
f!"1) goal: {goal.name}" when goal : Lean.MVarId is in context. What
is the role of f!? I see no difference using dbg_trace "text", dbg_trace
f!"text", dbg_trace s!"text" Other characters seem to not be defined.

• Throw an error: Lean.Meta.throwTacticEx name mvar message_data where
name : Lean.Name is the name of a tactic and mvar contains error data. Use
as Lean.Meta.throwTacticExtac goal (m!“unable to find matching hypothe-
sis of type ({goal_type})”)where them!formatting builds aMessageData‘
for better printing of terms

TODO: Add? * Lean.LocalContext.forM * Lean.LocalContext.findDeclM?

import Lean
open Lean

Options
Options are a way to communicate some special configuration to both your
meta programs and the Lean compiler itself. Basically it’s just a KVMap which
is a simple map from Name to a Lean.DataValue, right now there are 6 kinds of
data values: - String - Bool - Name - Nat - Int - Syntax

Setting an option to tell the Lean compiler to do something different with your
program is quite simple with the set_option command:
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#check 1 + 1 -- 1 + 1 : Nat

set_option pp.explicit true -- No custom syntax in pretty printing

#check 1 + 1 -- @HAdd.hAdd Nat Nat Nat (@instHAdd Nat instAddNat) 1 1 : Nat

set_option pp.explicit false

You can furthermore limit an option value to just the next command or term:

set_option pp.explicit true in
#check 1 + 1 -- @HAdd.hAdd Nat Nat Nat (@instHAdd Nat instAddNat) 1 1 : Nat

#check 1 + 1 -- 1 + 1 : Nat

#check set_option trace.Meta.synthInstance true in 1 + 1 -- the trace of the type class synthesis for `OfNat` and `HAdd`

If you want to know which options are available out of the Box right now you can
simply write out the set_option command and move your cursor to where the
name is written, it should give you a list of them as auto completion suggestions.
The most useful group of options when you are debugging some meta thing is
the trace. one.

Options in meta programming
Now that we know how to set options let’s take a look at how a meta program
can get access to them. The most common way to do this is via the MonadOptions
type class, its can extension to Monad that provides a function getOptions : m
Options, as of now it is implemented by: - CoreM - CommandElabM - LevelElabM -
all monads to which you can lift operations of one of the above (e.g. MetaM from
CoreM)

Once we have an Options object we can query the information via Options.get.
To show this let’s write a command that prints the value of pp.explicit.

elab "#getPPExplicit" : command => do
let opts ← getOptions
-- defValue = default value
Elab.logInfo s!"pp.explicit : {opts.get pp.explicit.name pp.explicit.defValue}"

#getPPExplicit -- pp.explicit : false

set_option pp.explicit true in
#getPPExplicit -- pp.explicit : true

Note that the real implementation of getting pp.explicit, Lean.getPPExplicit,
uses whether pp.all is set as a default value instead.
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Making our own
Declaring our own option is quite easy as well, the Lean compiler provides a
macro register_option for this, lets see it in action:

register_option book.myGreeting : String := {
defValue := "Hello World"
group := "pp"
descr := "just a friendly greeting"

}

However we can not just use an option that we just declared in the same file it
was declared in because of initialization restrictions.

import Lean
open Lean PrettyPrinter Delaborator SubExpr

Pretty Printing
The pretty printer is what Lean uses to present terms that have been elaborated
to the user. This is done by converting the Exprs back into Syntax and then even
higher level pretty printing datastructures, this means Lean does not actually
recall the Syntax it used to create some Expr there has to be code that tells it
how to do that. In the big picture, the pretty printer consists of three parts
run in the order they are listed in: - the delaborator this will be our main
interest since we can easily extend it with our own code. Its job is to turn Expr
back into Syntax. - the parenthesizer responsible for adding parenthesis into the
Syntax tree, where it thinks they would be useful - the formatter responsible for
turning the parenthesized Syntax tree into a Format object that contains more
pretty printing information like explicit whitespaces

Delaboration
As its name suggests the delaborator is in a sense the opposite of the elaborator.
The job of the elaborator is to take an Expr produced by the elaborator and turn
it back into a Syntax which if elaborated should produce an Expr that behaves
equally to the input one.

Delaborators have the type Lean.PrettyPrinter.Delaborator.Delab which is an
alias for DelabM Syntax where DelabM is the delaboration monad, all of this
machinery is defined here. DelabM provides us with quite a lot of options you
can look up in the documentation (TODO: Docs link), we will merely highlight
the most relevant parts here: - It has a MonadQuotation instance which allows
us to declare Syntax objects using the familiar quotation syntax. - It can run
MetaM code - It has a MonadExcept instance for throwing errors. - It can interact
with pp options using functions like whenPPOption - You can obtain the current
subexpression using SubExpr.getExpr, there is also an entire API defined around
this concept in the SubExpr module.
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Making our own

Like so many things in metaprogramming the elaborator is based on an attribute,
in this case the delab one. delab expects a Name as an argument, this name has
to start with the name of an Expr constructor, most commonly const or app.
This constructor name is then followed by the name of the constant we want to
delaborate, for example if we want to delaborate a function foo in a special way
we would use app.foo, let’s see this in action:

def foo : Nat → Nat := fun x => 42

@[delab app.foo]
def delabFoo : Delab := do

`(1)

#check foo -- 1 : Nat → Nat
#check foo 13 -- 1 : Nat, full applications are also pretty printed this way

This is obviously not a good delaborator since reelaborating this Syntax will not
yield the same Expr. Like with many other metaprogramming attributes we can
also overload delaborators:

@[delab app.foo]
def delabfoo2 : Delab := do

`(2)

#check foo -- 2 : Nat → Nat

The mechanism for figuring out which one to use is the same as well, the delab-
orators are tried in order, the ones last registered first until one does not throw
an error, indicating that it “feels unresponsible for the Expr”. In the case of
delaborators this is done using failure

@[delab app.foo]
def delabfoo3 : Delab := do

failure
`(3)

#check foo -- 2 : Nat → Nat, still 2 since 3 failed

In order to write a proper delaborator for foo we will have to use some slightly
more advanced machinery though:

@[delab app.foo]
def delabfooFinal : Delab := do

let e ← getExpr
guard $ e.isAppOfArity' `foo 1 -- only delab full applications this way
let fn := mkIdent `fooSpecial
let arg ← withAppArg delab
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`($fn $arg)

#check foo 42 -- fooSpecial 42 : Nat
#check foo -- 2 : Nat → Nat, still 2 since 3 failed

Can you extend delabFooFinal to also account for non full applications?

Unexpanders
While delaborators are obviously quite powerful it is quite often not necessary to
use them, if you look in the Lean compiler for @[delab or rather @[builtinDelab
(a special version of the delab attribute for compiler use, we don’t care about it),
you will see there are quite few occurences of it. This is because the majority
of pretty printing is in fact done by so called unexpanders. Unlike delaborators
they are of type Lean.PrettyPrinter.Unexpander which in turn is an alias for
Syntax → Lean.PrettyPrinter.UnexpandM Syntax. As you can see they are Syntax
to Syntax translations, quite similar to macros, except that they are supposed
to be the inverse of macros. The UnexpandM monad is quite a lot weaker than
DelabM but it still has: - MonadQuotation for syntax quotations - The ability to
throw errors, although not very informative ones: throw () is the only valid one

Unexpanders are always specific to applications of one constant, they are reg-
istered using the appUnexpand attribute, followed by the name of said constant.
The unexpander is passed the entire application of the constant after the Expr
has been delaborated, without implicit arguments, let’s see this in action:

def myid {α : Type} (x : α) := x

@[appUnexpander myid]
def unexpMyId : Unexpander

-- hygiene disabled so we can actually return `id` without macro scopes etc.
| `(myid $arg) => set_option hygiene false in `(id $arg)
| `(myid) => pure $ mkIdent `id
| _ => throw ()

#check myid 12 -- id 12 : Nat
#check myid -- id : ?m.3870 → ?m.3870

For a few nice examples of unexpanders you can take a look at NotationExtra

Mini project

As per usual we will tackle a little mini project at the end of the chapter,
this time building our own unexpander for mini programming language. Note
that many ways to define syntax already have generation of the required pretty
printer code built-in, e.g. infix, and notation (however not macro_rules). So
for easy syntax you will never have to do this yourself.
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declare_syntax_cat lang
syntax num : lang
syntax ident : lang
syntax "let " ident " := " lang " in " lang: lang
syntax "[Lang| " lang "]" : term

inductive LangExpr
| numConst : Nat → LangExpr
| ident : String → LangExpr
| letE : String → LangExpr → LangExpr → LangExpr

macro_rules
| `([Lang| $x:num ]) => `(LangExpr.numConst $x)
| `([Lang| $x:ident]) => `(LangExpr.ident $(Lean.quote (toString x.getId)))
| `([Lang| let $x:ident := $v:lang in $b:lang]) => `(LangExpr.letE $(Lean.quote (toString x.getId)) [Lang| $v] [Lang| $b])

-- LangExpr.letE "foo" (LangExpr.numConst 12)
-- (LangExpr.letE "bar" (LangExpr.ident "foo") (LangExpr.ident "foo")) : LangExpr
#check [Lang|

let foo := 12 in
let bar := foo in
foo

]

As you can see the pretty printing output right now is rather ugly to look at,
we can do better with an unexpander:

@[appUnexpander LangExpr.numConst]
def unexpandNumConst : Unexpander

| `(LangExpr.numConst $x:num) => `([Lang| $x])
| _ => throw ()

@[appUnexpander LangExpr.ident]
def unexpandIdent : Unexpander

| `(LangExpr.ident $x:str) =>
if let some str := x.isStrLit? then

let name := mkIdent $ Name.mkSimple str
`([Lang| $name])

else
throw ()

| _ => throw ()

@[appUnexpander LangExpr.letE]
def unexpandLet : Unexpander

| `(LangExpr.letE $x:str [Lang| $v:lang] [Lang| $b:lang]) =>
if let some str := x.isStrLit? then

let name := mkIdent $ Name.mkSimple str
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`([Lang| let $name := $v in $b])
else
throw ()

| _ => throw ()

-- [Lang| let foo := 12 in foo] : LangExpr
#check [Lang|

let foo := 12 in foo
]

-- [Lang| let foo := 12 in let bar := foo in foo] : LangExpr
#check [Lang|

let foo := 12 in
let bar := foo in
foo

]

That’s much better! As always we encourage you to extend the language yourself
with things like parenthesized expressions, more data values, quotations for term
or whatever else comes to your mind.
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