Let U be the real-valued function $f(x)$, where x a vector, $x=\left\langle x_{1}, x_{2}\right\rangle$. Thus, f is a function of two variables. We can write the total derivative of f which is:

$$
d f=\left(\frac{\partial f}{\partial x_{1}}\right)_{x_{2}} d x_{1}+\left(\frac{\partial f}{\partial x_{2}}\right)_{x_{1}} d x_{2} .
$$

Suppose that the first derivative of f is known for each variable, such that $\left(\frac{\partial f}{\partial x_{1}}\right)_{x_{2}}=A(x)$ and $\left(\frac{\partial f}{\partial x_{2}}\right)_{x_{1}}=B(x)$, where A and B are real valued functions. From the symmetry of the second derivative, we know that:

$$
\frac{\partial}{\partial x_{2}}\left(\left(\frac{\partial f}{\partial x_{1}}\right)_{x_{2}}\right)_{x_{1}}=\frac{\partial}{\partial x_{1}}\left(\left(\frac{\partial f}{\partial x_{2}}\right)_{x_{1}}\right)_{x_{2}}
$$

Using this identity along with the A and B , we can then write that:

$$
\frac{\partial}{\partial x_{2}}(A)_{x_{1}}=\frac{\partial}{\partial x_{1}}(B)_{x_{2}}
$$

Which can be written as

$$
\left(\frac{\partial A}{\partial x_{2}}\right)_{x_{1}}=\left(\frac{\partial B}{\partial x_{1}}\right)_{x_{2}}
$$

