
Let K be a field, E be an elliptic curve defined by Weierstrass equation

(0.1) y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

For any integer n, let [n] : E → E be the multiply-by-n isogeny.
Let’s state some motivation; they are not exact definitions. Let ψ2 = 2y + a1x+ a3 as a function on

E, then ψ2
2 = 4x3 + b2x

2 + 2b4x+ b6. We have the double formula

x ◦ [2] =
x4 − b4x2 − 2b6x− b8

ψ2
2

,

ψ2 ◦ [2] =
2x6 + b2x

5 + 5b4x
4 + 10b6x

3 + 10b8x
2 + (b2b8 − b4b6)x+ (b4b8 − b26)

ψ3
2

,

(0.2)

where the first formula can be proved by Vieta’s formulas. For the second formula, when the characteristic
of K is not 2 it can also be proved by Vieta’s formulas (in this case we use ψ2

2 = 4x3 + b2x
2 + 2b4x+ b6),

when the characteristic of K is 2 it’s a consequence of the first formula. As for the double formula for
y-coordinate, it’s complicated when a1, a3 are not zero:

y ◦ [2] = ψ−32

[
− a43 + a2a

2
3a4 − a1a3a24 − a34 − 6a23a6 + a21a4a6 + 4a2a4a6 − 8a26

+
(
2a22a

2
3 − 4a1a

3
3 − 2a1a2a3a4 − 3a23a4 − 2a2a

2
4 + 2a21a2a6

+ 8a22a6 − 12a1a3a6 − 4a4a6
)
x

+
(
−6a21a

2
3 + 3a2a

2
3 − 12a1a3a4 − 5a24 − 3a21a6 + 20a2a6

)
x2

+
(
−4a31a3 − 6a1a2a3 + 3a23 − 5a21a4 + 20a6

)
x3

+
(
−a41 − 4a21a2 − 3a1a3 + 5a4

)
x4

+
(
−3a21 + 2a2

)
x5 + x6 +

(
− a1a2a23 − a33 + a21a3a4 + a1a

2
4 − a31a6 − 4a1a2a6 − 4a3a6

+
(
−6a1a

2
3 − 4a3a4 − 16a1a6

)
x

+
(
−6a21a3 − 4a2a3 − 10a1a4

)
x2

+
(
−2a31 − 8a1a2 − 4a3

)
x3 − 7a1x

4
)
y

]
.

Note that x is an even function and ψ2 is an odd function, namely x ◦ [−1] = x and ψ2 ◦ [−1] = −ψ2.

Hence for any m ∈ Z, x ◦ [m] and ψ2◦[m]
ψ2

are all even function, they are in K(x). We are going to find

out their explicit formula. First we have the following result.

Proposition 0.1. Let (xi, yi), i = 1, 2, 3, 4 be the affine coordinate of points P,Q, P + Q,P − Q on E,
respectively, and Yi, i = 1, 2, 3, 4 be the ψ2 evaluated at these points. Then if x1 6= x2, we have

x3 + x4 =
2x1x2(x1 + x2) + b2x1x2 + b4(x1 + x2) + b6

(x2 − x1)2

x3x4 =
x21x

2
2 − b4x1x2 − b6(x1 + x2)− b8

(x2 − x1)2

(0.3)

and

Y3 + Y4 = Y1
2x22(3x1 + x2) + b2x2(x1 + x2) + b4(x1 + 3x2) + 2b6

(x2 − x1)3

Y3Y4 =
(

4x31x
3
2 + b2x

2
1x

2
2 (x1 + x2) + 2b4x1x2

(
x21 + 3x1x2 + x22

)
+ b6 (x1 + x2)

(
x21 + 8x1x2 + x22

)
+ 4b8

(
x21 + 3x1x2 + x22

)
+ (b2b8 − b4b6) (x1 + x2) + 2

(
b4b8 − b26

) )
/(x2 − x1)3

(0.4)
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Proof. The first two can be obtained via

x3 =

(
y2 − y1
x2 − x1

)2

+ a1

(
y2 − y1
x2 − x1

)
− a2 − x1 − x2

x4 =

(
−y2 − a1x2 − a3 − y1

x2 − x1

)2

+ a1

(
−y2 − a1x2 − a3 − y1

x2 − x1

)
− a2 − x1 − x2

and lengthy computation. As for the last two, when the characteristic of K is not 2, they can be obtained
via

ψ2(P ±Q) = Y1 ± Y2 +
1

4

[
12

(
±Y2 − Y1
x2 − x1

x2 ∓ Y2
)

+ b2
±Y2 − Y1
x2 − x1

−
(
±Y2 − Y1
x2 − x1

)3
]

and lengthy computation. When the characteristic of K is 2, they are consequences of the first two. �

In particular, changing the rule of P and Q in (0.4), we obtain

(0.5) Y3 − Y4 = Y2
2x21(x1 + 3x2) + b2x1(x1 + x2) + b4(3x1 + x2) + 2b6

(x1 − x2)3
.

Now we can formally give the definition of division polynomials ([GTM106], Exercise 3.7). Define the
commutative ring R = Z[a1, a2, a3, a4, a6, x, y]/(f), where a1, a2, a3, a4, a6, x, y are all formal variables,
f = y2 + a1xy+ a3y−x3− a2x2− a4x− a6 be the polynomial defined by the Weierstrass equation (0.1).
For m ∈ Z, define the division polynomials ψm, φm, ωm ∈ R as

ψ0 = 0, ψ1 = 1, ψ−m = −ψm,
ψ2 = 2y + a1x+ a3,

ψ3 = 3x4 + b2x
3 + 3b4x

2 + 3b6x+ b8,

ψ4 = ψ2 ·
(
2x6 + b2x

5 + 5b4x
4 + 10b6x

3 + 10b8x
2 + (b2b8 − b4b6)x+ (b4b8 − b26)

)
,

ψ2m+1 = ψm+2ψ
3
m − ψm−1ψ3

m+1,

ψ2m = ψm ·
(
ψ2
m−1ψm+2 − ψ2

m+1ψm−2
)
/ψ2,

φm = xψ2
m − ψm−1ψm+1,

ωm =
(
ψ2
m−1ψm+2 − ψ2

m+1ψm−2
)
/ψ2 = ψ2m/ψm.

Note that ψ2
2 = 4x3 + b2x

2 + 2b4x+ b6 ∈ Z[b2, b4, b6, b8, x] ⊂ R, by induction we know that ψ2m+1 and
ψ2m/ψ2 are contained in this subring, so φm, ω2m+1/ψ2 and ω2m are also contained in this subring.

For E/K defined by (0.1), there is a natural ring homomorphism R → K(E). Note that the image
of ψ2 in K(E) is not zero (since when the characteristic of K is 2, not all the a1, a3 are zero), so the
images of ψm, φm, ωm in K(E) are also uniquely determined by the above recursion formulas. When
there is no risk of confusion, we also denote their images by ψm, φm, ωm. Note that if these polynomials
satisfy polynomial equations of R-coefficients in R, then their images in K(E) also satisfies the same
polynomial equations.

By induction it’s easy to see that the leading terms of ψ2m+1 and ψ2m/ψ2 are (2m+ 1)x2m
2+2m and

mx2m
2−2, respectively, so the leading terms of φm and ψ2

m are xm
2

and m2xm
2−1, respectively.

We claim that the images of φn and ψ2
n in K[x] ⊂ K(E) are coprime (since R is not PID, we don’t

talk about them being coprime in R). This is clear when n = 0, 1. When n = 2 we should prove
x4 − b4x2 − 2b6x − b8 and 4x3 + b2x

2 + 2b4x + b6 are coprime in K[x] ([GTM106], Exercise 3.1). We
need to use that the discriminant of E is not zero, and we need to divide the characteristic of K by
three cases: 2, 3, or other; for the last case by linear change of variable we may assume b2 = 0. The
details are omitted. For general n ≥ 3 we only need to show that in K[x], for any m ≥ 0 we have (a)

(ψ2m+1, ψ
2
2) = 1, (b) (ψ2m+1,

ψ2m+2

ψ2
) = 1, and (c) (ψ2m+1,

ψ2m

ψ2
) = 1. The (a) holds when m = 0, 1, (b)

holds when m = 0, 1, utilizing the fact ψ4

ψ2
= ψ3(6x2 + b2x+ b4)−ψ4

2 , and the (c) holds when m = 0, 1, 2.

For the general m they are proved by induction.
We claim that

(0.6) x ◦ [m] =
φm
ψ2
m

= x− ψm−1ψm+1

ψ2
m

holds in K(E). We should also show that for any m 6= 0, the image of ψm in K(E) is not zero; this is
true when m = 1, 2. Suppose m ≥ 2 is such that the image of ψm in K(E) is not zero, and (0.6) holds
for m, then the image of ψm+1 in K(E) must be not zero. Suppose otherwise, namely the image of ψm+1
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in K(E) is zero, then we have x ◦ [m] = x, therefore for any P ∈ E(K), either [m]P = P or [m]P = −P ,
hence either [m − 1]P = O or [m + 1]P = O. But since m ≥ 2, the [m − 1] and [m + 1] are all finite
morphisms, a contradiction. Starting from this, in the following we prove that (0.6) holds for m+ 1.

It can be shown directly that (0.6) holds for m = 1, 2. When m ≥ 3 we use induction. From the first
formula in (0.3), we only need to show that when n ≥ 2,

φn+1

ψ2
n+1

+
φn−1
ψ2
n−1

=
2
(
φn/ψ

2
n

)
x
(
φn/ψ

2
n + x

)
+ b2

(
φn/ψ

2
n

)
x+ b4

(
φn/ψ

2
n + x

)
+ b6

(φn/ψ2
n − x)

2

holds in R. This is equivalent to

(0.7) ψ3
nψ

2
2 − ψn−1ψnψn+1

(
6x2 + b2x+ b4

)
+ ψn+2ψ

2
n−1 + ψn−2ψ

2
n+1 = 0.

It can be checked directly when n = 2. To do induction from n− 1 case to n case, we only need to show

ψn+1

ψn−2

(
ψn−3ψ

2
n + ψ3

n−1ψ
2
2

)
= ψn+2ψ

2
n−1 + ψ3

nψ
2
2 ,

which can be derived from the n− 1 and n case of the following formula

(0.8) ψn+2ψn−2 = ψn+1ψn−1ψ
2
2 − ψ3ψ

2
n

(which is the special case of the general recursion formula (0.10) at (n,m, r) = (n, 2, 1)). Therefore we
only need to show that (0.8) holds when n ≥ 2.

By direct computation, the (0.8) is true for n = 2, 3, 4. When n ≥ 5, there are two cases. The first
case is n = 2m is even with m ≥ 3. In this case we have

−ψ2
2 · LHS = ψm−1ψm+1

(
ψ2
m−2ψm+1 − ψm−3ψ2

m

) (
ψ2
m+2ψm−1 − ψm+3ψ

2
m

)
=
(
ψ2
m−2ψ

2
m+1 − ψm−3ψm+1ψ

2
m

) (
ψ2
m+2ψ

2
m−1 − ψm+3ψm−1ψ

2
m

)
=
(
ψ3ψ

2
m−1ψ

2
m + ψ2

m−2ψ
2
m+1 − ψm−2ψ3

mψ
2
2

) (
ψ3ψ

2
m+1ψ

2
m + ψ2

m+2ψ
2
m−1

− ψm+2ψ
3
mψ

2
2

)
because (0.8) holds for m− 1 and m+ 1

=: (A1 +A2 −A3)(A4 +A5 −A6),

−ψ2
2 · RHS = ψ4

2

(
ψm+2ψ

3
m − ψm−1ψ3

m+1

) (
ψm−2ψ

3
m − ψm+1ψ

3
m−1

)
+ ψ3ψ

2
m

(
ψ2
m−1ψm+2 − ψm−2ψ2

m+1

)2
=: ψ4

2(B1 −B2)(B3 −B4) + ψ3ψ
2
m(B5 −B6)2,

here A1A5, A2A4, A3A6 cancels with B2
5 , B

2
6 , B1B3, respectively. Since (0.8) holds for m, it’s easy to

see that in the remaining terms, A1A6 + A3A4, A2A6 + A3A5, B1B4 + B2B3 all contains ψ2
m−1ψm+2 +

ψ2
m+1ψm−2 as a factor, and they canceled; the remaining four terms A1A4, A2A5, B2B4, 2B5B6 doesn’t

contain that factor, and they also canceled.
The second case is n = 2m+ 1 is odd with m ≥ 2. In this case we have

LHS =
(
ψm+3ψ

3
m+1 − ψmψ3

m+2

) (
ψm+1ψ

3
m−1 − ψm−2ψ3

m

)
=: (A1 −A2)(A3 −A4),

RHS = ψmψm+1

(
ψ2
m−1ψm+2 − ψ2

m+1ψm−2
) (
ψ2
mψm+3 − ψ2

m+2ψm−1
)

− ψ3

(
ψm+2ψ

3
m − ψm−1ψ3

m+1

)
=: ψmψm+1(B1 −B2)(B3 −B4)− ψ3(B5 −B6)2,

here A1A4, A2A3 cancels with B2B3, B1B4, respectively. Apply the formula (0.8) for m and m+1 case to
A2A4, A1A3, we may eliminate ψm−2 and ψm+3, the terms containing ψ3 cancels with B2

5 , B
2
6 . Similarly,

we can eliminate ψm−2 and ψm+3 inside B2B4, B1B3, the terms containing ψ3 cancels with 2B5B6. At
last, the four remaining terms containing ψ2

2 also cancels.
We claim that

(0.9) ψ2 ◦ [m] =
ωm
ψ3
m

=
ψ2m

ψ4
m

holds in K(E). When m = 1, 2 it can be computed directly. By (0.5), we only need to show that when
n ≥ 2 the

ωn+1

ψ3
n+1

− ωn−1
ψ3
n−1

= ψ2
2x2n(xn + 3x) + b2xn(xn + x) + b4(3xn + x) + 2b6

(xn − x)3
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holds in R, where xn = φn/ψ
2
n = x− ψn−1ψn+1/ψ

2
n. We have(

ψ2ψ
3
n−1ψ

3
n+1

)
· LHS = ψ3

n−1
(
ψ2
nψn+3 − ψn−1ψ2

n+2

)
− ψ3

n+1

(
ψ2
n−2ψn+1 − ψn−3ψ2

n

)
= ψ2

n

(
ψ3
n−1ψn+3 + ψ3

n+1ψn−3
)
−
(
ψ2
n−1ψn+2 + ψ2

n+1ψn−2
)2

+ 2ψ2
n+1ψ

2
n−1ψn+2ψn−2

= ψ2
n

[
ψ2
n−1

(
ψnψn+2ψ

2
2 − ψ3ψ

2
n+1

)
+ ψ2

n+1

(
ψnψn−2ψ

2
2 − ψ3ψ

2
n−1
)]

−
(
ψ2
n−1ψn+2 + ψ2

n+1ψn−2
)2

+ 2ψ2
n+1ψ

2
n−1

(
ψn+1ψn−1ψ

2
2 − ψ3ψ

2
n

)
by (0.8)

= ψ2
2ψ

3
n

(
ψ2
n−1ψn+2 + ψ2

n+1ψn−2
)
− 2ψ3ψ

2
n−1ψ

2
nψ

2
n+1

−
(
ψ2
n−1ψn+2 + ψ2

n+1ψn−2
)2

+ 2ψ2
n+1ψ

2
n−1

(
ψn+1ψn−1ψ

2
2 − ψ3ψ

2
n

)
=
(
2ψ2

2ψ
3
n − (6x2 + b2x+ b4)ψn−1ψnψn+1

) (
(6x2 + b2x+ b4)ψn−1ψnψn+1 − ψ2

2ψ
3
n

)
− 2ψ3ψ

2
n−1ψ

2
nψ

2
n+1 + 2ψ2

n+1ψ
2
n−1

(
ψn+1ψn−1ψ

2
2 − ψ3ψ

2
n

)
by (0.7)

= 2ψ2
2ψ

3
n−1ψ

3
n+1 −

(
(6x2 + b2x+ b4)2 + 4ψ3

)
ψ2
n−1ψ

2
nψ

2
n+1

+ 3(6x2 + b2x+ b4)ψ2
2ψ

4
nψn−1ψn+1 − 2ψ4

2ψ
6
n,

note that (6x2 + b2x + b4)2 + 4ψ3 = (12x + b2)ψ2
2 , by expanding the right hand side, it’s easy to check

that both sides are equal.
We claim that

(0.10) ψn+mψn−mψ
2
r = ψn+rψn−rψ

2
m − ψm+rψm−rψ

2
n, ∀n ≥ m ≥ r ≥ 0

holds. It’s clear when one of the “≥” is “=”. Note that we only need to show (0.10) for (n,m, r) =
(n,m, 1) case, namely

(0.11) ψn+mψn−m = ψn+1ψn−1ψ
2
m − ψm+1ψm−1ψ

2
n, ∀n ≥ m ≥ 1.

This is because the (n,m, r) case can be obtained from linear combinations of (n,m, 1) ·ψ2
r , (n, r, 1) ·ψ2

m

and (m, r, 1) ·ψ2
n case. We already proved that (0.11) holds when m = 2. When m = 1 or n−m = 0, 1, 2

the (0.11) can be checked directly. Therefore in the following we assume m ≥ 3, n−m ≥ 3. In this case
we have ψn+mψn−m = (ψn+mψn−m+2) (ψn+m−2ψn−m) / (ψn+m−2ψn−m+2), Applying (n + 1,m − 1, 1),
(n− 1,m− 1, 1), (n,m− 2, 1) cases, we only need to show(

ψn+2ψnψ
2
m−1 − ψmψm−2ψ2

n+1

) (
ψn−2ψnψ

2
m−1 − ψmψm−2ψ2

n−1
)

=
(
ψn+1ψn−1ψ

2
m−2 − ψm−1ψm−3ψ2

n

) (
ψn+1ψn−1ψ

2
m − ψm+1ψm−1ψ

2
n

)
.

By (0.7) and (0.8) we may eliminate all the ψn−2, ψn+2 in the left hand side, and the remaining terms
are of three types: ψ2

n−1ψ
2
n+1, ψ2

nψn−1ψn+1 and ψ4
n. It’s easy to see that first type terms canceled. The

coefficients of the last two types are also canceled, utilizing (0.7) and (0.8).
In conclusion, we have

Proposition 0.2 ([GTM106], Exercise 3.7). The division polynomials satisfy:
(1) ψ2

2, ψ2m+1, ψ2m/ψ2, φm, ω2m+1/ψ2, ω2m ∈ Z[b2, b4, b6, b8, x];

(2) The leading terms of ψ2m+1, ψ2m/ψ2, φm and ψ2
m are (2m + 1)x2m

2+2m, mx2m
2−2, xm

2

and

m2xm
2−1, respectively;

(3) In K[x] ⊂ K(E) we have (ψ2m+1, ψ
2
2) = (ψ2m+1,

ψ2m+2

ψ2
) = (ψ2m+1,

ψ2m

ψ2
) = (φn, ψ

2
n) = 1;

(4) When m 6= 0, the image of ψm in K(E) is not zero, and we have (x, ψ2) ◦ [m] =
(
φm

ψ2
m
, ωm

ψ3
m

)
in

K(E), in particular, multiply-by-m isogeny [m] is of degree m2;
(5) the recursion formula (0.10);
(6) (???) the image of ψn in K(E) has divisor

∑
T∈E[n](T )−#E[n] · (O).

In the following we consider elliptic divisibility sequence (EDS for short), which is a sequence (Wn)∞n=0

in K, satisfying W0 = 0 and the following recursion formula

(0.12) Wn+mWn−mW
2
1 = Wn+1Wn−1W

2
m −Wm+1Wm−1W

2
n , ∀n ≥ m ≥ 1.

If W1 6= 0, then the sequence (Wn/W1) is also EDS, hence in this case we usually assume W1 = 1. When
W1 6= 0 the following recursion formula also holds (which is not always true when W1 = 0):

(0.13) Wn+mWn−mW
2
r = Wn+rWn−rW

2
m −Wm+rWm−rW

2
n , ∀n ≥ m ≥ r ≥ 0,

whose proof is similar to that of (0.10). Therefore if W1 6= 0,Wm 6= 0, then the sequence (Wnm/Wn) is

also EDS. It’s easy to see that for any c ∈ K×, the sequence (cn
2−1Wn) is also EDS. The following is
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some examples of EDS: (1) Wn = n; (2) Wn = F2n, where F1 = F2 = 1, Fn+1 = Fn + Fn−1 is Fibonacci

sequence, which has closed formula Fn = αn−βn

α−β , here α, β = 1±
√
5

2 are roots of x2 − x − 1 = 0; more

generally, Wn = L2n, where L1 = 1, L2 = A,Ln+1 = ALn−Ln−1, which has closed formula Ln = αn−βn

α−β ,

where α, β are roots of x2−Ax+1 = 0; (3) Wn =
(
n
3

)
, and Wn =

(−2
n

)
, where

( ·
·
)

is Kronecker symbol;

(4) Wn = ψn is division polynomial, or its image in K(E), or it evaluated at a fixed point P ∈ E(K).
We claim that, when W1W2 6= 0, the recursion formula (0.12) is equivalent to the following recursion

formula:

W2m+1W
3
1 = Wm+2W

3
m −Wm−1W

3
m+1

W2mW2W
2
1 = Wm

(
W 2
m−1Wm+2 −W 2

m+1Wm−2
)(0.14)

We only need to show that they can derive (0.12). We may assume W1 = 1. Note that (0.14) and the
initial conditions W1,W2,W3,W4 determines the sequence uniquely. Suppose all of Wi are not zero, then
we can prove formulas similar to (0.7) and (0.8), hence the proof is similar to that of (0.11). For the
general case we consider the sequence (Vn) in the ring R = Z[X,Y, Z], where V1 = 1, V2 = X, V3 = Y ,
V4 = XZ, and the remaining terms are determined by (0.14) uniquely. Similar to the proof of division
polynomial, we can deduce that Vi is indeed contained in that polynomial ring. Note that all of Vi
are not zero, since we have ring homomorphism R → Z[a1, a2, a3, a4, a6, x, y]/(f), X 7→ ψ2, Y 7→ ψ3,
Z 7→ ψ4/ψ2, which makes the image of Vi is ψi, which is not zero. From this, similar to the proof
of division polynomial, we can prove the recursion formula similar to (0.7), (0.8) and (0.11). Finally,
consider the ring homomorphism R → K, X 7→ W2, Y 7→ W3, Z 7→ W4/W2, then (Wn) is the image of
(Vn), hence (Wn) satisfies (0.12).

5


