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Abstract—Rigor, correctness, and clarity are funda-
mental goals for mathematical theorem proving. Formal
verification is a natural progression of theorem solving
designed to address the limitations of traditional proof
techniques and mitigate the potential for human error.
This paper investigates Formal Verification as a disci-
pline, tracing its historical development, examining the
Lean Theorem Prover, and applying it to the context of
Partial Differential Equations. Specifically, we formalize
bump functions within the Lean framework and analyze
the broader implications of Formal Verification for the
practice of mathematics. The paper concludes by dis-
cussing the prospective impact of Formal Verification
on the future of Mathematics.
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I. Introduction

Proofs are at the heart of mathematics—a discipline
that concerns itself with the precise and rigorous de-
velopment of ideas. Unfortunately, while math strives
for correctness through deduction, how we construct
proofs contradicts the idea that math tries to be.
Succinctly, the fallacy of proofs is illustrated through
the difference in how proofs are constructed in theory
and practice. In theory, proofs are a series of logical
statements that follow from other logical claims—a def-
inition posed by Aristotle centuries ago—that seek to
convince a reader of a claim [1]. In practice, however,
proofs are written in natural language, often imprecise
and ambiguous. The discrepancy between theory and
practice is a fundamental problem in mathematics,
especially when proofs are how mathematicians estab-
lish the validity of their claims and communicate their
results to others.

In principle, the academic world has prevented this
fallacy through peer review, a process that many have
criticized [2] due to its various shortcomings. While
peer review “adds a bit of certainty” [3] to mathemat-
ical work, it is not an end–all solution to the problem

of human error. A prominent example of this flaw can
be highlighted through a dynamical system theorem
published in 1970 by Noel Baker. Once published, the
theorem was subsequently used to prove various re-
sults in dynamical systems; in turn, these results were
generalized and furthered–establishing the influence of
Baker’s theorem in the field. However, half a century
later, a pair of mathematicians discovered a flaw in
Baker’s proof, a flaw so grave that it invalidated the
theorem—returning its status as an open problem [4].
This example illustrates the potential for human error
in mathematical proofs and the consequences of such
errors. Moreover, since the 20th century, this issue
has been exacerbated by the increasing complexity of
mathematical proofs. Mathematics is now at a stage
where several branches are so complex that they are
beyond the comprehension of a single mathematician;
a new proof is built upon the work of many math-
ematicians, each trusting the work of the other. A
new approach to the mathematical proof is needed;
fortunately, a growing field seeks to address these
problems at once: Formal Verification.

Formal Verification emerges as a promising solution
to the fallacy of mathematical proofs. It is a framework
that extends the original purpose of proofs, focusing on
verifying the correctness of a system or model through
the use of mathematical techniques. For our purposes,
formal Verification treats proofs as mathematical ob-
jects and checks their correctness through a program,
offering a metamathematical approach to mathematics.
To fully grasp the implications of Formal Verification,
we delve into its historical development, the often
misunderstood relationship between computer science
and mathematics, and the pivotal role of Type Theory
in Formal Verification. We then introduce the Lean
Theorem Prover, a programming language that veri-
fies the correctness of mathematical proofs. Finally,
we apply the Lean Theorem Prover to the context of
Partial Differential Equations, providing insights into
the future of mathematics.Paper was written for MATH 423: Partial Differential Equations
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II. Preliminaries

The notion of studying proofs as mathematical ob-
jects was popularized through the concept of “Gödel
Numbering” in the early 1930s. The technique pro-
vided a method to transform an object in any formal
language, i.e., proofs in formal logic, to a unique natu-
ral number through a bijective function [5]. While the
idea of formal methods can be attributed to Gottfried
Wilhelm Leibniz—as Leibniz wished for a universal,
correct, and logical language[6]—Gödel’s incomplete-
ness theorems were the true beginning of the field.
These theorems explored the limitations of formal sys-
tems with notions of “numbers”; as many branches of
mathematics relied on ZFC-Set Theory, Gödel’s impact
was profound. In short (and imprecisely), Gödel’s theo-
rems showed that any formal system powerful enough
to express arithmetic was either inconsistent or incom-
plete. These results could be interpreted as the first
major hurdle to mathematical formalization, a problem
that has yet to be fully resolved. In fact, David Hilbert,
a prominent figure in many fields, sought to formalize
all mathematics through his project, the Foundations of
Mathematics, which failed as Gödel’s work showed that
Hilbert’s approach was doomed to fail. Gödel’s work
was so influential that it led to the creation of the field
of Proof Theory, the study of proofs [7]. Ultimately, the
first major hurdle to mathematics only emphasized the
need for a new approach to proofs.

A. Where Computer Science and Mathematics Meet

For the longest time, a common misconception per-
sists that formal verification has only been a sta-
ple in computer science—that its application to pure
mathematics is a recent development. Although, the
reason for this misconception is largely unknown to
philosophers—this view, however, overlooks the intri-
cate relationship between computer science and math-
ematics, as well as the historical trajectory of formal
verification itself.

Formal verification emerged as a distinct field within
computer science in the 1970s, with the primary objec-
tive of verifying software correctness [8]. This pursuit
was driven by the recognition that software bugs could
lead to catastrophic consequences. A stark illustration
of this potential for disaster is the Therac-25 inci-
dent, where a radiation therapy machine malfunctioned
due to software errors, resulting in severe radiation
overdoses to patients [9]. Such incidents underscored
the critical need for rigorous verification methods in
software development. The importance of formal ver-
ification in computer science is further exemplified
by NASA’s stringent requirements. The space agency

mandates that compilers used in mission-critical soft-
ware development be formally verified, although this
requirement does not extend to the executable code
itself as it should be [10]. This practice highlights the
recognition of formal verification as a crucial tool for
ensuring the reliability and safety of complex systems.
Clearly, the techniques of Formal Verification have
been a cornerstone of computer science for decades.
However, to fully grasp the significance of its applica-
tion to mathematics, we rigorously explore the intricate
relationship between programs and proofs—addressing
the misconception that the two are distinct entities.
We begin by introducing the basics of Constructive
Mathematics, Type Theory, and the Curry-Howard cor-
respondence, which form the foundation of Formal
Verification.

B. Constructive Mathematics

Constructive mathematics, a branch of mathematical
philosophy, challenges the traditional notions of exis-
tence and proof in mathematics. In classical mathe-
matics, a statement is considered true if its negation
leads to a contradiction, a principle known as the law of
excluded middle. Constructive mathematics, however,
rejects this principle [11]. Instead, it requires that to
prove the existence of a mathematical object, one must
explicitly construct the object. Similarly, to prove that
a statement is true, one must provide a constructive
method for verifying the statement.
The constructive approach to mathematics was pop-

ularized by L.E.J. Brouwer in the early 20th century
as a critique of classical mathematics, particularly its
reliance on non-constructive methods [11]. In construc-
tive mathematics, proofs are not merely theoretical
arguments but are tied to the idea of computation. A
proof of existence must come with a method to find or
approximate the object in question, and this method
must be executable in a finite number of steps. To il-
lustrate this concept rigorously, consider the following
proofs of the Intermediate Value Theorem:
Theorem: Let f : [a, b] → R be a continuous function

such that f(a) and f(b) have opposite signs (i.e., f(a) ·
f(b) < 0). Then, there exists a point c ∈ [a, b] such that
f(c) = 0.
In classical mathematics, the Intermediate Value

Theorem is typically proven by contradiction: we as-
sume that there is no such point c and then derive a
contradiction from the continuity of f and the assump-
tion that f(a) and f(b) have opposite signs. However,
this proof is non-constructive because it does not pro-
vide a method to actually find the point c.
Constructive Proof: We first define the interval

I0 = [a, b] and let f(a) < 0 and f(b) > 0. The algorithm



proceeds by recursively bisecting the interval. At each
step n, we let In = [an, bn] be the current interval,
and mn = an+bn

2 be the midpoint of the interval.
We evaluate the function at the midpoint f(mn) and
consider three cases: if f(mn) = 0, then mn is the
root; if f(mn) > 0, we set bn+1 = mn and an+1 = an;
if f(mn) < 0, we set an+1 = mn and bn+1 = bn.
By recursively bisecting the interval, we generate a
sequence of nested intervals I0 ⊃ I1 ⊃ I2 ⊃ . . . that
contain the root c. Since f is continuous, the length of
the intervals |bn−an| decreases to zero as n increases.
By the construction of the algorithm, the sequence
(mn) converges to a limit point c, and by continuity,
f(c) = 0.
This constructive proof demonstrates the existence

of c, and provides a method to approximate c to any de-
sired degree of accuracy by carrying out the bisection
algorithm to a sufficient number of steps. Particularly,
we make no assumptions about the law of excluded
middle, which is central to classical mathematics but
not required in constructive mathematics.

C. Type Theory

Type theory is a mathematical framework that serves
as the foundation for many modern formal systems; it
has a rich history that dates back to the early 20th
century. The origins of type theory can be traced to
Bertrand Russells work on the foundations of mathe-
matics. In the early 1900s, Russell identified a paradox
within the set theory of his time, known as Russell’s
Paradox. To resolve this paradox, Russell proposed a
system of types in which objects could be classified
into different levels or "types," thereby preventing self-
referential definitions that led to contradictions [12].
At its core, type theory is a formal system that

classifies expressions into various types, ensuring that
operations and functions are applied correctly. In tra-
ditional logic, a proposition is either true or false. In
type theory, however, a proposition corresponds to a
type, and a proof of the proposition is an element of
that type. Type theory has close ties to constructive
mathematics—both emphasize construction. To illus-
trate the principles of type theory, let’s consider a
simple example: If A → B and B → ⊥ (the negation
of B) hold, then ¬A must also hold:

f : A → B

g : ¬B = B → ⊥

x : A
f(x) : B

g(f(x)) : ⊥
h : A → ⊥

h ∈ ¬A
f → g → ¬A

Let’s break down the proof step by step to under-
stand the logical reasoning involved:

1) Assumption f : A → B: We start by assuming that
f is a function that takes an input of type A and
produces an output of type B. This corresponds
to the premise that A → B.

2) Assumption g : ¬B = B → ⊥: Next, we assume g,
which states that ¬B is equivalent to B → ⊥. In
type theory, ¬B (the negation of B) is interpreted
as a function from B to ⊥ (the type representing

3) Assumption x : A: We introduce a new assumption
x of type A, which means we are assuming that
A holds. This will help us derive a contradiction
later on.

4) Deriving f(x) : B: Applying the function f to x,
we obtain f(x), which has type B. This means that
under the assumption x : A, we can conclude B

by applying f .
5) Deriving g(f(x)) : ⊥: Next, we apply g to f(x),

which gives us g(f(x)) : ⊥. This step uses the
assumption g to derive a contradiction ⊥ from the
fact that f(x) is of type B. The function g essen-
tially tells us that if B holds, then a contradiction
occurs.

6) Deriving h : A → ⊥: From the contradiction
g(f(x)) : ⊥, we can construct a function h : A →
⊥. This function h takes an assumption of type A

and derives a contradiction. In other words, h is a
proof that A implies falsity, which is the definition
of ¬A (the negation of A).

7) Deriving h ∈ ¬A: The function h is now seen as
an inhabitant of the type ¬A. This means that
we have shown ¬A (the negation of A) under the
assumptions f : A → B and g : ¬B.

8) Conclusion f → g → ¬A: Finally, the last step
concludes the proof by showing that f (which
implies A → B) and g (which is equivalent to ¬B)
together imply ¬A. This shows that if A implies
B and B leads to a contradiction, then A must be
false.

As a remark: Type theory often uses tree-style proofs,
which are visual representations of logical reasoning.
Each node in the tree represents a logical statement
or type, and the branches show how conclusions are
derived from assumptions through logical rules or func-
tion applications. To read a tree-style proof, start at
the leaves (the assumptions) and follow the branches
to the root (the conclusion). This method clearly shows
the logical steps and dependencies, helping to ensure
that each part of the proof is valid. Tree-style proofs
effectively demonstrate how propositions are proven in
type theory by constructing terms that inhabit types.



D. Computer Science and Mathematics

The convergence of computer science and mathe-
matics finds one of its most profound expressions in
the concept of lambda calculus. Introduced by Alonzo
Church in the 1930s, lambda calculus provides a formal
system for expressing computation based on function
abstraction and application [13]. Initially conceived as
a foundation for mathematics, lambda calculus became
a cornerstone of theoretical computer science, influ-
encing the development of programming languages
and computational models. Its ability to represent all
computable functions made it a powerful tool for study-
ing the nature of computation itself. Building upon
this foundation, Church later developed the simply
typed lambda calculus, which introduced the concept of
types to lambda calculus [14]. This extension addressed
some of the paradoxes present in the untyped lambda
calculus and provided a framework for ensuring certain
properties of functions. In the typed lambda calculus,
every term is assigned a type, and only well-typed
terms are considered meaningful.
However, one of the most remarkable corollaries

arising from this intersection is the Curry-Howard cor-
respondence. The isomorphism, independently discov-
ered by Haskell Curry and William Howard, establishes
a deep correspondence between mathematical proofs
and computer programs [15]. This isomorphism reveals
that the relationship between a proposition and its
proof in constructive logic is analogous to the rela-
tionship between a type specification and a program
in typed lambda calculus. The correspondence can be
illustrated through the following table:

TABLE I
Curry-Howard Correspondence

Constructive Logic Typed Lambda Calculus
Proposition Type

Proof of a Proposition Term (Program)
Implication Function Type

Conjunction (A & B) Product Type (A ×B)
Disjunction (A or B) Sum Type (A + B)

Negation (not A) Function Type (A →False)
Falsehood (False) Empty Type

Universal Quantifier (∀x.P(x)) Dependent Function Type
Existential Quantifier (∃x.P(x)) Dependent Pair Type

This table illustrates the fundamental correspon-
dences between logical constructs and their type-
theoretic counterparts. Each row represents a pair of
concepts that are isomorphic under the Curry-Howard
correspondence, demonstrating the deep connection
between logic and computation that this isomorphism
reveals.
Given this isomorphism, the decades of research in

computer science devoted to understanding and opti-

mizing programs can be directly applied to the study
of proofs. In this light, proofs and programs are not
just similar; they are fundamentally the same thing.
This insight has profound implications for both fields.
It allows us to leverage the vast body of knowledge in
computer science to study proofs in a new light and
to approach programming with the rigor and formality
traditionally reserved for mathematical proofs. This
equivalence also paves the way for the use of type
theory in Formal Verification.

III. Lean Theorem Prover

The Lean Theorem Prover, initially developed by
Leonardo de Moura at Microsoft Research in 2013, is
a formal proof verification system and a programming
language designed to facilitate the formalization of
mathematical proofs [16]. Lean is grounded in the
principles of Type Theory and leverages the Curry-
Howard correspondence to treat proofs as executable
programs. Unlike traditional proof assistants, which
may require significant effort to learn and use, Lean’s
design focuses on user-friendliness and accessibility,
making it an increasingly popular tool in both academic
and industrial settings.
At its core, Lean provides a framework for the con-

struction of proofs that are not only rigorous but also
verifiable by a computer. The language itself is based
on a variant of dependent type theory known as the
Calculus of Inductive Constructions (CIC). CIC serves
as the underlying formal system in Lean, providing a
powerful foundation for defining complex mathematical
objects and reasoning about them. CIC integrates both
inductive types and dependent types, allowing users to
define functions and types that can depend on values,
which is essential for formalizing a wide range of
mathematical concepts. Moreover, one of Lean’s most
notable features is its emphasis on constructive math-
ematics. While it supports classical reasoning through
the inclusion of the law of excluded middle as an axiom,
Lean encourages users to provide constructive proofs
whenever possible. Constructive proofs are particularly
valuable in computational contexts, as they often corre-
spond to algorithms that can be directly implemented
and executed.
Finally, one of the key features of Lean is its ex-

tensive library, known as “mathlib.” This community-
driven library contains a vast collection of formal-
ized mathematics, including definitions, theorems, and
proofs. Mathlib serves as both a resource and a foun-
dation for further developments in formal verification,
providing users with ready-to-use tools and examples.
The success of mathlib is a testament to the collab-
orative nature of formal verification and the growing



interest in Lean as a platform for mathematical explo-
ration [17].

A. Lean and Formal Verification

Lean’s formal verification process involves encoding
a theorem as a type and then constructing a proof of
that theorem by providing a term of the corresponding
type. This approach is directly aligned with the Curry-
Howard correspondence. By constructing a term that
inhabits a type, one effectively constructs a proof of the
corresponding proposition. The advantages of using
Lean for formal verification are manifold. We list some
of the key benefits below:

1) High level of automation: Lean provides a high
level of automation through its tactic framework,
which allows users to build proofs incrementally,
leveraging automation to handle routine or repet-
itive tasks. This feature makes the process of
formal verification more efficient and accessible,
even for complex theorems [18].

2) Lean’s interactive proof mode enables users to
develop proofs in a step-by-step manner, with
immediate feedback on the correctness of each
step. This interactive approach not only enhances
the reliability of the verification process but also
serves as an educational tool, helping users to
understand the underlying logic and structure of
their proofs.

3) Lean’s role in formal verification extends beyond
pure mathematics to practical applications in
software verification. By formalizing the correct-
ness of algorithms and software systems, Lean
can help prevent errors that could have signifi-
cant real-world consequences, such as those seen
in critical systems like aerospace or medical de-
vices. The capacity to rigorously verify software
properties before deployment underscores the
importance of Lean in the broader context of
Formal Verification [19].

B. Introduction to Theorem Proving in Lean

One of the reasons Lean is so popular is due to
it being a functional programming language based
on dependent type theory. Moreover, one of its key
features is the use of tactics, which are commands
that help construct proofs step-by-step. Tactics allow
users to guide the proof assistant in finding a formal
proof, bridging the gap between human reasoning and
machine-checkable formalism. Let’s consider a simple
example to illustrate how proofs are constructed in
Lean using tactics. We’ll prove that for any propositions
P and Q, if P implies Q and P is true, then Q is true.
This is known as modus ponens.

theorem modus_ponens (P Q : Prop) (h1 : P Q) (h2 : P) : Q := by
apply h1
exact h2

Let’s break down this proof:

1) The theorem keyword declares that we’re prov-
ing a theorem named modus_ponens.

2) (P Q : Prop) declares P and Q as propositions.
3) (h1 : P Q) is the hypothesis that P implies Q.
4) (h2 : P) is the hypothesis that P is true.
5) : Q specifies that we want to prove Q.
6) by begins the tactic mode, allowing us to use

tactics to construct the proof.
7) apply h1 applies the implication P Q to our goal.

This changes our goal from proving Q to proving
P.

8) exact h2 proves P using our hypothesis h2.

This example demonstrates two common tactics:

• apply: This tactic applies a function or implication
to the current goal.

• exact: This tactic proves the goal directly when
we have a term of exactly the right type.

For a more complex example, let’s look at a proof of
function extensionality, which states that two functions
are equal if they produce the same output for all inputs:

theorem funext {f f : (x : ), x} (h : x, f x = f x) : f = f :=
by
show extfunApp (Quotient.mk' f) = extfunApp (Quotient.mk' f)
apply congrArg
apply Quotient.sound
exact h

This proof uses more advanced concepts and tactics:

• show: This tactic is used to restate the goal, often
in a more specific form.

• congrArg: This tactic applies the congruence rule
for function arguments.

• Quotient.sound: This is a theorem about quotient
types, used here to relate equality of functions to
equality of their quotient representations.

These examples illustrate how Lean combines a pow-
erful type system with an expressive tactic language,
allowing for the formalization of complex mathematical
proofs in a way that is both rigorous and (with practice)
intuitive to mathematicians.

IV. Formal Verification of Partial Differential
Equations

Partial Differential Equations (PDEs) are central to
many areas of mathematics and physics, modeling phe-
nomena ranging from fluid dynamics to electromag-
netism. Given the complexity and sensitivity of PDEs,
ensuring the correctness of their solutions is of utmost
importance. This is where Formal Verification comes
into play, offering a rigorous framework for verify-
ing the correctness of mathematical proofs related to
PDEs. One of the challenges in formally verifying PDEs



is the need for a rich mathematical library that includes
concepts from real and functional analysis. The Lean
mathematical library, mathlib, has been developing
these foundations, making it increasingly feasible to
work with PDEs in a formal setting.

A. Formal Verification of Bump Functions

Bump functions play a crucial role in the study of
PDEs, particularly in the construction of smooth parti-
tions of unity and in the approximation of continuous
functions by smooth functions. The formal verification
of bump functions is therefore an important step to-
wards the broader goal of verifying PDEs. Let’s exam-
ine how bump functions are formalized in Lean, first
by defining the structure of a bump function:

structure ContDiffBump (c : E) where
(rIn rOut : )
rIn_pos : 0 < rIn
rIn_lt_rOut : rIn < rOut

This structure defines a smooth bump function cen-
tered at a point c in a normed vector space E. The
function is equal to 1 in the closed ball of radius rIn
around c, and its support is contained in the open ball
of radius rOut. The properties of bump functions are
then formalized:

theorem one_of_mem_closedBall
(hx : x closedBall c f.rIn) : f x = 1 := ...
theorem support_eq :
Function.support f = Metric.ball c f.rOut := ...
theorem contDiff :
ContDiff n f := ...

These theorems establish key properties of bump
functions:

• The function equals 1 in the closed ball of radius
rIn.

• The support of the function is exactly the open ball
of radius rOut.

• The function is infinitely differentiable (smooth).

The formal verification of these properties ensures
that the bump functions behave as expected, which is
crucial for their application in PDE theory. For instance,
in the method of characteristics for first-order PDEs,
bump functions can be used to construct local solutions
that can be patched together to form global solutions.
Furthermore, the formalization includes proofs of dif-
ferentiability properties:

protected theorem _root_.ContDiffWithinAt.contDiffBump
{c g : X E} {s : Set X} {f : x, ContDiffBump (c x)} {x : X}
(hc : ContDiffWithinAt n c s x)
(hr : ContDiffWithinAt n (fun x => (f x).rIn) s x)
(hR : ContDiffWithinAt n (fun x => (f x).rOut) s x)
(hg : ContDiffWithinAt n g s x) :
ContDiffWithinAt n (fun x => f x (g x)) s x := ...

This theorem proves that the composition of a bump
function with a differentiable function is differentiable,
which is essential for many applications in PDE theory,
such as the construction of smooth approximations to
solutions. The formal verification of bump functions

lays the groundwork for more advanced topics in PDE
theory. For example, one could proceed to formalize:

• Smooth partitions of unity, which are crucial in
the study of manifolds and in proving existence of
solutions to PDEs.

• Approximation theorems, such as the density of
smooth functions in various function spaces.

• Regularization techniques for PDEs, where bump
functions are used to smooth out discontinuities or
singularities in solutions.

By formalizing these fundamental tools, we pave the
way for the verification of more complex results in PDE
theory, ultimately leading to increased confidence in
the mathematical models used across various scientific
disciplines.

V. Discussion

While the formalization of bump functions in Lean
represents a significant achievement, it highlights the
broader challenges associated with the formal verifica-
tion of Partial Differential Equations. The current state
of formalized mathematics in Lean, particularly within
the realm of analysis, underscores several limitations
that must be addressed before the formal verification
of PDEs can be considered complete.

Firstly, it is important to acknowledge that while
bump functions are now formalized, PDEs as a whole
remain largely uncharted territory in Lean. This is not
due to a lack of interest but rather the foundational
nature of Lean itself. Derived from type theory, Lean
has a strong focus on algebra, category theory, and
topology, with these areas being well-supported within
the system. However, analysis, which is crucial for the
study of PDEs, is notably underdeveloped. For instance,
the concept of partial derivatives, a fundamental tool
in PDEs, is not standardized in Lean. This presents
a significant obstacle for those seeking to formalize
results in this area. The root of this issue lies in the
preferences of the mathlib community, which tends to
prioritize abstract and general frameworks over the
concrete tools typically used in analysis. As a result,
those working in the formalization of PDEs often find
themselves in need of basic constructs that are either
unavailable or insufficiently developed.

Moreover, Leans learning curve is another factor to
consider. While Lean is incredibly powerful, it requires
users to spend a significant amount of time becoming
familiar with its syntax, tactics, and the underlying type
theory. This can be a barrier for mathematicians who
are accustomed to more traditional methods of proof
construction and who may be unfamiliar with the more
abstract approaches favored by Lean.



Another concern is the lack of formalized content in
Lean related to undergraduate topics that are foun-
dational for advanced studies in mathematics. For in-
stance, many fundamental concepts in multivariable
calculus, differential equations, and Fourier analysis
are either not implemented or only partially developed
in Lean. Key topics such as directional derivatives,
Jacobian matrices, Taylors theorem, and the Fourier
transform are still missing or incomplete. This gap is
problematic because it limits the applicability of Lean
to a broad range of mathematical problems that are
central to both theoretical and applied mathematics
[20].

The absence of these topics in Lean presents a
significant challenge for the broader adoption of formal
verification in mathematics. For mathematicians work-
ing in areas where these tools are essential, the current
state of Lean may be seen as a deterrent, potentially
limiting the impact of formal verification in these fields.
Furthermore, without a comprehensive library that
covers these foundational topics, the adoption of formal
verification in educational settings, particularly at the
undergraduate level, remains limited.

Despite these challenges, the Lean community is
growing rapidly, and the contributions being made to
mathlib are invaluable. The collaborative nature of the
Lean project means that its capabilities are constantly
expanding, and with time, many of the current limi-
tations may be addressed. The potential of Lean to
revolutionize mathematics is enormous. By providing
a framework where proofs can be rigorously checked
by a computer, Lean offers a level of certainty that
traditional methods cannot match. This is particularly
important in an era where mathematical results are
becoming increasingly complex and difficult to verify
by hand.

Looking ahead, it is not far-fetched to predict that in
the coming decades, academic journals may begin to
require that proofs be verified by a formal system like
Lean as a condition for publication. Such a shift would
represent a fundamental change in the way mathemati-
cal research is conducted, emphasizing the importance
of formal verification in ensuring the correctness of
mathematical results.

While the formal verification of proofs using systems
like Lean presents challenges, particularly in areas
such as analysis and PDEs, the benefits it offers are
undeniable. As the community continues to grow and
develop, the tools available in Lean will become more
comprehensive, making it an increasingly valuable re-
source for mathematicians. The critique of traditional
proofs highlighted at the beginning of this paper only
underscores the need for such tools. Formal verifica-

tion represents the future of mathematics, offering a
path toward greater rigor, reliability, and ultimately, a
deeper understanding of the mathematical universe.

VI. Conclusion

This paper has explored the emerging field of formal
verification in mathematics, with a particular focus on
its application to Partial Differential Equations through
the Lean Theorem Prover. We have traced the historical
development of formal methods, examined the theoret-
ical foundations of constructive mathematics and type
theory, and investigated the practical implementation
of these concepts in Lean. The formalization of bump
functions in Lean represents a significant milestone in
the journey towards the comprehensive formal veri-
fication of PDEs. This achievement demonstrates the
potential of formal methods to enhance the rigor and
reliability of mathematical proofs, even in complex
areas of analysis. However, our exploration has also
revealed substantial challenges that lie ahead.
Despite these challenges, the rapid growth of the

Lean community and the continuous expansion of
mathlib offer reasons for optimism. The collaborative
nature of formal verification projects suggests that
many of the current limitations may be addressed in the
coming years. As the tools become more comprehen-
sive and accessible, we can anticipate a gradual shift
in mathematical practice towards increased reliance on
formal verification.
Looking to the future, we can envision a mathematics

landscape where formal verification plays a central
role. The day may not be far off when major mathe-
matical journals require formal verification of proofs
as a condition for publication. Such a development
would represent a paradigm shift in how mathematical
knowledge is created, verified, and disseminated. The
ongoing critique of traditional proofs and the advance-
ment of formal verification techniques signal a trans-
formative period in mathematics, one that promises
to enhance both the precision and the understanding
of this fundamental discipline. However, it is crucial
to recognize that formal verification should not be
seen as a replacement for traditional mathematical
thinking. Rather, it should be viewed as a powerful
complementary tool that enhances the reliability and
clarity of mathematical results. The creative insights
and intuitive leaps that characterize mathematical dis-
covery will always be essential, with formal verification
serving to solidify and validate these insights.
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