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Guillem Cobos

Abstract

In this project we aim to understand the structure and some properties of the Lorentz
group, a mathematical object arising from the theory of special relativity which is said
to express some of the main symmetries in the laws of Physics. The first section of the
project is concerned about providing physical intuition about the concepts involved in the
definition of the Lorentz group. The main goal of the project is to prove an isomorphism
between the restricted Lorentz group and the projective linear group PSL2(C). Once
achieved this result, we use it to build a scheme that will let us study the conjugacy
classes of the restricted Lorentz group.
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Guillem Cobos

1 Introduction to Special Relativity

Einstein, in the special theory of relativity, proved that di↵erent
observers, in di↵erent states of motion, see di↵erent realities.

Leonard Susskind

In this chapter we aim to present the frame in which we will work during the rest of
the project. As we will see further on, the Lorentz group is an isometry group of trans-
formations of a four dimensional vector space, equipped with a quite special “norm”.
This is in fact what we call Minkowski space, and it is the basic frame for the work in
special relativity. More specifically, the Minkowski space is a four dimensional real vector
space, in which there is defined a bilinear form ⌘ which captures the idea of “distance”,
or “separation” of events in spacetime. To motivate the definition of this bilinear form
⌘, sometimes called Minkowski inner product, we have to give an overview of special rel-
ativity.
Special Relativity (SR) is a physical theory that tells us about the nature of space and
time, and how they are interwoven forming an unsplittable continuum. The theory has
its foundations in the so called principle of relativity, a concept which is worth giving
some thought, and goes like this. Suppose we have two observers which are moving at
constant speed relative to each other, then there is no physical experiment they can do
in order to determine at what velocity they are moving apart from each other. In other
words, the result of any experiment performed by an observer does not depend on his
speed relative to other observers (who are not involved in the experiment).
And, roughly speaking, this is saying that in the universe there is no privileged point of
view which is still in space (and therefore, every other thing moves towards it or away
from it). Hence staying still in space is something which simply doesn’t make sense in the
construction of the universe used in special relativity, since there could always be another
observer for which what we thought was still in space is now moving. Thus the speed of
a moving body is not a good property of “the body”, nor are coordinates, since they all
depend on the observer from which we are taking the measures. It is reasonable to ask
if there is any property of moving bodies in our universe which is not dependent on the
observer used to measure its coordinates. This question is answered by considering the
so called spacetime interval, a key concept that we will introduce in the next section, and
that is in the very heart of the theory of special relativity. The spacetime interval will
arise from a quadratic form defined on R4, playing an analog to the Euclidean distance
defined in three-dimensional space.
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1.1 Starting Assumptions for SR Model

We are willing to find a mathematical model to explain physical phenomena been observed
by experimentation. The starting point of special relativity (SR) is the identification of
our universe with an abstract set ⌦ whose elements we are going to call events. The set ⌦
is more commonly known as spacetime. Intuitively, an event is something that happens
at a certain location in space and at a given time, for example Neil Armstrong stepping
on the moon or Usain Bolt beating the 100 meter world record. We wish to give some
a�ne structure to this set, since physical experimentation seems to suggest so.

(1) There is a procedure using rods and clocks which allows an observer O to build a
bijective map fO : ⌦ �! R4. Roughly speaking, this tells us that there is a standard
way for any observer to give coordinates to events. This implies that any observer
must be able to construct three rods of unit length and display them orthogonally
with a right hand orientation. Moreover, it must be able to construct a clock. Both
rods and clocks are assumed to rise from physical experimentation. To make things
a bit more precise, let us highlight that given an event u 2 ⌦ the vector fO(u) will
consist of the time coordinate of u measured by O in the first position, and the space
coordinates of u measured by O in the three last positions.

Definition 1.1. Any map that arises as fO for some O is called an Intertial Reference
Frame (or IRF). From the physical point of view, we want to consider an IRF as an
unaccelerated observer moving through spacetime in a straight line which is able to
measure the space and time coordinates of all other events in the universe. That is
why we sometimes refer to an IRF as an inertial observer, when we want to emphasise
the physical picture.

Notice that when we set a particular IRF on the set of events ⌦, we are deciding what
event in ⌦ will correspond to the origin (i.e. the only point with zero space and time
coordinates), and also we are deciding what are we going to consider as right and left
(which determines completely the directions of front and back, and up and down). We
are also deciding what ahead in time is going to be while choosing a specific IRF.
For further purposes, we should specify what do we mean when we say that two IRFs
share the same origin. Two IRFs fO and fO0 are said to share origin if f�1

O
(0) = f

�1
O0 (0).

(2) Experimental fact: if two observers O and O0 follow the above procedure, then there
is an a�ne map g : R4 �! R4 such that fO0 = g � fO, i.e. g(x) = Ax + b for some
A 2 M4⇥4(R) and b 2 R4. This is actually an idealisation, since for example it has
been proven to be false in presence of strong gravity.

(3) We define speed of a moving particle as measured by O. If O sees a particle at events
⇠, ⇠

0 2 ⌦ with coordinates fO(⇠) = (t, x, y, z) and fO(⇠0) = (t0, x0
, y

0
, z

0) then the speed
is defined to be
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sO(⇠, ⇠
0) =

p
(x0 � x)2 + (y0 � y)2 + (z0 � z)2

t0 � t
.

The speed has some good and not so brilliant properties. On the one hand, it is an
intuitive concept, this is to say, speed is a property of moving particles we seem to
understand quite well. But then, it is obvious that in the general case, the speed of a
moving particle at events ⇠ and ⇠

0 will depend on the choice of observer fO : ⌦ �! R4

we make to record the coordinates of events ⇠ and ⇠
0.

We are going to introduce a magnitude called spacetime interval between two events
⇠ and ⇠

0 which will actually turn out to be well defined on ⌦⇥⌦. In other words, the
spacetime interval is going to be a map �s2 : ⌦ ⇥ ⌦ �! R, such that �s

2(⇠, ⇠0) will
not depend on the choice of observer we make to measure the coordinates of the pair
of events (⇠, ⇠0). For now we will define the spacetime interval between two events in
a particular reference frame O, and later on we shall see that, as a consequence of (4),
it is invariant under change of coordinates between inertial reference frames. For an
inertial observer O who gives coordinates fO(⇠) = (t, x, y, z) and fO(⇠0) = (t0, x0

, y
0
, z

0)
to events ⇠ and ⇠

0 in ⌦ respectively, we define the quantity �s
2
O
(⇠, ⇠0) as

�s
2
O
(⇠, ⇠0) = (t0 � t)2 � (x0 � x)2 � (y0 � y)2 � (z0 � z)2.

Note that if we call q : R4 �! R the quadratic form defined by q(t, x, y, z) = t
2�x

2�
y
2 � z

2, then �s
2
O
(⇠, ⇠0) can be put as

�s
2
O
(⇠, ⇠0) = q(fO(⇠

0)� fO(⇠)).

(4) Experimental fact: assume photons are at events ⇠ and ⇠
0, then sO(⇠, ⇠0) = sO0(⇠, ⇠0)

for any observers O, O0. We can make that speed be equal to 1 by specifying a correct
procedure in (1). This law is commonly known in physics as constancy of speed of

light, and it can be paraphrased as: “Light is always propagated in empty space with
a definite speed c which is independent of the state of motion of the emitting body”.
That is to say, the speed of light is the same when measured by any inertial observer.
Note that in this case, the spacetime interval between the events ⇠ and ⇠

0 is 0. This
experimental fact shows that when two events ⇠ and ⇠

0 are separated by a light beam,
then �s

2
O
(⇠, ⇠0) = �s

2
O0(⇠, ⇠0) = 0, for any choice of observers O and O0.

(5) Experimental fact: if a rod lies perpendicular to the relative velocity of two observers,
then the two observers agree on its length. This fact becomes useful when we try to
give a mathematical description of the transformation of coordinates between inertial
reference frames.

If we accept these facts, then roughly speaking the way one observer sees the other
observer’s measures of space and time must su↵er transformations, in order to make the
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speed of light equal for any inertial observer. We are actually able to work out exactly
how do the coordinates of an event recorded by two di↵erent IRFs should relate.

1.2 Consequences to the Assumptions

In this section we aim to give a motivation for the definition we will later on give of
the Lorentz group. The main result we wish to see is known as the invariance of the

spacetime interval, and it is summed up in the following theorem.

Theorem 1.2. Assume we have two di↵erent inertial reference frames fO and fO0 . Then
given any two events ⇠ and ⇠

0 in ⌦, the spacetime interval between them measured by O
and O0 is the same. That is to say,

�s
2
O
(⇠, ⇠0) = �s

2
O0(⇠, ⇠0).

A proof of this result can be found in Chapter 1.6 of [1]. It is a consequence of assumptions
(4) and (5) in the list of last section. The following corollary is important to motivate the
technical definition of the Lorentz group, as the group of isometries of spacetime which
leave the origin fixed.

Corollary 1.3. If observers O and O0 share the same origin, then the map g : R4 �! R4

from (2) is a homogeneous linear transformation and it preserves the quadratic form q.

Proof. The map g must satisfy fO0 = g �fO. Call ! = f
�1
O

(0) = f
�1
O0 (0) the event we refer

to as origin. Then imposing fO0(!) = (g � fO)(!) means that g(0) = 0. So the a�ne map
g is indeed homogeneous, as we wanted to show.
Moreover, the invariance of the spacetime interval says that �s2

O
(⇠,!) = �s

2
O0(⇠,!0), for

any ⇠ 2 ⌦. In other words,

q(fO0(⇠)� fO0(!)) = q(fO(⇠)� fO(!)).

Hence,
q(g � fO(⇠)) = q(fO(⇠)).

Because (1) assumes that fO is a bijection between ⌦ and R4, we get that q(g(x)) = q(x),
for all x 2 R4. Therefore the transformation of coordinates g preserves the quadratic form
q.

Because we will neglect the case where IRFs do not share the origin (and it is reasonable
to do so because a simple translation in spacetime will make two IRFs have the same
origin) we can say that in this context, the quadratic form is preserved by changes of
coordinates between IRFs. From now on, we will refer as Minkowski rotations to change
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of coordinates between IRFs with a shared origin. Thus the last corollary is saying that
it is a necessary condition for Minkowski rotations to preserve the quadratic form,

q : (t, x, y, z) 7! t
2 � x

2 � y
2 � z

2
.

Also, Minkowski rotations are assumed to keep the orientation of space and the direction
of time. So in other words, when dealing with IRFs with same origin

{Minkowski rotations} ✓
⇢

f : R4 ! R4 linear, q(x) = q(f(x)), x 2 R4

det f > 0 and e1 · f(e1) > 0

�
.

This observation gives a good starting point for working algebraically with the objects
we are interested in: transformations of coordinates between IRFs who share a common
origin. And this is of course because it gives a mathematical characterisation of these so
called Minkowski rotations. In fact, the right hand set, equipped with the composition
of linear maps, possesses a group structure and is what we call restricted Lorentz group.
The idea is that later on we will see that the inclusion of sets we had before is indeed
an equality. In other words, we will prove that elements in the restricted Lorentz group
are indeed Minkowski rotations between some IRFs with common origin (and this is
exactly what we want the restricted Lorentz group to be). It is worth mentioning that
the restricted Lorentz group is contained in what is called the Poincaré group. In the
latter, elements are transformations of coordinates between IRFs which may or may not
have a shared origin. So the Poincaré group deals with the more general picture.

1.3 Picturing the Elements of the Restricted Lorentz Group

It is good to start picturing what are the elements in the restricted Lorentz group are
going to look like, so let us work a bit more on our physical intuition to grasp the nature
of these transformations between IRFs. We ask ourselves what kind of di↵erences could
there be between two IRFs in the most general case (so this means that now we shall not
assume that IRFs share the same origin). It turns out that there are only three main
transformations of R4 which make two IRFs not be the same. In other words, given two
IRFs, with only three distinctive a�ne transformations of R4 we can send one to the
other. For this section, imagine we have two di↵erent observers O and O0 in spacetime
(i.e. two reference frames fO, fO0 : ⌦ �! R4).

Translations. These are transformations involving space and time. By applying a
translation to spacetime we get to connect the two di↵erent origins of both IRFs, and
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therefore it makes it possible to treat the two IRFs as if they initially coincide in space-
time. In other words, there exists a unique w 2 R4 such that

0O = 0O0 + w,

where 0O, 0O0 are the coordinates of the respective origins.

Rotations. These linear maps only involve space. It could perfectly be that what O
understands as right/left, front/back and up/down is not what the second does. By
rotating the first frame of reference in space, we get to an agreement of the directions of
space by the two observers. In a more formal way, there exists R 2 SO(3,R) such that

R(fO(⇠)) = fO0(⇠), for all ⇠ 2 ⌦.

Boosts. These are the transformations which intertwine space and time. Let us assume
we have made the convenient corrections for the two IRFs (this is, applied spacetime
translation and spatial rotation to the first to make it coincide with the second). So we
can assume that they agree on an origin and their spatial directions coincide. The only
way in which these two IRFs still cannot be the same is that it may happen that the two
observers are moving apart from each other at some relative velocity v 2 R3, pointing in
a certain direction in space. The boost determined by the velocity v is the connection
between the two IRF at this point. This will alter the scaling of the axes of the moving
IRF seen by the still IRF, so that if we are considering O to be still in space while O0

moves away from O at velocity v, it will shrink the spatial axis with the direction of v of
O0 as well as its time axis. This will result in an e↵ect of time dilatation when O looks
at the running clock of O0, and a space contraction when O looks at the spatial measures
on the axis given by the direction v of O0.

1.4 Derivation of the Formula of the Lorentz Boost

From among these three types of a�ne transformations, perhaps the one we have less
intuition upon is the boost. This is most likely because the notion of boost involves
the constancy of the speed of light, a postulate somewhat counterintuitive to our daily
experiences. We are going to inspect the standard version of the boost, this is the boost
in the x-axis.

Assume we have two IRFs O and O0 with a shared origin. Also, suppose that originally
their axes are collinear. Let us take the perspective of O first, and then say that the
frame O0 is moving away from O, which is still in space, at relative velocity v. We can
imagine a light pulse emitted at the origin that travels in a spherical wave at speed c.
The main point here is that the speed at which this light pulse travels through space will

8



1.4 Derivation of the Formula of the Lorentz Boost Guillem Cobos

be the same when measured by any inertial observer. Now, let P be a point in space
belonging to the light wavefront, which lays at distance r from O and distance r

0 from
O0. Let x, y, z be the spatial coordinates that O records of P , and similarly let t be the
time that O observes it takes for the light pulse emitted in the origin to get to P . A
symmetric construction applies for defining x

0
, y

0
, z

0 and t
0. From the very definition of

distance in space, we get
x
2 + y

2 + z
2 = r

2

x
02 + y

02 + z
02 = r

02

Then, by the constancy of speed of light postulated by special relativity, it must happen
that observer O and O0 see the light travelling at the same speed. Thus

r = ct

r
0 = ct

0
.

Let us start writing down the relations between the coordinates of P recorded by O and
the ones taken by O0. Since the relative velocity between the two observers is collinear
with the x-axis, we shall assume that the coordinates of P perpendicular to the x-axis
remain unchanged. So y

0 = y and z
0 = z. In other words, the directions perpendicular to

the relative velocity between the two observers don’t notice the e↵ect of the boost. We
are assuming that the transformation is linear, so of the form

x
0 = ↵x+ �t, (1)

for some ↵, � 2 R. We know the situation for x0 = 0, which is x = vt. Substituting in the
equation before we get that 0 = ↵vt+�t, therefore � = �↵v. And so the transformation
now looks like this

x
0 = ↵(x� vt). (2)

Now consider the inverse transformation of coordinates. This is, make observer O0 still
in space and let O be moving away from O0 at relative velocity �v. The whole procedure
is analogous, the bit where it di↵ers is when dealing with v in the transformations, we
now have to swap v for �v. As a result, we get

x = ↵(x0 + vt).

Combining equations (1) and (2) we get a linear constraint for t0, t and x of the form

t
0 = ↵t+

1� ↵
2

↵v
x.

But this is not it, since there is one more constraint we have to keep in mind. Recall
r
2 � c

2
t
2 = r

02 � c
2
t
02 = 0. In a more detailed fashion,

x
2 � ct

2 = x
02 � c

2
t
02
.
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Substituting in the values found for x0 and t
0 and setting equal the coe�cients of x2 in

both sides of the equation leads to

1 = ↵
2 � c

2

✓
1� ↵

2

↵v

◆2

.

Solving this quadratic equation for ↵ we get

↵ =
1q

1� v2

c2

,

which is often called the Lorentz factor. So now we have completely determined the
transformation of coordinates of an event P in the light cone between the frames O and
O0:

8
>>>>><

>>>>>:

t
0 = ↵t+

1� ↵
2

↵v
x

x
0 = ↵(x� vt)

y
0 = y

z
0 = z

(3)

where ↵ is the Lorentz factor. Now notice that (3) only applies in principle to coordinates
of events in the light cone. But we can extend linearly to get an endomorphism of R4.
This is because we can find a basis of R4 sitting inside the light cone, for example
{(1, 1, 0, 0), (1,�1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1)}. If the linear map is determined on these
vectors, then we get a unique linear map R4 ! R4 by extending linearly.

In the same way we defined the boost in the x-axis given a certain relative speed v 2 R,
we can define a boost in any vector in space w. The vector w will indeed represent the
relative velocity between the two inertial observers. The boost will once more tell us the
relation between the coordinates of events recorded by the two inertial observers falling
apart at velocity w. The way to obtain an expression for this transformation is pretty
straightforward. Let R 2 SO(3,R) be a rotation mapping R(w) = e1. Then if we call Bx

the boost in the direction x 2 R3 we have

Bw = R�1 � Be1 �R.
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2 The Lorentz Group

We are essentially treating how do IRFs with a common origin relate, this means how do
coordinates of events recorded by two IRF with the same origin transform. In order to
do that e�ciently, the starting assumption in that the set of events is identified with R4

with the standard basis, which can be viewed as a preferred or privileged inertial reference
frame.

2.1 Definition and First Consequences

Consider the vector space R4 with the standard basis {ei}1i4. In order to make notation
a bit more simple, we are not going to distinguish between a vector in R4 and its 4 ⇥ 1
real matrix representation with respect to the standard basis. This is due to the fact that
we will always be working with the standard basis, so there should not be any room for
ambiguity. In a similar way, we will generally notate indistinguishably an endomorphism
of R4 and its 4⇥ 4 real matrix representation in the standard basis. This is, we will refer
to linear transformations of R4 as 4⇥ 4 real matrices.

In this context, we define a bilinear form ⌘ : R4 ⇥ R4 �! R as follows. Let v, w 2 R4,
then we set:

⌘ (v, w) = v
T
Jw,

where

J =

0

BB@

1 0 0 0
0 �1 0 0
0 0 �1 0
0 0 0 �1

1

CCA 2 M4⇥4(R).

From now on, when referring to the bilinear form ⌘ applied to two vectors v, w 2 R4 we
will write simply (v, w) instead of ⌘ (v, w). It is convenient to point out how to compute
(x,y) given coordinates of vectors x and y in R4. If we write x = (t, x)T with t 2 R and
x 2 R3; and y = (s, y)T with s 2 R and y 2 R3 we can calculate:

(x,y) = ts� x · y,

where we are using the notation · to refer to the the dot product in R3. We must warn
that later on the same notation might be used as well to talk about the dot product in
R4.

Note that ⌘ is symmetric, i.e. for all v, w 2 R4 we have (v, w) = (w, v). Moreover, it is
non-degenerate which means that if (v, w) = 0 for all w 2 R4, then v = 0. Note that

11



2.1 Definition and First Consequences Guillem Cobos

(v, w) need not be positive (e.g. take v = w = e3 and notice (v, w) = �1). That is why
we cannot say ⌘ is an inner product. We shall give a name to the induced quadratic form
by ⌘,

q(x) = (x,x) = t
2 � kxk2.

The Minkowski norm of a vector v 2 R4 is defined to be

kvkM =
p
|q(v)|.

We should remark that ⌘ does not induce a norm, since k.kM fails to be subadditive.
Even though, the bilinear form ⌘ gives a useful generalisation of the concept of length
in the Minkowski space. We should carry on with a definition that will be useful in the
future. Together with the algebraic statement, we build up with physical intuition of the
concepts defined.

Definition 2.1. Let v 2 R4. We say that v is:

1. Time-like if ⌘(v, v) > 0. This happens if and only if there exists an IRF for which
v is a pure time direction.

2. Space-like if ⌘(v, v) < 0. This happens if and only if there exists an IRF for which
v is a pure space direction.

3. Light-like if ⌘(v, v) = 0. For every IRF we choose v will be an event on a light ray.

We want to consider those endomorphisms which preserve the bilinear form defined above.
Knowing that every endomorphism can be represented as an element in M4⇥4(R), we see
how to formalise the bilinear form preserving property. An endomorphism f represented
by the matrix A 2 M4⇥4(R) is said to preserve the bilinear form ( , ) if we have:

(v, w) = (f(v), f(w)) 8 v, w 2 R4
.

If we are thinking in terms of coordinates, this condition translates into:

v
T
Jw = (Av)TJAw = v

T
A

T
JAw 8 v, w 2 M4⇥1(R)

Because this property must be satisfied for all v, w 2 R4, we can say that A preserves
the bilinear form ⌘ if and only if it satisfies the equality J = A

T
JA. This leads to the

definition of the Lorentz group, as the set of endomorphisms of R4 preserving the bilinear
form ⌘.

12
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Definition 2.2. The Lorentz group (�, ·) is defined to be the set of all matrices inM4⇥4(R)
preserving the bilinear form ⌘, with the standard matrix multiplication as the defined
operation. Formally,

� = {A 2 M4⇥4(R) | J = A
T
JA}.

Remark 2.3. In the first section, when we introduced the restricted Lorentz group from
a physical point of view, we said that its underlying set was the set of endomorphisms
of R4 which preserved the quadratic form q, preserved the orientation of space and the
direction of time. We want to stress the fact that for a linear map f : R4 �! R4,
preserving the bilinear form ⌘ and the induced quadratic form q are equivalent things. It
is clear that is f preserves ⌘, then it also preserves q.
Conversely, assume q(f(v)) = q(v) for all v 2 R4. Then take two vectors v, w 2 R4 and
observe

q(f(v + w)) = (f(v + w), f(v + w))

= (f(v), f(v) + (fw), w)) + 2(f(v), f(w))

= q(f(v)) + q(f(w)) + 2(f(v), f(w)).

On the other hand,

q(v + w) = (v + w, v + w) = q(v) + q(w) + 2(v, w).

Using the fact that f preserves q(v) and q(w), when making equal the expressions of
q(f(v + w)) and q(v + w), we realise that it must happen

(v, w) = (f(v), f(w)),

which is exactly what we wanted to prove.

The first thing that should be checked is that � has a group structure with the standard
matrix multiplication. In the first place, we ask if � is closed under standard matrix
multiplication. This can be checked easily by taking two elements A,B 2 �, and seeing:

(AB)TJAB = B
T
A

T
JAB = B

T
JB = J.

So we just saw AB 2 �. Clearly, the operation is associative (property inherited by the
standard matrix multiplication in M4⇥4(R)). Moreover, the identity matrix I 2 M4⇥4(R)
lies in �. We are only left to show that every element has an inverse, but for that we will
need the following proposition.

Proposition 2.4. If A 2 �, then | detA| = 1.

13
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Proof. Because A is in �, we get that J = A
T
JA and so

det J = det(AT
JA) = detAT det J detA = (detA)2 det J.

But det J = �1, so we get (detA)2 = 1 i↵ | detA| = 1.

Using this property we deduce that every matrix in � is invertible, so indeed (�, ·) satisfies
the inverse element existence property. Moreover, the inverse of any matrix A 2 � also
lies in �, we just need to see that it preserves the form ⌘:

A
T
JA = J =) JA = (AT )�1

J =) J = (A�1)TJA�1
.

We are about to focus in the study of a subgroup of the Lorentz group called the restricted
Lorentz group, usually denoted as �"

+.

Definition 2.5. We call the restricted Lorentz group the set of those linear transforma-
tions A = (aij) 2 � preserving the orientation of space and whose first entry, namely a11,
is positive. Equivalently,

�"

+ = {A = (aij) 2 � | detA = 1, a11 > 0}.

We want to check that (�"

+, ·) is a subgroup of (�, ·). In order to do that, we’ll have to
work first on some definitions.

Definition 2.6. We call the null cone C ⇢ R4 the set of vectors v 2 R4 such that
⌘(v, v) = 0. The subset C+ consisting of those v 2 C such that v · e1 > 0 is called future
null cone. Similarly, we denote the set of vectors v 2 C such that v · e1 < 0 by C�, and
we call it the past null cone.

Notice that any transformation in the Lorentz group leaves C invariant. Let A 2 �,
then take y = Ax 2 A(C), and check that (y, y) = (Ax,Ax) = (x, x) = 0 since x 2 C.
Therefore AC ⇢ C. It is also worth noticing that C can be put as the disjoint union of
C+ and C�. All these properties are really useful and will be applied in the following
propositions.

Lemma 2.7. If A 2 �, then A
T 2 �.

Proof. From the matrix equation
A

T
JA = J

We take the inverse both sides
A

�1
J(AT )�1 = J

And so we get
J = AJA

T

14



2.1 Definition and First Consequences Guillem Cobos

The following proposition is going to be useful to characterise the restricted Lorentz group
in a more intuitive way.

Proposition 2.8. Let A = (aij) 2 �. We have one of the following situations:

1. a11 > 0 i↵ AC+ ⇢ C+ i↵ AC� ⇢ C�.

2. a11 < 0 i↵ AC+ ⇢ C� i↵ AC� ⇢ C+.

Proof. Suppose a11 > 0. Then, take x 2 C. It is clear that Ax will lie in C, since
(Ax,Ax) = (x, x) = 0. We just have to see that (Ax)1 = (Ax) · e1 > 0. We write the
matrix A in blocks as follows:

A =

✓
a11 u

T

v B

◆

where u 2 R3, v 2 R3 and B 2 M3⇥3(R). With this construction, observe that

a
2
11 � kuk2 = (Ae1, Ae1) = (e1, e1) = 1,

and a11 > 0, so a11 > kuk. Now an arbitrary element x 2 C+ has the form x = (kwk, w),
for some w 2 R3 \ {0}, and

(Ax)1 = a11kwk+ u
T · w � a11kwk � kukkwk = (a11 � kuk)kwk > 0.

Conversely, suppose AC+ ⇢ C+. Using the same notation as before, we define the vector:

m =

✓
1
w

◆

Where w 2 R3 is a unit vector orthogonal to u. Notice that m lies in C+. By hypothesis,
we know that Am 2 C+, which implies (Am)1 = a11 + u

T · w = a11 > 0.

We shall now proceed to prove that AC+ ⇢ C+ if and only if AC� ⇢ C�, whenever A 2 �.
Let x 2 C�. Notice that �x 2 C+, hence A(�x) 2 C+. Because A(�x) = �Ax 2 C+,
we get that Ax must be in C�. We would prove the converse in a similar way.

In order to prove 2, we will start with a matrix A 2 � such that A11 < 0. In that
case, we notice that �JA satisfies (�JA)11 = �A11 > 0. Therefore, it is equivalent
to have A11 < 0 or (�JA)11 > 0. By applying what we just proved, we can see that
(�JA)C+ ⇢ C+. By multiplying by minus the identity both sides, we get that the last
inclusion is equivalent to JAC+ ⇢ C�. Now, remember that J leaves the past null cone
invariant, hence last inclusion is same as AC+ ⇢ JC� ⇢ C�. Hence A sends C+ to C�.
On the other hand, if we start working from the inclusion (�JA)C� ⇢ C� provided by
the first part of the proposition, and we follow similar steps as before we get that A must
send C� to C+.

15



2.2 Topological Properties of the Lorentz Group Guillem Cobos

2.2 Topological Properties of the Lorentz Group

The Lorentz group, as a subset of M4⇥4(R) inherits the topology of R16. To make this a
little bit more precise, consider the composition

�
i����! M4⇥4(R)

j����! R16
,

where i is the natural inclusion of the subset � in M4⇥4(R), and j is the isomorphism of
vector spaces M4⇥4(R) and R16. So in this context, a subset U 2 � will be open i↵ there
is an open set V ⇢ R16 with the Euclidean topology such that U = (j � i)�1(V ). Notice
that this is nothing more than viewing � as a subset of R16, and giving it the subspace
topology.

Because we just made � a topological space, we can start considering its topological
properties. We will see that it is indeed disconnected, and has four connected components.
Using the topological structure of �, we will be able to show that �"

+ is normal subgroup
of index 4 in �. Informally, this will mean that the Lorentz group will consist of 4 disjoint
copies of �"

+.

Proposition 2.9. �"

+ is a subgroup of the Lorentz group of index 4 in �. Moreover, it
is a normal subgroup, and �/�"

+ is isomorphic to C
2
2 = (Z/2⇥ Z/2, ·).

Proof. We shall proceed in the following way. First of all, notice that {±I,±J} is a
subgroup of �. We want to build a continuous homomorphism from � to the multiplicative
Klein 4-group, which we will call C2

2 . Consider the continuous maps det : � �! {�1, 1}
and sgn(�)11 : � �! {�1, 1} defined as det(A) = detA and sgn(�)11(A) = sgn a11, for
all A = (aij) 2 �. We should highlight the fact that sgn(�)11 is well-defined as a map
thanks to Proposition 2.9, which tell us that a11 6= 0.

Then we can define a continuous map

✓ = (det, sgn(�)11) : � �! C
2
2

A 7�! (detA, sgn a11).

We shall proceed to prove that ✓ is a group homomorphism. We already know that
det : � �! C2 is a group homomorphism. So it su�ces to show that sgn(�)11 : � �! C2

satisfies the axioms of group homomorphism. It is clear that sgn(�)11 preserves the iden-
tity element. So we only need to see it preserves inverses and multiplication.

Start by showing sgn(�)11 preserves inversion. Let A 2 �, suppose (A)11 > 0. By the
proposition above we can tell that AC+ ⇢ C+ and AC� ⇢ C�. We argue by contradiction.
Suppose A

�1
C+ 6⇢ C+, this means there exists an x 2 C+ such that A

�1
x 2 C�, since

any A maps C into itself. Now it follows that A(A�1
x) must be in C�, because A maps

16
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C� into itself. But this contradicts our choice of x 2 C+. Therefore A�1
C+ ⇢ C+, and by

the preceding proposition, we get that (A�1)11 > 0, thus sgn(A�1) = sgnA11 = 1. Using
the last proposition, we would similarly get to see that, if A11 < 0, then sgn(A�1) = �1.

We now have to show the multiplicative property of sgn(�)11. Take A,B 2 �. Suppose
(AB)11 > 0, this means AB maps C+ into itself. There are only two possible cases. In
the first place, it could happen that both A and B map C+ into itself. In that case it
easy to see sgn(AB)11 = sgnA11 · sgnB11 = 1. Also, it could happen that B maps C+

into C� and A maps C� into C+. Then, by the last proposition, sgnA11 = sgnB11 = �1,
and sgn(AB)11 = sgnA11 · sgnB11 still holds.

Now, if (AB)11 < 0, the future null cone C+ is mapped to C� by AB. Reasoning by
cases, we deduce that either B maps C+ into C� and A leaves C� still, or B leaves
C+ still and A maps C+ into C�. In the former case, sgnB11 = �1 and sgnA11 = 1,
while in the latter it is the other way around. In both cases though it happens that
sgn(AB)11 = sgnA11 · sgnB11 = �1.

So we have seen there is a continuous homomorphism ✓ between � and C
2
2 . Notice that

the restriction of ✓ to the subgroup {±I,±J} yields to an isomorphism with C
2
2 . Thus

✓ is surjective. Define �"

+ = Ker ✓, and because we put �"

+ as the kernel of a group
homomorphism, we automatically get that it is a normal subgroup of �. Moreover, by
the first isomorphism theorem we get that �/�"

+
⇠= C

2
2 , and by the order of the group C

2
2

we can guess that the index of �"

+ will be 4.

It is worth seeing that, since �"

+ is a normal subgroup of �, the cosets of �"

+ in � form a
partition of �. This is indeed a general result from group theory, it falls directly from the
fact that ⇡ : � �! �/Ker ✓ is well defined and surjective. The cosets of �"

+ are disjoint
since ⇡ is a well defined map. Moreover, by the surjectiveness of ⇡ we can ensure that
the reunion of all the cosets give the whole group. So, we can write

� = �"

+ t (�I)�"

+ t J�"

+ t (�J)�"

+.

Observe that having �"

+ as the preimage of a continuous map allows us to say it is both
closed and open. Recall �"

+ = ✓
�1({1}, {1}). The codomain of ✓, namely C

2
2 gets the

subspace topology from R2, which is no other than the discrete topology on C
2
2 . Therefore

{(1, 1)} ⇢ C
2
2 is an open and closed subset, hence �"

+ = ✓
�1{(1, 1)} must be open and

closed. This fact is going to be of vital importance when trying to show that the restricted
Lorentz group is the connected component of the identity element.

Proposition 2.10. The Lorentz group is disconnected. The restricted Lorentz group is

17
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connected, and it is indeed the connected component of the identity element.

Proof. Consider the continuous homomorphism ✓ : � �! C
2
2 defined above. Recall that

if A 2 � then |(A)11| = |a11| � 1. Define j1 = �1 and j2 = 1 elements in R. Observe that
✓
�1({i}, {jk}) forms a closed disjoint cover of � for i = 1,�1 and k = 1, 2. Therefore �
cannot be connected.

Let us see now that �"

+ is connected. Define

P = {u 2 R4 | u1 > 0, (u, u) = 1}.

There is a homeomorphism � : R3 �! P given by �(x) = (
p

1 + kxk2, x), so P is path
connected. Also, using � and the Cauchy-Schwartz inequality we can check that (u, v) > 0
for all u, v 2 P . In fact, if we write u = (u1, x) and v = (v1, y) we can deduce from the
fact that they both belong to P , that kxk =

p
u
2
1 � 1 and kyk =

p
v
2
1 � 1. By using the

Cauchy-Schwartz inequality we get that

|hx, yi|  kxk kyk =
q

u
2
1 � 1

q
v
2
1 � 1 < u1v1.

Hence the product (u, v) = u1v1 � hx, yi will be strictly positive.

Now if we fix u, v 2 P we can define a linear map �uv : R4 �! R4 by

�uv(x) = x+ 2(x, u)v � (x, u+ v)

1 + (u, v)
(u+ v).

We must show two properties concerning �uv. First, we want to see that �uv 2 �+, for
all u, v 2 P . Later on, we will prove that �uv(u) = v, for any given u, v 2 P .

We start o↵ by seeing �uv 2 �, with u, v 2 P . It su�ces to show (�uv(x),�uv(x)) = (x, x),
for all x 2 R4. Later on we will argue how this implies that �uv preserves the bilinear

18
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form ⌘, and therefore is an element of �. So take x 2 R4, and expand

(�uv(x),�uv(x)) =

✓
x+ 2(x, u)v � (x, u+ v)

1 + (u, v)
(u+ v), x+ 2(x, u)v � (x, u+ v)

1 + (u, v)
(u+ v)

◆

= (x, x) + 2(x, u)(x, v)� (x, u+ v)

1 + (u, v)
(x, u+ v) + 2(x, u)(v, x)+

+ 4(x, u)2(v, v)� 2(x, u)
x, u+ v

1 + (u, v)
(v, u+ v)� (x, u+ v)

1 + (u, v)
(u+ v, x)+

� 2(x, u)(x, u+ v)

1 + (u, v)
(u+ v, v) +

(x, u+ v)2

[1 + (u, v)]2
(u+ v, u+ v).

So far we have just bilinearity and symmetry of the form ( , ). We now use the fact
that (u, u) = (v, v) = 1 to obtain simplifications such as (v, u + v) = 1 + (u, v) and
(u+ v, u+ v) = 2 + 2(u, v). Overall, we get a much more simplified expression

(�uv(x),�uv(x)) = (x, x) + 4(x, u)(x, v) + 4(x, u)2 � 4(x, u)(x, u+ v)

� 2
(x, u+ v)2

1 + (u, v)
+ 2

(x, u+ v)2

1 + (u, v)
=

= (x, x) + 4(x, u)(x, v) + 4(x, u)2 � 4(x, u)2 � 4(x, u)(x, v) =

= (x, x).

Once we have this result, we can argue by polarisation to prove that �uv preserves the
bilinear form ⌘. This is exactly the same proof that we did on Remark 2.3, which showed
that any linear map preserving the form q will actually preserve ⌘. Because the linear
map �uv preserves ⌘ we get that it must be an element of the Lorentz group.

We still have to show that �uv 2 �"

+. The first thing we check is that (�uv)11 is strictly
positive. Directly form the general expression of �uv we check

(�uv)11 = (e1,�uv(e1)) = 1 + u1v1 + (u2
1 � 1)v21 + (v21 � 1)u2

1 > 0.

We have used the fact that u, v 2 P when taking into account u1, v1 � 1.
Now we aim to demonstrate det�uv = 1. Observe that the orthogonal subspace to hu, vi
is a 2 dimensional real subspace of R4.

hu, vi0 = {x 2 R4 | (x, u) = (x, v) = 0}.

The subspace hu, vi0 is given by two linearly independent equations, namely (x, u) = 0
and (x, v) = 0, therefore dimhu, vi0 = 2. We can choose p, q 2 hu, vi0 linearly independent
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vectors, and we obtain a basis of R4 by putting {u, v, p, q}. Observe that, from the very
definition of �uv we get that �uv(p) = p and �uv(q) = q. We wish to give the matrix
of the endomorphism �uv in the basis specified above. Notice that �uv(u) = v and
�uv(v) = �u� 2(u, v)v. Hence

�uv =

0

BB@

0 �1 0 0
1 �2(u, v) 0 0
0 0 1 0
0 0 0 1

1

CCA ,

and det�uv = 1.

Finally put G = {g 2 �"

+ | ge1 = e1}. This is just the group of rotations of the space like
basis vectors e2, e3 and e4, therefore isomorphic to SO(3,R) and so connected. Define
µ : P ⇥ G �! �"

+ by µ(v, g) = �e1v � g. We check that µ is a homeomorphism. If we
achieve this, we will have shown �"

+ is connected, and we are using that connectedness is
a topologic invariant.

Let us define µ
�1 : �"

+ �! P ⇥ G by setting µ
�1(h) = (h(e1),�

�1
e1h(e1)

� h). Check that

µ
�1 is indeed the inverse of µ:

(µ � µ�1)(h) = �e1h(e1) � ��1
e1h(e1)

� h = h,

for all h 2 �"

+. To show that the composition µ
�1 � µ is the identity over P ⇥G, we will

need to recall the property �uv(u) = v, for all u, v 2 P . Also, to make things a bit more
clear, we will observere beforehand that µ(v, g)(e1) = (�e1v �g)(e1) = �e1v(e1) = v. Then,

(µ�1 � µ)(v, g) = (µ(v, g)(e1),�
�1
e1µ(v,g)(e1)

� µ(v, g)) = (v,��1
e1v � �e1v � g) = (v, g),

for all v 2 P and g 2 G. Therefore, µ and µ
�1 are inverse continuous maps, hence µ is a

homeomorphism.

Notice that any connected clopen set in a topological space di↵erent from the empty set
and the whole space must be a connected component. Now the restricted Lorentz group
is clopen, and it contains the identity, so it must be equal to the connected component
of the identity.

From the construction we made for this proof we can get some other results with a rather
physical flavour. We remind that from the point of view of special relativity, it is impor-
tant to determine how coordinates of events are transformed from one inertial reference
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frame to an other. Restricting our attention to only transformations of coordinates of
events between inertial reference frames with a shared origin in spacetime, it is not hard to
see that these have a group structure under composition, and we claim that this group is
indeed �"

+. Note that this is not completely obvious. On the one hand it is clear that any
transformation of coordinates between two IRFs with the same origin is going to preserve
the quadratic form q, the direction of time and the orientation of space. But conversely
it is not straightforward that any linear map R4 ! R4 preserving the quadratic form q,
the direction of time and the orientation of space will correspond to the transformation
of coordinates between two IRFs with a common origin. Take a look at the following
proposition, which pretends to make this result a little bit more clear.

Proposition 2.11. Any element in �"

+ can be put as the composite of a boost in a
space-like direction and a rotation of space.

Proof. Consider the isomorphism µ : P⇥G �! �"

+ defined in the proof of last proposition.
An element in the domain P ⇥ G consists of a pair (v, g) where v is a time-like vector,
and g is a rotation of the space-like basis formed by e2, e3 and e4. Let x be a linear
combination of the space-like basis e2, e3, e4. Then if we set v = (

p
1 + kxk2, x) 2 R4,

the map �e1,v : R4 �! R4 is a boost in the space-like direction of x.
The map µ is telling us that a vector in space and a rotation of space combined form an
element of �"

+, as we already knew. The fact that µ is an isomorphism (so in particular
µ is surjective) gives us the desired result.

Not only � is a topological space, but in fact it is a topological group. This is given
by the fact that multiplication is continuous, since the entries of AB are no other than
polynomials in the entries of A and B, if A,B 2 �. Also, inversion is continuous by
Cramer’s rule. In fact, multiplication and inversion are both smooth operations, so when
we give a smooth structure on � we will already be able to say that the Lorentz group is
a Lie group.

Proposition 2.12. The Lorentz group is a smooth submanifold of M4⇥4(R) of dimension
6.

Proof. Call M the vector space of all 4⇥ 4 real matrices. Consider the subspaces

U = {B 2 M | JBJ = �B
T}

V = {B 2 M | JBJ = B
T}.

It is actually an easy check to see that, indeed, U and V are vector subspaces of M . We
aim to show that, as vector subspaces, U and V have dimension 6 and 10, respectively.
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In order to do that, we will write down a generic matrix in M = M4⇥4(R), and we
will observe how the matrix equations defining the subspaces U and V translate into
conditions to the entries of our general matrix.

If we put B = (bji ) 2 M we realise that B 2 U if and only if B is of the form

B =

0

BB@

0 b
1
2 b

1
3 b

1
4

b
1
2 0 b

2
3 b

2
4

b
1
3 �b

2
3 0 b

3
4

b
1
4 �b

2
4 �b

3
4 0

1

CCA ,

with b
j
i 2 R for all 1  j < 4 and j < i  4. Similarly, a matrix A = (aji ) 2 M belongs

to V if and only if it is one of the form

A =

0

BB@

a
1
1 a

1
2 a

1
3 a

1
4

�a
1
2 a

2
2 a

2
3 a

2
4

�a
1
3 a

2
3 a

3
3 a

3
4

�a
1
4 a

2
4 a

3
4 a

4
4

1

CCA ,

with a
j
i 2 R for all 1  j  4 and j  i  4. Once we have seen this, it is quite straight

forward to see that dimU = 6 and dimV = 10. Also, since U \ V = {0}, we can deduce
that M = U � V . We are now going to construct a smooth map g : M �! V with the
intention of applying the regular value theorem. Put

g(A) = JA
T
JA� I,

we must show g is well defined, i.e. for all A 2 M we have g(A) 2 V . This is kind of a
straight forward proof, just need to check Jg(A)J = g(A)T , for all A 2 M . Indeed,

J(JAT
JA� I)J = A

T
JAJ � J

2 = A
T
JAJ � I = (JAT

JA� I)T .

Observe that � = g
�1({0}). We claim that 0 2 V is a regular value of g, i.e. dAg :

TAM �! T0V is surjective for all A 2 g
�1({0}). Because V is di↵eomorphic to R10, we

can just say T0V
⇠= V naturally. So what we are about to show now is the following

statement. If we fix any C 2 V ⇠= T0V , then we can find a smooth path � : I �! M

such that �(0) = A and (dAg)(�0(0)) = C, for all A 2 �. That would indeed prove dAg is
surjective.

Given A 2 � and C 2 V , define �(t) = A + t
2AC, a smooth path in M passing through

A at t = 0. Now

(dAg)(�
0(0)) =

d

dt
(g � �)

����
t=0

.
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It would be really convenient to work out an expression for (g � �)(t), a little bit of work
shows that

(g � �)(t) = J

✓
A+

t

2
AC

◆T

J

✓
A+

t

2
AC

◆
� I =

JA
T
JA� I +

t

2
(JAT

JAC + JC
T
A

T
JA) +O(t2).

Recall A 2 �, so JA
T
JA � I in the previous expression vanishes. Let us call O(t2) the

quadratic terms in the expression above. Taking into account the facts that JAT
JA = I

and JC
T = CJ , falling from A 2 � and C 2 V respectively, we can make the following

simplifications:
(g � �)(t) = tC +O(t2).

Hence we get that (dAg)(
1
2AC) = C, for all C 2 V and A 2 �. Now it is clear that dAg

is surjective.

We can apply the regular value theorem, which assures us that � = g
�1({0}) is a smooth

submanifold of M = M4⇥4(R) of dimension dimM � dimV = 16� 10 = 6.
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3 Structure of the Restricted Lorentz Group

We are interested in the group structure of �"

+. The main theorem in this section will
take some work to prove, but will certainly help in understanding the structure of the
restricted Lorentz group. Before stating it we need some definitions.

Definition 3.1. We will refer to the group of 2⇥2 invertible complex matrices as GL2(C).
This usually called the general linear group of degree 2 over C. It is useful to introduce
the notation for the subgroup of GL2(C) consisting of the non-zero complex multiples of
the identity matrix. So we put Z = {� I | � 2 C⇥}.

Definition 3.2. We will denote the group of 2 ⇥ 2 complex matrices with determinant
equal to 1 as SL2(C). It is widely known as the special linear group of degree 2 over C. Let
SZ be the normal subgroup of SL2(C) generated by � I 2 SL2(C), this is SZ = {I,� I}.
Observe that SZ = SL2(C) \ Z.

Definition 3.3. We can define PSL2(C) to be the quotient group SL2(C)/SZ. This
group is called the projective linear group of degree 2 over C.

Notice that we can also say PSL2(C) = GL2(C)/Z. Let us demonstrate why can we say
this. The proof is basically supported on the second isomorphism theorem for groups.
Observe that GL2(C) = SL2(C)Z, since any matrix A 2 GL2(C) can be written as
A = (detA�

1
2 A)·(detA 1

2 I). First factor clearly belongs to SL2(C) since has determinant
1. Since detA 2 C⇥, the second factor lies in Z. By the second isomorphism theorem,

SL2(C)/(SL2(C) \ Z) ⇠= SL2(C)Z/Z.

Hence we get the desired result SL2(C)/SZ ⇠= GL2(C)/Z.

Now that we have introduced the notation for the most commonly used groups in the
following section, we are ready to state what is going to be one of the big goals in this
project.

Theorem 3.4. The restricted Lorentz group �"

+ is isomorphic to PSL2(C).

In order to build such isomorphism of groups, we will need to introduce new spaces. The
idea underlying all the technical process that is about to come is the following. We will
take a four dimensional vector space V over R, and we will see that PSL2(C) acts on it.
This means, for every matrix in PSL2(C) the action will give us an automorphism of V .
Because, as we will prove later, the space V is isomorphic to R4, automorphisms of V
are in one to one correspondence with automorphisms of R4, i.e. non-singular matrices.
We will see that the automorphisms of R4 that arise from considering the group action
of PSL2(C) in the set V preserve the bilinear form ⌘, hence are elements of �.
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3.1 The Action of PSL2(C) on the Space of Hermitian Matrices

The space V introduced in the last paragraph of the previous section is indeed the four
dimensional vector space over the real numbers of the order 2 Hermitian matrices. It is
made more precise in the following definition.

Definition 3.5. The set of 2⇥ 2 Hermitian matrices V is defined to be

V = {A 2 M2⇥2(C) | A† = A},

where we are using the notation † with the following meaning: for any A = (aij) 2
M2⇥2(C), we set A† to mean the complex conjugate transpose, i.e. A† = AT = (aji).

It is an easy check that Hermitian complex 2 ⇥ 2 matrices have structure of R-vector
space of dimension 4. Indeed the following linear map describes an isomorphism between
R4 and V . Consider

p : R4 �! V,

defined as

p

0

BB@

t

x

y

z

1

CCA =

✓
t+ x y + iz

y � iz t� x

◆
, for all

0

BB@

t

x

y

z

1

CCA 2 R4
.

The map p is clearly linear. In order to prove that it is in fact an isomorphism of R-vector
spaces, we provide of an inverse, i.e. a linear map q : V �! R4 such that p � q = idV and
q � p = idR4 . Let q be defined by

q

✓
a b

c d

◆
=

1

2

0

BB@

a+ d

a� d

b+ c

i(c� b)

1

CCA , for all

✓
a b

c d

◆
2 V.

Thus V and R4 are isomorphic as R-vector spaces.

We are now ready to see in which way we are going to obtain an action from the group
PSL2(C) on V . Let U 2 GL2(C) and A 2 V . Let us define an operation ⇤ : GL2(C) ⇥
V �! V by setting

U ⇤ A =
1

| detU | · UAU
†
.

We check it is in fact well defined, i.e. for all U 2 GL2(C) and A 2 V , we must see that
U ⇤ A 2 V .

(U ⇤ A)† =
✓

1

| detU | · UAU
†

◆†

=
1

| detU | · U
††
A

†
U

† =
1

| detU | · UAU
† = U ⇤ A,
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where we have used the fact that U
†† = U for any U 2 M2⇥2(C) and A

† = A by
assumption.

Proposition 3.6. The map ⇤ : GL2(C)⇥V �! V is a group action of the matrix group
GL2(C) on the space of 2 ⇥ 2 complex Hermitian matrices. This action factors through
PSL2(C), and in fact gives an injection from PSL2(C) to Aut(V ).

Proof. We check that the two conditions we need for ⇤ to be a group action are satisfied.
In the first place, notice that I ⇤A = IAI

† = A, for all A 2 V . The second axiom
that need to be checked is the one that follows. For all U,W 2 GL2(C) we have that
(UW ) ⇤ A = U ⇤ (W ⇤ A). Indeed, we have

(UW ) ⇤ A =
1

| detUW | · (UW )A(UW )† =
1

| detU || detW | · U(WAW
†)U † =

=
1

| detU | · U(W ⇤ A)U † = U ⇤ (W ⇤ A).

So we get the desired result, this is that ⇤ is a group action of GL2(C) on V . It is
important to remark that, and this is a general result for group actions on sets, for every
U 2 GL2(C) we get an isomorphism �U from V to V (i.e. an automorphism) sending A

to �U(A) = U ⇤ A, for every A 2 V . Because of this result, we will think of the action ⇤
as a homomorphism A : GL2(C) �! Aut(V ). Notice that smoothness is guaranteed since
the domain of A is the invertible 2⇥ 2 complex matrices, therefore the complex modulus
of the determinant never vanishes.

Observe that, Z acts trivially on V . This means, if X 2 Z we have A(X) is the identity
on V . We check this by letting X = � I, with � 2 C⇥, and A 2 V

A(X)(A) = X ⇤ A =
1

| detX| ·XAX
† =

1

|�2| · � � A = A.

So the action factors through PSL2(C), i.e. we have group homomorphisms

A : GL2(C)
P��! PSL2(C)

Ã��! Aut(V )
U 7�! [U ] 7�! �U ,

where P is the canonical projection, and Ã is the well defined homomorphism induced by
the action of PSL2 on V , such that A = Ã � P.
In fact, we show now a stronger statement. We want to prove that the obtained homo-
morphism Ã is injective. For that we claim KerA = Z. In order to show this, we want
to consider the set of U 2 GL2(C) such that A(U) = �U = idV , i.e. U ⇤ A = A, for all
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A 2 V . We choose a basis (Ai)1i4 of V and discard those matrix in U 2 GL2(C) that
do not satisfy U ⇤ Ai = Ai for some i. Conversely, those matrix U 2 SL2(C) that satisfy
U ⇤ Ai = Ai for all i, will indeed be elements in KerA. The basis we choose for V is
Ai = p(ei). More explicitly,

A1 =

✓
1 0
0 1

◆
, A2 =

✓
0 1
1 0

◆
, A3 =

✓
0 i

�i 0

◆
, A4 =

✓
1 0
0 �1

◆
.

The condition U ⇤ A1 = A1 is equivalent to imposing UU
† = | detU | I. Notice that this

can be equivalently reformulated as U
† = | detU |U�1. Observe for a moment that this

implies that for any A 2 V , U ⇤ A = A and UA = AU are equivalent. Let us check

U ⇤ A =
1

| detU | · UAU
† =

1

| detU | · UA | detU | U�1 = UAU
�1 = A,

if and only if AU = UA. So, imposing U ⇤ A4 = A4 is the same as saying UA4 = A4U ,
and from this condition we see that U 2 GL2(C) must be of the form

U =

✓
a 0
0 b

◆
,

for some a, b 2 C⇥
. Moreover, the condition UA2 = A2U implies a = b. Thefore U 2 Z,

and we just proved that if we take any U 2 Z it happens that U ⇤ Ai = Ai, for all i.
Because Ai forms a basis of V , we get U ⇤ A = A for all A 2 V . Hence we just proved
KerA ⇢ Z, therefore KerA = Z. Applying the first isomorphism theorem we get the
desired result.

Now, because we are ultimately interested in describing an isomorphism between PSL2(C)
and the restricted Lorentz group (which is no other than a subgroup of the linear group
GL4(R)), we will focus on the relation between the automorphisms of V and those of
R4. Indeed, we will show that it is essentially the same to talk about automorphisms of
V and automorphisms of R4, i.e. elements of GL4(R). Recall the isomorphism we built
before p : R4 �! V , we have the following diagram

V
↵
// V

q
✏✏

R4

p

OO

�
// R4

where � = q � ↵ � p. Remember q was defined to be p
�1. Since the composition of

isomorphisms is an isomorphism, we get that, for every ↵ 2 Aut(V ), q � ↵ � p is an
element of GL4(R). So we get a linear map q⇤ : Aut(V ) �! GL4(R). We can also define
p⇤ : GL4(R) �! Aut(V ) linear map by setting p⇤(�) = p � � � q, for every � 2 GL4(R).
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We can easily check that q⇤ � p⇤ is the identity on GL4(R), and p⇤ � q⇤ is the identity on
Aut(V ). So q⇤ provides an isomorphism of groups between Aut(V ) and GL4(R). More-
over, q⇤ and p⇤ are linear maps, therefore smooth maps between manifolds. Therefore q⇤

is a di↵eomorphism between Aut(V ) and GL4(R).

Now that we know that GL4(R) and Aut(V ) are essentially the same (i.e. we have
isomorphisms q⇤ and p⇤ going from one to another) it is reasonable to ask for a character-
isation of p⇤(�), since � is contained in GL4(R). We fix the notation putting �0 := p⇤(�).
We start with the answer, and then we shall prove that it is indeed correct. So our
claim is that �0 = {↵ 2 Aut(V ) | det↵(A) = detA, for all A 2 V }. Observe that, if
x = (t, x, y, z)T 2 R4, then

det

✓
t+ x y + iz

y � iz t� x

◆
= t

2 � x
2 � y

2 � z
2
.

In other words, det(p(x)) = q(x). Roughly speaking, the isomorphism p translates the
quadratic form q in R4 into the determinant in V . So, starting with the definition of �
we see that

�0 = {p⇤(M) where M 2 GL4(R) | q(M x) = q(x), 8x 2 R4}.

But now this is the same as

{p⇤(M) where M 2 GL4(R) | det(p �M)(x) = det p(x), 8x 2 R4}.

Recall that p �M = p⇤(M) � p. Putting ↵ = p⇤(M) and V = p(x) we get

�0 = {↵ 2 Aut(V ) | det↵A = detA, 8A 2 V }.

For the making the work in the future more clear, we shall fix here a notation. We call
�0"

+ the image of �"

+ under the isomorphism p⇤, i.e. �0"

+ := p⇤(�
"

+).

Note 3.7. We will often be characterising spacetime (usually treated as R4) as the space
of 2⇥ 2 Hermitian matrices, V . And the jump from one to the other is simply provided
by the isomorphism p : R4 �! V defined previously. A clear advantage of dealing with
spacetime as the space V is that the quadratic form of an element in V is translated
into its determinant, which is a well understood and manageable tool. Similarly, many
manipulations concerning the Lorentz group are made much more easy if we think of it
as a subset of Aut(V ) instead of viewing it in the traditional way; this is, as a subset of
Aut(R4). And there is no problem in going from one point of view to the other since we
have an isomorphism p⇤ : Aut(R4) �! Aut(V ) which allows us to do so. During the rest
of the text, we have tried to make it clear when we are dealing with subsets of R4 or their

28



3.1 The Action of PSL2(C) on the Space of Hermitian Matrices Guillem Cobos

corresponding subsets of V . The notation used is always the same. If we let A ⇢ R4

then we call A0 = p(A) ⇢ V . On the other hand, if we have B ⇢ Aut(R4) then we call
B0 = p⇤(B) ⇢ Aut(V ). Hopefully with this note we will prevent confusion in further
reading.

The preceding work becomes now useful, when we intend to prove that there is a group
homomorphism from PSL2(C) to �. We formalise this result in the following proposition.

Proposition 3.8. The image of the group homomorphism A : GL2(C) �! Aut(V ), is
contained in �0.

Proof. We have to show that for all U 2 GL2(C) and A 2 V , A(U)(A) is an Hermitian
matrix and detA(U)(A) = detA. Firstly, because we already know U ⇤ A 2 V and V

is closed under real multiplication, we easily get that A(U)(A) 2 V . Let us see that
A(U) 2 End(V ) preserves the determinant:

detA(U)(A) =
det(UAU

†)

| detU |2 =
detU detA detU †

| detU |2 =
detU detA detU

| detU |2 = detA.

Note that that we have taken into account that A(U)(A) is a 2 ⇥ 2 matrix, therefore
constants jump out of the determinant with a square. We have also used the fact that
detU † = detU , for all U size 2 square complex matrix.

Proposition 3.9. We can define an injective group homomorphism from PSL2(C) to �.

Proof. From the proposition above A(U) = �U 2 �0, where U 2 GL2(C). Then, when
composing with q⇤ we get that (q⇤ � A)(U) 2 � for all U 2 GL2(C). And so, we get a
group homomorphism from GL2(C) to � by composing A with q⇤,

GL2(C)
A��! �0

q⇤��! �.

Moreover, by the last proposition, we have an injective homomorphism from PSL2(C) to
�

PSL2(C)
Ã��! �0

q⇤��! �.
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3.2 Using Smooth Structure of Groups to Show the Result

In order to prove that �"

+ is isomorphic to PSL2(C) we will need to work out some of
their properties as smooth manifolds.

Lemma 3.10. PSL2(C) and � are smooth manifolds of same dimension.

Proof. We have already shown that the dimension of � is 6. Now in this proof we aim
to show that PSL2(C) has also dimension 6. Recall the definition PSL2 C = SL2 C/h� Ii.
We are going to show that dimPSL2(C) = dimSL2(C).Take any U open neighbourhood
of I 2 SL2(C) with U \ (�U) = ;, for example

U =

⇢✓
a b

c d

◆
2 SL2(C) | <(a) > 0

�
.

Then the quotient map p : SL2(C) �! PSL2(C) restricts to a di↵eomorphism p|U : U �!
p(U). Notice that p(U) is an open neighbourhood of I 2 PSL2(C), which is at the same
time a 6-manifold since it comes from the image under a di↵eomorphism of an open
subset of SL2(C). Because left multiplication in a Lie group is a di↵eomorphism, we get
that any A 2 PSL2(C) has a neighbourhood homeomorphic to R6, since A · p(U) is a
6-manifold containing A. Hence, dimPSL2(C) = 6.

So it su�ces to show that dimSL2(C) = 6. Consider the smooth map f = det :
M2⇥2(C) �! C. We compute the derivative of f . Let A 2 M2⇥2(C), if we recall
that TAM2⇥2(C) ⇠= M2⇥2(C) for all A 2 M2⇥2(C) then dAf : M2⇥2(C) �! C. This can
be defined using curves through A. Define �X : I �! M2⇥2(C) as �(t) = A+ tX, where
X 2 M2⇥2(C). Then,

(dAf)(X) =
d

dt
(f � �X)

����
t=0

.

Now using Jacobi’s formula for the derivative of the determinant, we get

(dAf)(X) = tr

✓
Ad �X · d�X

dt

◆����
t=0

= tr (AdA ·X) .

Notice that 1 2 C is a regular value of f . This means, that for all A 2 f
�1(1) = SL2(C)

the map dAf is surjective. This shows no major inconvenience. Take any ↵ 2 C, and
define X = ↵

2 (AdA)
�1. Observe that, in fact we get (dAf)(X) = tr(↵2 · I) = ↵.

So as a result we get that SL2(C) is a smooth submanifold of M2⇥2(C) of dimension
dimM2⇥2(C)� dimC = 6.
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Proposition 3.11. Let us denote by a the restriction of A onto SL2(C). The map
q⇤ � a : SL2(C) �! � is an open homomorphism of Lie groups .

To proceed with the proof of this proposition, we need to use some tools concerning the
Lie group structure of PSL2(C). We will need the following lemma.

Lemma 3.12. Let G, H be Lie groups of same dimension, and let f : G �! H be a
smooth homomorphism such that dgf : TgG �! Tf(g)H is an isomorphism for all g 2 G.
Then f is open by the inverse function theorem.

Proof. This is actually a general topology fact. Take any open set U in G. The inverse
function theorem tells us that, for any p 2 U we can find an open neighbourhood of p,
call it Vp, and an open neighbourhood of f(p), say Wf (p) such that the restriction of f
to Vp gives a homeomorphism onto Wf(p). So this is, we have that

f |Vp : Vp �! Wf(p)

is a homeomorphism, for every p 2 U . Notice that we can decompose U as the union of
the open sets Vp \ U , for all p 2 U . That way we see

f(U) = f

 
[

p2U

Vp \ U

!
=

[

p2U

f |Vp(Vp \ U).

Recall each f |Vp ’s is a homeomorphism, which means f |Vp(Vp \U) is going to be open in
Wf(p), hence open in H. So f(U) must be open in H.

Now our problem turns into showing that dgf is an isomorphism for all g 2 G. We will
make use of the next lemma, which will take into account properties arising from the Lie
group structure of G and H.

Lemma 3.13. Let f : G �! H be a map between Lie groups. If def is an isomorphism
between TeG and Tf(e)H, where e represents the identity element of the group G, then
dgf is an isomorphism for all g 2 G.

Proof. Our starting point is our isomorphism of Lie groups f : G �! H, which satisfies
that def : TeG �! Te0H is an isomorphism. Note that we are writing e, e0 for the identity
elements of G and H respectively. By the inverse function theorem we get an open
neighbourhood V of e 2 G, such that the restriction of f on V gives a di↵eomorphism
from V onto its image. Notice that f(V ) will be an open neighbourhood of e0, since f |V
is a homeomorphism that maps e to e

0. We are aiming to find an open neighbourhood
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Wg of any given g 2 G, such that the restriction f |Wg is a di↵eomorphism onto its image.
We hope to do that by expressing f |Wg as the composition of certain di↵eromorphisms.

Recall that given any g in G, we define the left multiplication map Lg : G �! G by
setting Lg(x) = g · x, and because of the Lie group structure of G, we automatically get
that Lg is smooth. Moreover, we can define its inverse map L

�1
g = Lg�1 , which is also

smooth, and so Lg is a di↵eomorphism.

Now, fix an element g 2 G. Define Wg = Lg(V ), which is an open neighbourhood of g,
since we know Lg is a di↵eomorphism. We claim that the restriction of f over Wg can be
put as the composition of di↵eomorphisms, in the following fashion:

f |Wg = Lf(g) � f |V � Lg�1 .

For any x 2 Wg, we check that the composition is well defined, and because f preserves
the group structure, we get that f(Lf(g) � f |V � Lg�1)(x) = f(x) indeed. Therefore, f is
a di↵eomorphism in a neighbourhood of g, hence dgf is an isomorphism.

Let us bring all this theory into our specific frame. We have two Lie groups SL2(C) and
�0 with a homomorphism a going from the former to the latter. Our ultimate wish is to
calculate the derivative of a at the identity, and see that it gives an isomorphism of vector
spaces between TI SL2(C) and TI�0. Now we will not work with the derivative of a since
its domain is a rather specific linear subspace of GL2(C), which makes it a bit hard to
work with. Instead, our plan is to calculate the derivative of A, a homomorphism of Lie
groups between GL2(C) and �0 that extends by definition a to GL2(C). Therefore we can
sum up the situation in this diagram

GL2(C) A // �0

SL2(C).

i

OO

a

;;

We focus now on finding the derivative of A at the identity, but in order to do that, we
will have to previously work on the domain of such function. In other words, we will have
to characterise TI GL2(C). We claim that TI GL2(C) ⇠= M2⇥2(C). If for any X 2 M2⇥2(C)
we find a path through the identity, fully contained in GL2(C), such that its derivative
at the identity is X, we will see that X is in fact a tangent vector. This would mean
M2⇥2(C) ⇢ TI GL2(C), and since these two have the same dimension, we would get the
equaltiy.
For any X 2 M2⇥2(C), define � : I �! GL2(C) by �(t) = I+tX. It is well defined, since
det �(t) = 1 + t trXt + t

2 detX and by a continuity argument, we can find an interval
containing 0, call it J ⇢ I, for which det �(t) > 0, for all t 2 J . Therefore, X is a tangent
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vector to I 2 GL2(C).
In order to determine the codomain of dIA, i.e. the tangent space of �0 at the identity,
we will use the following lemma.

Lemma 3.14. Let E be a finite dimensional vector space and M a submanifold of E.
Call j : M ,! E the inclusion embedding. Then for all x 2 M , we have that TxM ✓ E.

Proof. The lemma doesn’t actually require a proof, but rather it needs to be explained
in a more detailed fashion. We know TxM and E are both vector spaces, but we need
to make more precise what we mean when we say that the former is contained in the
latter. Recall that a submanifold of E is actually a pair consisting of a smooth manifold
M and an embedding j : M ,! E. At any x 2 M , we have the di↵erential jx : TxM �!
Tj(x)E, which is an injective linear map. Recall that E is a smooth manifold and a finite
dimensional vector space at the same time, therefore di↵eomorphic to some Rn, and this
allows us to say that the tangent space of E at any given point of E will be isomorphic
(as a vector space) to E. Hence we will have Tj(x)E

⇠= E, for all x 2 M . Finally, this
justifies the fact that we think of elements in TxM as vectors of E.

Now this becomes useful when it comes to picturing who will TI�0 be. Because �0 is a
submanifold of End(V ), we get that TI�0 ⇢ End(V ).

We are now ready to calculate the derivative of A at the identity. Using the same notation
as before, let � be a smooth curve defined by �(t) = I+tX, where X 2 M2⇥2(C). Notice
that (dIA)(X) is an endomorphism of V , so we give its description by the action on A 2 V .
We calculate

(dIA)(X)(A) =
d

dt

����
0

(A � �)(A).

By some hand work we figure out an expression for (A � �)(A). Since A is fixed and the
expression will be t dependent, we write it this way:

(A � �)A(t) =
1

| det(I+tX)| · (I+tX)A(I + tX
†).

It is pretty straight forward to check that

(A � �)A(t) = �(t) ⇤ A =
1

| det(I+tX)| ·
⇥
A+ (XA+ AX

†)t
⇤
+O(t2).

Recall we are only interested in the linear term of (A��)A(t), since this will in fact be the
derivative of A evaluated in the direction X. Let us focus now on finding the polynomial
expansion of | det(I+tX)|�1. As we had seen before,
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det(I+tX) = 1 + trXt+ detXt
2
.

We now proceed to find a polynomial expansion for the complex modulus of det(I+tX).
Observe that, since we are only interested in the linear term, we can omit the quadratic
term of the expression above. We introduce now the notation ⇡ which means equality of
functions up to linear terms. So, what we found before is just det(I+tX) ⇡ 1 + t trX.
Now we are going to use the Maclaurin series of

p
1 + x up to linear terms, which statesp

1 + x ⇡ 1 + x
2 , in order to find the polynomial expansion of | det(I+tX)|.

| det(I+tX)| ⇡
p

(1 + <(trX)t)2 + (=(trX)t)2

We expand what is sitting inside the square root, and we only consider the expression up
to linear terms. Therefore, using Maclaurin’s series up to linear terms for

p
1 + x we get

| det(I + tX)| ⇡ 1 + <(trX)t.

We can imagine that t takes values in a rather small neighbourhood of 0 2 R such that
|<(trX)t| < 1, for all t. In that case we can apply the Maclaurin series of 1

1�x up to
linear terms, which is 1 + x, to get the desired polynomial expansion,

1

| det(I + tX)| ⇡
1

1 + <(trX)t
⇡ 1�<(trX)t.

And we are done finding the polynomial expansion of | det(I + tX)|�1 up to linear terms.
We now put it all together in order to determine the linear term of the polynomial
expansion of (A � �)A.

(A � �)A(t) =
(I+tX)A(I + tX

†)

| det(I+tX)| ⇡ (1�<(trX)t) · (A+ (XA+ AX
†)t)

Now the di↵erential of A at the identity in the X direction will simply be the derivative
of the right hand of the equation above evaluated at t = 0. And so it is now clear that
(dIA)(X)(A) = XA+ AX

† �<(trX)A.

Once we have got to this point it is worth remembering that our aim was to show that the
derivative of a (not A) at the identity gave an isomorphism of the tangent spaces TI SL2(C)
and TI�0. But we notice that SL2(C) is a submanifold of GL2(C), simply embedded in
GL2(C) by the inclusion map. In this context, it is easily shown that

dI A|TISL2(C) = dIa,
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and so we found our way of calculating dIa.

Notice this last equality makes sense, since any tangent vector X 2 TISL2(C) can be
expressed as the derivative of some smooth curve � fully contained in SL2(C) passing
through the identity at t = 0. So,

(dIA)(X) =
d

dt

����
0

(A � �) = d

dt

����
0

(a � �) = (dIa)(X).

So, if we are to study the restriction of dIA onto TI SL2(C), we need to know something
about TI SL2(C). We claim that TI SL2(C) is the set of square complex matrices of dimen-
sion 2 whose trace is null. Now, we consider the smooth map f = det : M2⇥2(C) �! C.
We know that TA SL2(C) = Ker dAf , for any A 2 SL2(C). In particular, taking A = I,
we get TI SL2(C) = Ker dIf = {X 2 M2⇥2(C) | tr(X) = 0}. For sake of simplicity, we
will call X this subspace of M2⇥2(C). It is a simple but important observation noticing
that X is a 6-dimensional R-vector space.

Recall that what we were trying to prove is that the linear map dIA : M2⇥2(C) �! TI�0

restricts to an isomorphism from X to TI�0. Our plan to get to this result is to show
that M2⇥2(C) = X �Ker dIA. In this case, by the first isomorphism theorem, we will get
an isomorphism from M2⇥2(C)/Ker dIA to Im dIA. Note that M2⇥2(C)/Ker dIA ⇠= X ,
therefore X ⇠= Im dIA . Because X has dimension 6, it follows that Im dIA is a 6-
dimensional subspace of TI�0. Hence Im dIA = TI�0, and we just showed

X = TISL2C ⇠= TI�
0
.

So we just need to find Ker dIA and show M2⇥2(C) = X �Ker dIA. We will sum up these
results in the following lemma.

Lemma 3.15. The kernel of dIA is a 2-dimensional subspace of M2⇥2(C), given by

Ker dIA =

⇢✓
x+ yi 0

0 x+ yi

◆
: x, y 2 R

�
.

Moreover, M2⇥2(C) can be decomposed as the direct sum of the subspaces X and Ker dIA.

Proof. We are going to start with a general 2⇥ 2 complex matrix

X =

✓
a b

c d

◆
2 M2⇥2(C),
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and we will suppose that X 2 Ker dIA. We take an Hermitian matrix A and impose
(dIA)(X)(A) = 0, equation from which we will extract restrictions for the coe�cients of
X. By letting

A =

✓
1 0
0 0

◆
2 V,

and imposing XA+AX
†�<(trX)A = 0, we get that c = 0 and <(a) = <(d). Similarly,

if we fix

A =

✓
0 0
0 1

◆
2 V,

and proceed in an analogous way, we get a new restriction for the matrix entries of X,
specifically we get b = 0. Once we have got to this point, it is worth assuming that our
general matrix X in the kernel of dIA is of the form

X =

✓
x+ yi 0

0 x+ zi

◆
: x, y, z 2 R.

By letting (dIA)(X) act on a general Hermitian matrix A = (aji ) 2 V , we see if we extract
any other restriction for the coe�cients of X from the equation (dIA)(X)(A) = 0. After
doing some calculations, it can be seen that

(dIA)(X)(A) =

✓
0 a

1
2(y � z)

a
2
1(z � y) 0

◆
.

It is clear that (dIA)(X)(A) = 0 for all A 2 V i↵ y = z. That way we just proved that a
complex 2⇥ 2 matrix is in Ker dIA i↵ it is of the form

X =

✓
x+ yi 0

0 x+ yi

◆
: x, y 2 R.

Now the rest of the lemma is quite obvious once we have got to this point. We only need
to observe that the trace of a nonzero matrix in Ker dIA will never be zero, therefore
X \Ker dIA = {0}. Arguing by dimensionality of the subspaces we get what we wanted,

M2⇥2(C) = X �Ker dIA.

So we have finally shown dIa = dIA|TISL2(C) is an isomorphism of vector spaces. Therefore
a : SL2(C) �! �0 is an open homomorphism of Lie groups. By composing with q⇤ we get
that q⇤ � a : SL2(C) �! � is an open homomorphism of Lie groups.
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We need to put all these things together in order to show the isomorphism between
PSL2(C) and �"

+. So far, we have the following diagram,

SL2(C)
p

✏✏

a
// �0

q⇤
// �

PSL2(C)
Ã

;;

What do we know about the maps q⇤ � a and q⇤ � Ã? Well, as we just proved, q⇤ � a is an
open homomorphism between Lie groups. We wish to extend this to q⇤ � Ã, meaning we
would like to say that q⇤ � Ã is a open homomorphisms between Lie groups. We already
know q⇤ � Ã is a smooth map preserving group structure, so just need to check openness.
From the very definition of the quotient topology (defined on PSL2(C) in our case), we get
that, if U is an open set in PSL2(C), then p�1(U) is open in SL2(C). Taking the image
of U open set in PSL2(C) by q⇤ � Ã,

(q⇤ � Ã)(U) = (q⇤ � a)(p�1(U)),

we realise that it must be open, since we just saw q⇤ � a is an open map.

We sum up the situation until now: we just got an injective open homomorphism q⇤ � Ã
between PSL2(C) and �. Because this is going to be of vital importance in our work,
we give such homomorphism a proper name, say  = q⇤ � Ã. It is a quite standard
result from general topology that an injective open map between two topological spaces
is a topological embedding. In other words, if X and Y are topological spaces, and
f : X �! Y is an injective continuous open map, then the induced map f : X �! f(X)
is a homeomorphism. In our case,  is a topological embedding, which means it is a
homeomorphism onto its image.

We now use another result from general topology, that states that connected components
are preserved under homeomorphisms. To make this proposition a bit more specific,
look at it in our context. We just proved the homeomorphism PSL2(C) ⇠=  (PSL2(C)),
which means  sends connected components in PSL2(C) to connected components in �.
But PSL2(C) is connected since it is a topological quotient of a connected space, namely
SL2(C). Therefore,  must send PSL2(C) to a connected component of �. Which one
should it be? It is clear that it ought to be the connected component of an element of �
which belongs to  (PSL2(C)). So take I 2 �, which surely belongs to Im since  is a
homomorphism of groups.

Recall we proved that �"

+ is the connected component of the identity. This means we
have the inclusion  (PSL2(C)) ✓ �"

+. But we are willing to show that equality holds. If
we show that  (PSL2(C)) is closed in � we will have shown the equality.
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 (PSL2(C)) is an open subgroup of �, and it follows that every coset of  (PSL2(C)) is
also open. However, the complement of  (PSL2(C)) is the union of all nontrivial cosets,
so it is open. It follows that  (PSL2(C)) is also closed.

In other words, this is telling us that the image of the map  is the restricted Lorentz
group. Summing up everything until now, we get that  is a smooth bijective open
homomorphism between PSL2(C) and �"

+, i.e. an isomorphism of Lie groups. Hence  
is the isomorphism we have been chasing,

 : PSL2(C)
⇠=��! �"

+.
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4 Conjugacy Classes of the Restricted Lorentz Group

The idea of conjugacy class is somewhat useful in the context of the rotation group
SO(3,R), because it provides a formal background to the intuitive idea of angle. If we
think of a rotation of angle ✓ in three dimensional space, we can picture many types
of them. They are going to di↵er one from another basically by the choice of rotation
axis we are making. But we obviously agree that they all have in common the fact that
they rotate by the same amount, i.e. by an angle of ✓. To formalise this, we just need to
comprehend what does it really mean for two rotations to have the same angle. We would
not be surprised if “having the same angle” was an equivalence relation in SO(3,R). So
two rotations R,L 2 SO(3,R) are going to be said to have the same angle when there
exists a third rotation S 2 SO(3,R) such that L can be expressed as rotating by S, then
applying R, and then undoing the rotation initially carried out by S. We will write it as
R ⇠ L, and this condition can be put in a formal statement as

R ⇠ L , 9S 2 SO(3,R) |S�1
RS = L.

The twiddle relation can be checked to be an equivalence relation. It gives us criteria for
classifying rotations in space (indeed any equivalence relation in SO(3,R) would). The
quotient set SO(3,R)/ ⇠ gives a description of all angles, and basically gives us an idea
of the amount of rotation being done.
We mimic the same strategy, but this time applied to the group �"

+, hoping that we
will get a good intuition on how rotations of spacetime can be di↵erent, modding out by
transformations of coordinates between two inertial observers.

4.1 Conjugacy Classes in PSL2(C)

Recall in the vector space Mn⇥n(R) we can define an equivalence relation ⇠ as follows.
Let A,B 2 Mn⇥n(R), then

A ⇠ B , 9 invertible U 2 Mn⇥n(R) such that U�1
AU = B.

This equivalence relation is called conjugacy, and by saying two matrices are conjugate
we will mean they are related by ⇠. Once we define the conjugacy relation, we are mainly
interested in finding its conjugacy classes.

In this section we aim to give a description of the conjugacy classes of the restricted
Lorentz group. Just to make it clear, we write down what we mean by a conjugacy class
of an element A in �"

+,
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[A] = {B 2 �"

+ | 9U 2 �"

+ A = UBU
�1}.

Recall last section ended with this isomorphism of Lie groups  : PSL2 C �! �"

+. This
means that from the classification of conjugacy classes in PSL2(C) we can obtain all the
information about conjugacy classes in �"

+. Let us review what we already know from
conjugacy classes in SL2(C), and that will lead to a better understanding of conjugacy
classes in PSL2(C). If we let

D� =

✓
� 0
0 1

�

◆
, � 2 C⇥

and

E+ =

✓
1 1
0 1

◆
, E� =

✓
�1 1
0 �1

◆
,

we have that any matrix in SL2(C) is conjugate to either E+, E� or D� for some � 2 C⇥.
To make ourselves clear, observe that we are not saying that the classes of the elements
E+, E� and D� for � 2 C⇥ are all di↵erent. Indeed, they are all di↵erent except for the
classes of the elements D� and D 1

�
, � 2 C⇥, which are the same.

Notice that in PSL2(C) the matrices D� and D�� become equal, hence their conjugacy
class becomes the same. Observe also that E+ and E� lie in the same conjugacy class in
PSL2(C). This can be easily checked by letting

U =

✓
1 0
0 �1

◆
,

and checking that UE+U
�1 = �E�. Recall in PSL2(C) the matrices E� and �E� be-

come the same element, which is conjugate to E+. So, essentially the conjugacy classes
in PSL2(C) are the ones with representatives D� with � 2 C⇥ and E+. Note that the
classes of the form D�, � 2 C⇥ are all di↵erent from the class of E+, but by no means
they are all di↵erent one from another.

Note 4.1. Throughout this section we have been managing conjugacy classes in PSL2(C)
with the following strategy. First, we described the conjugacy classes in SL2(C), and
then we projected the classes into the quotient PSL2(C), hoping that these will in fact
be included in some conjugacy classes in PSL2(C). It is worth commenting a few lines on
why this business works out well. Call p : SL2(C) ⇣ PSL2(C) the canonical projection,
we want to see that

p[A]SL2(C) ⇢ [pA]PSL2(C),
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for all A 2 SL2(C). Pick B 2 p[A]SL2(C), then there exists U 2 SL2(C) such that
A = UBU

�1. It is pretty clear that in the quotient p(A) will be conjugated to p(B)
since we will have p(A) = p(U)p(B)p(U)�1.

At this point we could leave it there, and get all the information we want to know about
the conjugacy classes in �"

+ via the isomorphism  : PSL2(C) �! �"

+. Nevertheless, if
we want to get a better understanding of the physical interpretation of the conjugacy
classes, it turns out we have to dig in how the groups PSL2(C) and �"

+ act on special

subsets of C2 and R4 respectively. These are going to end up being somehow what we
call the Riemann sphere and the celestial sphere. The following consists of introducing
these two very particular spaces.

4.2 The Celestial Sphere and the Riemann Sphere

Notice that R⇥ acts on the null cone C. This means, for all � 2 R⇥ we get an automor-
phism C �! C by sending x 7�! �x, where x 2 C. We call a ray an equivalence class
[x] = x R⇥, in other words a ray is an orbit of the action. By the properties of group
structure of R⇥, we know that the set of rays or orbits of points in C form a partition of
C. The associated equivalence relation is defined by putting x / y if and only if there
exists a � 2 R⇥ such that y = �x.

Definition 4.2. The celestial sphere C is defined to be the quotient of the action of R⇥ in
C, so C = {[x] = x R⇥ | x 2 C}. We can think of C as a topological space homeomorphic
to S

2 sitting in R4.

We will refer verbally as celestial sphere to both C and its image under the well-defined

map that p : R4
⇠=�! V induces on C. We introduce a bit of notation to discriminate

these two isomorphic topological spaces, C 0 = {p(x) | [x] 2 C}/(R⇥) = {A 2 V | detA =
0, A 6= 0}/(R⇥). Hence we will usually talk about elements in C 0 as null rays, i.e. sets of
the form R⇥ · A, where A 2 V is non-zero and detA = 0.

A common way to visualise the celestial sphere is by thinking of it as the Riemann sphere.
We go into a specific characterisation of the Riemann sphere.

Definition 4.3. Call P the set of 1-dimensional complex subspaces of C2. We can write
it as

P =
�
C · (z, w) | where (z, w) 2 C2

, (z, w) 6= (0, 0)
 
.

We claim that P is in bijective correspondence with the Riemann sphere. In a more
detailed fashion, we build such bijection S : P �! C [ {1}. Let L 2 P , we can assume
L = C · (z, w) with (z, w) 6= (0, 0), then
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S(L) =
⇢
z/w if w 6= 0
1 if w = 0.

So from now on, when we refer to P , we shall think of it as the Riemann sphere.

Let us observe that PSL2(C) acts on P . It is pretty clear that we get an action H :
GL2(C) �! Aut(P) defined by H(A)(L) = A(L), for all A 2 GL2(C) and L 2 P . This
is because invertible matrices send 1-dimensional subspaces to 1-dimensional subspaces.
Also, the identity matrix is sent by H to the identity permutation on P . Finally, because
the product of matrices is associative, we can say that H(AB) = H(A) � H(B). It can be
easily seen that the kernel of the group homomorphism H is the set of non-zero multiples
of the identity, and we called that Z. Hence by the first isomorphism theorem, we get a
unique group isomorphism h : GL2(C)/Z �! Aut(P). But recall GL2(C)/Z = PSL2(C),
thus not only can we say that PSL2(C) acts on P , but we can ensure the action provided
is transitive. This property actually falls directly from the fact that we have provided
a surjective group homomorphism from PSL2(C) to Aut(P). In a more clear way, if we
take L and L in P , there is always an automorphism ` 2 Aut(P) bringing L to L, and
because h is surjective, we ensure the existence of a g 2 PSL2(C) such that h(g) = `. So
overall, given any two elements L,L 2 P there exists a group element g 2 PSL2(C) such
that h(g) satisfies L = h(g)(L).

Moreover, �"

+ acts on C. In order to proceed, we first need to observe how an element of
�"

+ gives a permutation of C. We need to show that indeed an element of �"

+ sends rays
to rays. First, check that any A 2 �"

+ leaves the null cone C invariant. This means, for
all x 2 C then Ax 2 C, since (Ax,Ax) = (x, x) = 0. Because after all, A is a linear map,
it sends subspaces to subspaces. Thus the result, A sends rays to rays. Therefore, we get
this map

g : �"

+ �! Aut(C),

defined by g(A)([x]) = [Ax], for all A 2 �"

+ and [x] 2 C. We shall prove that g is a group
action. Obviously, the identity matrix is mapped to the identity permutation in C. The
product of two matrices in �"

+ is mapped by g to the composition of the two permutations
assigned to each factor, this falls from associativity of product of matrices.

Now the situation is the following. On the one hand, we have two isomorphic Lie groups
PSL2(C) and �"

+. Though they are essentially the same object, the former group moves

things that live in C2 (which is another way of saying that PSL2(C) is an order 2 matrix
group over C) while the restricted Lorentz group moves things living in R4.
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On the other hand, we have actions h : PSL2(C) �! AutP and g : �"

+ �! Aut C. We
believe we can define an isomorphism from P to C in a way that preserves the group
actions defined above. This is, we want to define a map

⇥ : P �! C

such that

⇥(h(g)(L)) = g( (g))(⇥(L)),

where g 2 PSL2(C) and L 2 P . Assuming that such ⇥ can be found, we express the
compatibility with the actions in a more intuitive way. Considering the isomorphism
⇥⇤ : AutP �! Aut C induced by the bijection ⇥ : P �! C defined in the natural way

⇥⇤(↵) : C �! C
x 7�! (⇥ � ↵ �⇥�1)(x),

for any ↵ 2 AutP . Then asking that ⇥ preserves the actions of PSL2(C) on P and �"

+

on C can be formulated as making the diagram

PSL2(C)  
//

h
✏✏

�"

+

g
✏✏

AutP ⇥⇤
// Aut C

commute.

Before finding ⇥, we take an intermediate step by defining ⇥0 : P �! C 0 as follows

⇥0 (C · (z, w)) = R⇥ ·
✓
zz zw

zw ww

◆
,

for all (z, w) 2 C2 \ {(0, 0)}. Notice that as we have just defined it, ⇥0 (C · (z, w)) is the
set of all non-zero real multiples of an Hermitian matrix with null determinant. Therefore
it is clear that ⇥0 sends 1-dimensional subspaces of C2 to elements in C 0. We are going to
show later that ⇥0 is the map we are looking for, since it is compatible with the action
of PSL2(C) on P and the action of �0"

+ on C 0.

The following proposition tells us that ⇥0 is precisely the map that we are searching.

Proposition 4.4. The map ⇥0 as defined above is an isomorphism between P and C 0.
Furthermore, it preserves the action of PSL2(C) on P and the action of �0"

+ on C 0.
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Proof. We attempt to define the inverse of the map ⇥0, and we shall call it ⇥0

⇤
: C 0 �! P .

Let R be a null ray in C 0, i.e. R = R⇥ · A for some non-zero Hermitian matrix A with
determinant zero. Notice that, if we view A as an element of End(C2), the previous
conditions on A imply that dimC ImA = 1. So we are tempted to directly set ⇥0

⇤
(R) =

ImA. And indeed this is going to be the final answer, but we still have to show it is
a well-defined choice. Suppose we have another matrix in the null ray R, say B 2 R.
Then there exists � 2 R⇥ such that B = �A, and so ImB = � ImA = ImA. And by
checking this we have seen that our definition of ⇥0

⇤
(R) does not depend upon the choice

of representative of the equivalence class R.

We now have to check that ⇥0

⇤
�⇥0 = idP and ⇥0�⇥0

⇤
= idC0 . First, let (z, w) 2 C2\{(0, 0)}

and check

(⇥0

⇤
�⇥0)(C(z, w)) = ⇥0

⇤

✓
R⇥

✓
zz zw

zw ww

◆◆

Suppose now that z 6= 0, in which case we have

(⇥0

⇤
�⇥0)(C(z, w)) = C(zz, wz) = C(z, w).

If w 6= 0 we have
C(zz, wz) = C(zw,ww) = C(z, w)).

Hence in any of the cases ⇥0

⇤
�⇥0 = idP holds.

Let now A = (aij)1i,j2 2 V such that A 6= 0 and detA = 0. Notice that this very last
condition is equivalent to a11a22 = a21a21. We will also take into account that a11 2 R,
since A is Hermitian, in other words a11 = a11. We distinguish two cases, according to
the value of a11. If a11 6= 0, then

(⇥0 �⇥0

⇤
)(R⇥

A) = ⇥0(ImA) = ⇥0(C(a11, a21)) = R⇥

✓
a11a11 a11a21

a11a21 a21a21

◆
= R⇥

✓
a11 a21

a21 a22

◆
.

Hence we get the desired result in this case. Let us check what happens whenever a11 = 0.
In this case, by the determinant condition we deduce that a12 = a21 = 0. Hence we are
forced to have a22 2 R⇥, since we cannot have A = 0. The image of A in that case will
be the 1-dimensional linear subspace C(0, a22). Hence,

(⇥0 �⇥0

⇤
)(R⇥

A) = R⇥

✓
0 0
0 a

2
22

◆
= R⇥

A.

Therefore, we can conclude that ⇥0 �⇥0

⇤
= idC0 .

Now we have to show that ⇥0 is compatible with the group actions of PSL2 C on P and �0

on C 0, namely h and g
0. In fact we show that ⇥0 preserves the action provided by GL2(C)
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on P and �0 on C 0. In other words, if we let X 2 GL2(C) and C(z, w) 2 P then we must
show

⇥0(H(X)(C(z, w))) = g(A(X))(⇥0(C(z, w))).
In simpler words, this is equivalent to showing

⇥0
XC(z, w) = X⇥0(C(z, w))X†

.

If we let X =

✓
a b

c d

◆
2 GL2(C), then the last condition can be written as

R⇥

✓
(az + bw)(az + bw) (az + bw)(cz + dw)
(az + bw)(cz + dw) (cz + dw)(cz + dw)

◆
= R⇥

✓
a b

c d

◆✓
zz zw

zw ww

◆✓
a c

b d

◆
.

These rays (i.e. elements in C 0) are indeed the same since their representatives are equal.
This means, the equality of sets before holds because the identity of matrices

✓
(az + bw)(az + bw) (az + bw)(cz + dw)
(az + bw)(cz + dw) (cz + dw)(cz + dw)

◆
=

✓
a b

c d

◆✓
zz zw

zw ww

◆✓
a c

b d

◆

is satisfied.

Note 4.5. We should not be worried about the fact that the equivariant isomorphism ⇥0

we found isn’t quite what we promised it would be. We wanted an equivariant isomor-
phism between P and C, but instead we provided an equivariant isomorphism between
P and C 0. But this is easily solved because we shall remember that p : R4 �! V induced
an isomorphism between C and C 0 which preserved the actions of the �"

+ on C and the
action of �0"

+ on C 0. So overall, we get that the following diagram

PSL2(C) Ã //

h
✏✏

 

%%

�0"

+
q⇤

//

g0
✏✏

�"

+

g
✏✏

AutP
⇥0

⇤

//

⇥⇤

99

Aut C 0

q⇤
// Aut C

commutes, since the two little squares do. And so we have checked that the map ⇥⇤ :
AutP �! Aut C induced by ⇥ = q �⇥0 is equivariant.

So at this point is where we can give a physical meaning to the conjugacy classes in �"

+,
translating the behaviours of the conjugacy classes in PSL2(C) on the Riemann sphere
into behaviours of conjugacy classes in �"

+ on the celestial sphere.
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4.3 Giving Meaning to Conjugacy Classes in �"+

First of all, note that eigenvectors of U 2 PSL2(C) give rise to fixed points for the action of
U on P . But remember we just built this isomorphism ⇥ : P �! C which is equivariant,
so this means that fixed points for the action of U in P correspond bijectively to fixed
points for the action of  (U) on C. As the reader can already suspect, conjugacy classes
come to play provided that eigenvector analysis of elements in PSL2(C) is essentially the
same as understanding of conjugacy classes in PSL2(C).
We are going to cover all the possible cases, meaning that we are going to study how does
 (U) look like in terms of geometry of spacetime for a representative U of any conjugacy
class in PSL2(C). For that we want to break the problem down into three distinctive
cases:

4.3.1 The Diagonalisable Over C Case

Let A be a matrix in SL2(C) conjugate to D� for � 2 C \ {1,�1, 0}. This means that A
has two linearly independent eigenvectors. The one dimensional subspaces generated by
such eigenvectors are invariant under the action of A. So this is telling us that the two
linearly independent eigenvectors of A yield to two distinct fixed points for the action of
A on P . Then we know that there are only two fixed points for the action of B =  (pA)
on C. We can take u1 and u2 to be linearly independent vectors in R4 generating the two
fixed null rays by  (pA). Because u1 and u2 generate 1-dimensional real subspaces lying
in the null cone C, we can assume that u1 and u2 have strictly positive time component
(i.e. u1 · e1 and u2 · e1 are strictly positive numbers).

Proposition 4.6. Let x and y be two non-zero linearly independent vectors in the null
cone. Then (x,y) 6= 0.

Proof. Let x = (t, x) and y = (s, y) be two non-zero linearly independent vectors in the
null cone. We can assume t, s > 0. We shall first see that x and y are forced to be linearly
independent vectors in R3. Suppose they are not, so there must exist a � 2 R⇥ for which
x = �y. Hence kxk2 = �

2kyk2. Recall both x and y are in the null cone, so we have
t
2 = kxk2 and s

2 = kyk2. Observe

t
2 = kxk2 = �

2kyk2 = �
2
s
2
.

Recall we had t, s > 0 so the equation above implies t = �s. Using this, we see

x = (t, x) = (�s,�y) = �(s, y) = �y.

And this is a contradiction, since our assumption was that x and y were linearly inde-
pendent vectors in R4.
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We shall remark that it is fine to assume t, s are strictly positive numbers. Suppose we
are given x = (t, x) and y = (s, y) where, for example, t < 0 and s > 0. Then we see
that �x is still a vector in the null cone whose first coordinate is now strictly positive. In
which case we know (�x,y) 6= 0 and so we can say (x,y) = �(�x,y) 6= 0. We proceed
similarly on the other cases.

Once we know that x and y are going to be linearly independent vectors in R3 we proceed,

(x,y) = ts� hx, yi > ts� kxkkyk = 0.

We have used Cauchy-Schwarz inequality. Recall that equality holds if and only if vectors
involved are linearly dependent, but in our case we are assuming x, y linearly independent
so strict inequality will hold.

From the last proposition, we have that our choice of u2 can be such that (u1, u2) = 1.
Now B fixes the null rays generated by u1 and u2, and at the same time it preserves the
relation (u1, u2) = 1. So there is a unique a 2 R+ such that Bu1 = au1. We can assume
a is positive because B 2 �"

+, so it cannot send the future null cone to the past null cone.
Also, B must preserve the null ray generated by u2, i.e. Bu2 is going to be a multiple of
u2, but from the condition (Bu1, Bu2) = 1 we are forced to have Bu2 = a

�1
u2.

Now B clearly preserves the subspace U = hu1, u2i. Let us check that it also preserves the
subspace V = {v 2 R4 : (v, u1) = (v, u2) = 0}, which can be said to be the orthogonal
complement of U under the Minkowski product. This is why we can sometimes refer to
V as U0. Let v 2 V , then

(Bv, u1) = (Bv, a
�1
Bu1) = a

�1(Bv,Bu1) = a
�1(v, u1) = 0.

Similarly it can be seen that (Bv, u2) = 0. Note that V is a 2-dimensional real subspace
of R4. In order to carry on with our procedure we would need to prove that the quadratic
form q is negative definite on the subspace V , in order to pick a basis for V formed by
two space-like vectors. We summarise this result in the following proposition.

Proposition 4.7. The quadratic form q is negative definite on V . This is, for any x in
V we have q(x) = (x,x) < 0.

Proof. Let us write x 2 V as x = (t, x) like we usually do, and we set u1 = (u0
1, u1) and

u2 = (u0
2, u2) we can write the two linear equations defining x 2 V as

⇢
tu

0
1 � hx, u1i = 0

tu
0
2 � hx, u2i = 0
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We can multiply both equations to get a new equation

t
2
u
0
1u

0
2 = hx, u1ihx, u2i.

We can take the absolute value both sides, and apply the Cauchy-Schwarz on the right
hand side

t
2|u0

1||u0
2| = |hx, u1i||hx, u2i|  kxk2ku1kku2k.

Now observe that since u1 is a null vector, it satisfies (u0
1)

2 = ku1k2. Therefore |u0
1| = ku1k.

Same argument applies for u2. From the inequation above we deduce that t
2  kxk2,

hence the result follows.

So we can choose a basis of V given by two vectors v3, v4 2 V such that (v3, v3) = (v4, v4) =
�1 and (v3, v4) = 0. Also, by defining v1 =

u1+u2p
2

and v2 =
u1�u2p

2
we get that v1, v2 form

a basis of U satisfying (v1, v1) = 1 and (v2, v2) = �1.

Well now, if we think about it, we have got an alternative basis for R4, composed by
the vectors which we have called vi, for 1  i  4. We convince ourselves that it is
indeed a basis of R4. It is clear that U = hv1, v2i and V = hv3, v4i, so it would be enough
to show that R4 = U � V . We already know that the dimensions of U and V add up
to 4 = dimR4, so we only need to see U \ V = {0}. Let x 2 U \ V , we can assume
x = �1u1 + �2u2, since x 2 U . The condition x 2 V forces the following situation to
happen. First, (x, u1) = �2 = 0 and (x, u2) = �1 = 0. And so x = 0.

So now consider the linear map C : R4 �! R4 which sends the standard basis to the
basis made up with vi’s we have just worked out, and define C to be the matrix form of
C in the standard basis. In other words, C maps ei 7! vi for all 1  i  4. Notice that
(ei, ei) = (vi, vi) = (Cei, Cei) for all 1  i  4, therefore C preserves the quadratic form
on a basis of R4, therefore it preserves the quadratic form everywhere by polarisation.
In other words, C 2 �. Further, C11 = C(e1) · e1 = v1 · e1 = u1+u1p

2
· e1 > 0, since we

chose u1, u2 to have strictly positive time component. This is telling us that C preserves
the direction of time. We aim to see that it also preserves the orientation of space, i.e.
detC is positive. Assume that the change of basis C has negative determinant. Then
replace v4 in the basis (vi)1i4 by �v4. Now the sign of the determinant of C will
change, so we will get detC > 0. Note C will still preserve the quadratic form since
(�v4,�v4) = (v4, v4) = (e4, e4) = �1. All together combined results in detC = 1. And
so we have checked everything we need to say C 2 �"

+.

If we work out a matrix B for the linear transformation B in the basis (vi)1i4, then
C�1BC is an element of the restricted Lorentz group, and it is indeed the matrix of B
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in the standard basis. Let us work out what the coe�cients of the matrix B should be.
Notice that from the relations

v1 =
u1 + u2p

2
, v2 =

u1 � u2p
2

,

we are able to get

u1 =
v1 + v2p

2
, u2 =

v1 � v2p
2

.

Hence it easy to determine the value of B(v1) as a linear combination of v1 and v2, by
just substituting

B(v1) = B

✓
u1 + u2p

2

◆
=

au1 + a
�1
u2p

2
=

(a+ a
�1)v1 + (a� a

�1)v2
2

.

Similarly, we find B(u2)

B(v2) = B

✓
u1 � u2p

2

◆
=

au1 � a
�1
u2p

2
=

(a� a
�1)v1 + (a+ a

�1)v2
2

.

We now proceed to find B(v3) and B(v4). Because we know that B leaves V invariant,
we can assume B(v3) and B(v4) are going to be of the form

B(v3) = ↵v3 + �v4

B(v4) = �v3 + �v4.

Taking into account the restrictions (v3, v3) = (v4, v4) = �1, (v3, v4) = 0 and the fact
that B must preserve the quadratic form, we obtain the following three restrictions for
↵, �, � and �: 8

<

:

↵
2 + �

2 = 1
�
2 + �

2 = 1
↵� + �� = 0.

Moreover, recall B =  (pA) is an element of �"

+, hence has determinant 1. This condition
happens to require

↵� � �� = 1.

There are actually no more restrictions for the action of B on V , which means that any
↵, �, �, � satisfying the last four constraints will be valid. The set of solutions can be
parametrised by ✓ 2 R the following way

✓
↵ �

� �

◆
=

✓
cos ✓ � sin ✓
sin ✓ cos ✓

◆
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The notation suggests strongly that the action of B on V is a rotation of space of angle
✓ along v2. Note that B is a specific element in �"

+, which means that it determines a

unique ✓ 2 [0, 2⇡) by ✓ = \v3B(v3) = \v4B(v4).

So, along the way two real values a and ✓ appeared as parameters completely determined
by A 2 SL2(C). Knowing these values allow us to write down the matrix of B in the
basis (vi)1i4, which is

P (a, ✓) =

0

BB@

a+a�1

2
a�a�1

2 0 0
a�a�1

2
a+a�1

2 0 0
0 0 cos ✓ � sin ✓
0 0 sin ✓ cos ✓

1

CCA

We shall remark that by our construction, values of (a, ✓) could be any in R+ ⇥ [0, 2⇡).
More precisely, if we choose any (a, ✓) 2 R+ ⇥ [0, 2⇡) then P (a, ✓) 2 �"

+. Hence, undoing
the procedure developed in this section we could be able to find A 2 SL2(C) such that
a is an eigenvalue of B =  (pA) and ✓ is the angle of the rotation B =  (pA) applies
to a space-like basis. So we start suspecting that there might be some kind of relation
between possible values of a and ✓ and conjugacy classes in �"

+. Indeed, we will see in a
bit that there is a relation

{(a, ✓) : a 2 (0, 1], ✓ 2 [0, 2⇡)} ⇢ {Conjugacy Classes in �"

+}.

We find out when two matrices of the form P (a, ✓) and P (a0, ✓0) are conjugate in �"

+. It
is a necessary condition for that to happen that P (a, ✓) and P (a0, ✓0) are conjugate in
M4⇥4(R). For such thing to be true we need the eigenvalues of both matrices be the same.
Let us find which are the eigenvalues of a matrix of the form P (a, ✓), by considering its
characteristic polynomial. This is

pa,✓(x) =
�
x
2 � (a+ a

�1)x+ 1
� �

x
2 � 2 cos ✓x+ 1

�
,

which has 2 real roots and 2 non-real complex roots. These are

(a, a�1
, e

i✓
, e

�i✓)

There are only 4 cases in which the eigenvalues of P (a, ✓) are the same as the ones of
P (a0, ✓0). These happen when a

0 = a
±1 and ✓

0 = ±✓. This is telling us interesting things
about the conjugacy classes of P (a, ✓) inM4⇥4(R). Observe that by restricting the domain
of a to (0, 1] ✓ R+ and the one of ✓ to [0, 2⇡), the result above tells us that two matrices
of the form P (a, ✓) and P (a0, ✓0) cannot be conjugate in M4⇥4(R), since their eigenvalues
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are not the same. Hence they won’t be conjugate in �"

+ either. We can formulate this in
other words, by saying that the map

(0, 1]⇥ [0, 2⇡) �! �"

+/ ⇠
(a, ✓) 7�! [P (a, ✓)]

is injective. Meaning that every (a, ✓) 2 (0, 1]⇥ [0, 2⇡) will give rise to a di↵erent conju-
gacy class in �"

+.

We shall now give a physical interpretation to the conjugacy classes obtained in this
case. Observe that we found an observer for which B looks like a boost in the space-like
direction v1 together with a rotation of angle ✓ along the v2 space-like direction. This is
formulated equivalently in a more algebraic way saying that we found an element C 2 �"

+

for which the linear map CBC
�1 had the matrix form of P (a, ✓). Let us stress the fact

that C is representing the change of coordinates between two observers. More specifically,
it is sending coordinates of an event recorded by the first observer (i.e. coordinates in
the standard basis (ei)1i4) to coordinates of the same event viewed from the second
observer’s perspective (i.e. coordinates in the basis (vi)1i4). And so, it is easy to work
out how does the second observer sees B act on spacetime. We distinguish two cases,
according to possible values of a exhibiting di↵erent behaviours.

• Suppose a = 1. Then

P (1, ✓) =

0

BB@

1 0 0 0
0 1 0 0
0 0 cos ✓ � sin ✓
0 0 sin ✓ cos ✓

1

CCA ,

hence second observer sees B as a pure spatial rotation along the direction of v2.

• For a 2 (0, 1), we can break down the linear transformation B expressed in the
basis ((vi)1i4) into two smaller bits. Firstly, it acts as a boost in the space-
like direction v2. Moreover, it rotates the subspace spanned by the the space-like
directions v2, v3, v4 along the v2 direction by an angle of ✓. Considering the case
✓ 6= 0 we obtain what is known as a screw. If we take the rotation angle ✓ to be 0,
then we get a transformation known as boost.

4.3.2 The Parabolic Case

Let A be conjugated to E+ in PSL2(C), then there is only one 1-dimensional complex
subspace which is invariant for A. As a result, we get one single fixed point for the
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action of A on the Riemann sphere P . Observe that this single fixed point in P can be
whichever, since we can always find a conjugated element in PSL2(C) to E+ such that
fixes any 1-dimensional subspace of C2. In terms of the geometry of spacetime, we see
that B =  (pA) fixes a light-like ray, and moreover the elements in this conjugacy class
are called null rotations. Similarly to what we did before, we work out the canonical
form of a null rotation.

We claim that B has an invariant subspace of dimension 2 of the form hk, xi, where k is
a null vector and x is a space-like vector. From a more general standpoint, we know that
any endomorphism of R4 must possess an invariant 2-space. This follows from the fact
that the minimal polynomial equation satisfied by the endomorphism factorises, over the
real field, into factors of degree at most 2.

We have to bear in mind that, when dealing with Lorentz transformations, there is always
at least one invariant subspace generated by some light-like vector. This can be seen as
consequence of the fact that any U 2 PSL2(C) always has an invariant one-dimensional
complex subspace of C2.

So our Lorentz transformation B =  (pA) must leave a 2-dimensional subspace of R4

invariant, which must contain exactly a 1-dimensional subspace in the null cone. It is not
hard to prove that this 2-dimensional invariant subspace V we are after must be of the
form V = hk, xi, where k is a null vector and x is a space-like vector. It is a demand for
V to contain a 1-dimensional subspace generated by a light-like vector, so we can pick k

in the null cone such that hki ⇢ V. Now let x be a linearly independent vector to k such
that V = hk, xi. Clearly x cannot be light-like, or else B would have two di↵erent fixed
null rays. So assume (x, x) 6= 0 and observe that we are looking for circumstances under
which

q(�k + µx) 6= 0,

for all �, µ 2 R excepting the case � = µ = 0. Or equivalently, we want to know when

q(k + �x) 6= 0,

for all � 2 R⇥. Let us study the possible solution on � of the following equation:

(k + �x, k + �x) = 2�(k, x) + �
2(x, x) = 0.

Check that if (k, x) 6= 0 then when can always find � 6= 0 such that the equation above
is satisfied. Instead, when we require (k, x) = 0, then the equation above has no solution
for � 2 R⇥. We now claim that requiring (k, x) = 0 and (x, x) 6= 0 implies that x must
be space-like. If we let k = (k0, ks) and similarly x = (x0, xs) then (k, x) = 0 implies

|k0x0| = |hks, xsi|  kkskkxsk.
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Because k is light-like, we have |k0| = kksk. So we obtain |x0|  kxsk, or in other words,
x space-like. Notice that we can perfectly choose x to satisfy (x, x) = �1.

We now choose a basis {k, l, x, y} of R4, where k and x are the vectors described above;
y is a space-like vector linearly independent to x satisfying (y, y) = �1 and (x, y) = 0,
and l is a light-like vector not belonging to the subspace spanned by k. Consider the
following facts:

1. The null space hki is invariant for B.

2. The subspaces hk, xi and hk, xi0 = {v 2 R4 : (k, v) = (x, v) = 0} = hk, yi are
invariant for B.

Using the isometric property of B 2 �"

+ we find that

8
<

:

B(k) = µk, B(x) = ±x+ ↵k, B(y) = ±y + �k

B(l) = µ
�1

✓
l ± ↵x± �y +

1

2
(↵2 + �

2)k

◆
(4)

where µ,↵, � are scalars. Recall that B is an element of �"

+, so it maps the future null
cone to itself, therefore µ > 0. We are willing to show that µ = 1, and we need two
general results about the restricted Lorentz group to do so.

Proposition 4.8. Assume µ is an eigenvalue of A 2 �"

+. Then µ
�1 is also an eigenvalue

of A.

Proof. Let A be an element of �"

+, for which µ is an eigenvalue. As a remark, we shall
say that µ cannot be 0, since any element of the Lorentz group is invertible. Because
of the isometric property of the Lorentz transformations, it follows that A�1 = J

�1
A

T
J .

Now observe that A�1 � µ I = J
�1(AT � µ I)J . And so

det(A�1 � µ I) = (det J)�1 det(AT � µ I) det J = det(A� µ I) = 0,

taking into account that µ is an eigenvalue of A. Finally, check that

A
�1 � µ I = A

�1(I�µA) = (�µA
�1)(A� µ

�1 I).

This means that det(A� µ
�1 I) = 0, which makes µ�1 an eigenvalue of A.

Assume the eigenvalue µ for which B(k) = µk is di↵erent than 1, then according to
the last proposition, µ

�1 is an eigenvalue of B as well. If we call k̃ a corresponding
eigenvector, we see that because µ 6= µ

�1, k and k̃ must be linearly independent.
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Proposition 4.9. Let A 2 �"

+ such that there exists µ 6= ±1 scalar and v vector such
that A(v) = µv. Then the vector v is light-like.

Proof. From the isometric property of A, we have that (v, v) = (A(v), A(v)) = µ
2(v, v).

Because we are assuming |µ| 6= 1, it follows that (v, v) must be 0.

Since the eigenvalue |µ| 6= 1, we deduce that k̃ is a light-like vector. Notice that we have
obtained another invariant 1-subspace of the null cone for B, namely hk̃i. But it was a
requisite that our Lorentz transformation B only fixed one ray in the null cone. It follows
that µ = 1.

It must happen that detB = 1, so it must either take all the upper signs or the lower ones
throughout (4). If it takes the lower signs, then we can change basis to x

0 = x� 1
2↵k and

y
0 = y � 1

2�k and get B(x0) = �x
0 and B(y0) = �y

0. Therefore the space-like subspace
spanned by x

0 and y
0 is invariant for B. The invariance of a space-like 2-subspace can be

shown to imply that B is not a null rotation (see reference [2]).

Finally, the only case left to consider is

8
<

:

B(k) = k, B(x) = x+ ↵k, B(y) = y + �k

B(l) = l + ↵x+ �y +
1

2
(↵2 + �

2)k

By change of orthonormal basis

x
0 =

↵x+ �yp
↵2 + �2

, y
0 =

↵x� �yp
↵2 + �2

,

and using the re-scalings of k and l

k
0 =

p
↵2 + �2k, l

0 =
lp

↵2 + �2
,

we get that the Lorentz transformationB has a simple matrix form in the basis {k0
, l

0
, x

0
, y

0},
given by

Q =

0

BB@

1 1
2 1 0

0 1 0 0
0 1 1 0
0 0 0 1

1

CCA .

As a result, we can say that all null rotations will be conjugated to Q.
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4.3.3 The Trivial Case

A = I. Notice that in SL2(C), the conjugacy class of the identity matrix is {I,� I}. Hence
in PSL2(C) the class of the identity element is a singleton. Since  is a homomorphism,
we get directly that  (pA) = I 2 GL4(R), hence this case is trivial.
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