
Tyler R. Josephson
AI & Theory-Oriented Molecular Science (ATOMS) Lab

University of Maryland, Baltimore County

Twitter: @trjosephson
Email: tjo@umbc.edu

Lean for Scientists and Engineers

Lemonade
PIKASONIC

https://twitter.com/trjosephson


Lean for Scientists and Engineers 2024

1. Logic and proofs for scientists and engineers
1. Introduction to theorem proving
2. Writing proofs in Lean
3. Formalizing derivations in science and engineering

2. Functional programming in Lean 4
1. Functional vs. imperative programming
2. Numerical vs. symbolic mathematics
3. Writing executable programs in Lean

3. Provably-correct programs for scientific computing



Schedule (tentative)
July 9, 2024 Introduction to Lean and proofs

July 10, 2024 Equalities and inequalities

July 16, 2024 Proofs with structure

July 17, 2024 Proofs with structure II

July 23, 2024 Proofs about functions; types

July 24, 2024 Calculus-based-proofs

July 30-31, 2024 Prof. Josephson traveling

August 6, 2024 Functions, definitions, structures, recursion

August 8, 2024 Polymorphic functions for floats and reals, compiling Lean to C

August 13, 2024 Input / output, lists, arrays, and indexing

August 14, 2024 Lists, arrays, indexing, and matrices

August 20, 2024 LeanMD & BET Analysis in Lean

August 21, 2024 SciLean tutorial, by Tomáš Skřivan

Logic and proofs for scientists and engineers
Functional programming in Lean 4
Provably-correct programs for scientific computing

Guest instructor: Tomáš Skřivan

Content inspired by:
Mechanics of Proof, by Heather Macbeth
Functional Programming in Lean, by David Christiansen



Schedule for today

1. Survey for attendees
2. Recap Lecture 2

1. Revisit syntax vs. semantics

3. Proofs with intermediate steps
4. Proofs using lemmas from Mathlib
5. Junk values, and why 1/0 = 0
6. Logical operators
7. Proofs with AND and OR



Survey for attendees

https://forms.gle/pg5JGpTgD1aSCshY6

Poll questions:
How many hours did you spend with Lean last week (including time in 
class / listening to recordings?)

Did you explore more Mechanics of Proof exercises from Chapter 1?

https://forms.gle/pg5JGpTgD1aSCshY6


All possible
combinations

of words

Grammatically-
correct sentences

Syntax vs. semantics in natural language

Reality

Language

True or False about
entities in real life

Syntax

Syntax is about grammar
Semantics is about meaningMeaningful, true 

sentences

Slide from Lecture 2



All possible
combinations

of symbols

Logically valid 
statements

Syntax vs. semantics in logic

Reality

Language

Syntax

Syntax is about grammar
Semantics is about meaning

Valid arguments have correct logic
Sound arguments are valid and 
also have true premises

True or False about
entities in real life

Logically sound 
statements

Slide from Lecture 2



All possible
combinations

of symbols

Logically valid 
statements

Reality

Pure math
Syntax

True or False about
entities in real life

Realistic models

Scientific models Symbolic models

True or False about
entities in the model

Computable 
models

Semantic errors in scientific computing

Is approximation method valid?
Is it accurate? 

Slide from Lecture 2



All possible
combinations

of symbols

Logically valid 
statements

Reality

Pure math
Syntax

Code

Scientific models Symbolic models Computable 
models

Syntax and semantics in scientific computing

Reality

Scientific software



All possible
combinations

of symbols

Logically valid 
statements

Syntax

Code

Symbolic models Computable 
models

Syntax and semantics in scientific computing

Reality

Traditionally, the 
validity of the 
mathematics and the 
scientific theory are 
established by hand

Humans read the theory 
and write the code as 
best as they can

Then use various automated 
and manual means to 
compare to experiment



All possible
combinations

of symbols

Logically valid 
statements

Syntax

Code

Symbolic models Computable 
models

Syntax and semantics in scientific computing

Reality

Can we represent all 
of this in Lean, and 
validate the 
construction of the 
math, scientific models, 
and software, in one 
system?

Then use various automated 
and manual means to 
compare to experiment



Proofs using intermediate steps

• Sometimes, it’s helpful to prove a little 
thing that helps you prove the main thing
• At scale, this is how Mathlib works, as an 

interconnected web of proofs
• Can also internally define a statement 

and prove it
• https://github.com/ATOMSLab/LeanChem

icalTheories/blob/kepler'sLaw/src/physics/
kepler'sLaw



Should you use have or add a hypothesis?
Using have New hypothesis



Should you use have or add a hypothesis?
Using have New hypothesis

We’ve changed the theorem statement.
h2 is “unused”
We don’t know if hb is true!
If hb contradicts any other hypotheses, we’re in real trouble



Principle of logical explosion

• You MUST NOT assume a set of premises with a contradiction
• “Principle of explosion”
• https://en.wikipedia.org/wiki/Principle_of_explosion
• Also known as “proving false” 
• You can prove anything, which isn’t actually helpful
• Lean has tactic “slim_check” that can sometimes detect this by 

searching for counterexamples
• Examples here: https://github.com/leanprover-

community/mathlib4/blob/master/test/slim_check.lean

https://en.wikipedia.org/wiki/Principle_of_explosion


Proofs using existing theorems

• apply tactic directly updates the goal using a theorem

• Some tactics are aware of a bunch of theorems already
• Other tactics can be “told about” theorems to make them smarter



How to find tactics

• Keep learning them one by one!
• Indexes for Mechanics of Proof, Mathematics in Lean
• Consult lists of useful tactics
• https://github.com/madvorak/lean4-tactics
• https://github.com/Colin166/Lean4/blob/main/UsefulTactics

• If you have a tactic in hand, mouseover in VS Code to see 
documentation and example(s)

https://github.com/madvorak/lean4-tactics
https://github.com/Colin166/Lean4/blob/main/UsefulTactics


How to find theorems

• Keep practicing!
• Search Mathlib documentation

• https://leanprover-community.github.io/mathlib4_docs/
• Using the search bar, make a guess about what the theorem would be named, and 

start checking things that look promising
• Moogle

• https://www.moogle.ai
• Describe theorem (or definition) in natural language, the scroll through options

• Consult lists of useful theorems
• https://github.com/Colin166/Lean4/blob/main/UsefulLemmas.lean

• If you have a theorem in hand, mouseover in VS Code to see 
documentation and example(s)

https://leanprover-community.github.io/mathlib4_docs/
https://www.moogle.ai/
https://github.com/Colin166/Lean4/blob/main/UsefulLemmas.lean


Glossary of logical symbols

∧ - and
∨ - or
¬ - not
→ - implies
↔ - if and only if (implies in both directions)
∃ - exists
∀ - for all



∧ : and

P: molecule is aromatic
Q: molecule is an alcohol
P ∧ Q: molecule is aromatic and an alcohol

P: true, Q: true – then P ∧ Q: true
P: false, Q: true – then P ∧ Q: false
P: true, Q: false – then P ∧ Q: false
P: false, Q: false – then P ∧ Q: false



∧ : and

P: molecule is aromatic
Q: molecule is an alcohol
P ∧ Q: molecule is aromatic and an alcohol

P: true, Q: true – then P ∧ Q: true
P: false, Q: true – then P ∧ Q: false
P: true, Q: false – then P ∧ Q: false
P: false, Q: false – then P ∧ Q: false

Phenol



∧ : and

P: molecule is aromatic
Q: molecule is an alcohol
P ∧ Q: molecule is aromatic and an alcohol

P: true, Q: true – then P ∧ Q: true
P: false, Q: true – then P ∧ Q: false
P: true, Q: false – then P ∧ Q: false
P: false, Q: false – then P ∧ Q: false

isobutanol



∧ : and

P: molecule is aromatic
Q: molecule is an alcohol
P ∧ Q: molecule is aromatic and an alcohol

P: true, Q: true – then P ∧ Q: true
P: false, Q: true – then P ∧ Q: false
P: true, Q: false – then P ∧ Q: false
P: false, Q: false – then P ∧ Q: false



∨ : or

P: contains acrolein
Q: contains hydrogen cyanide
P ∨ Q: acute toxicity

P: true, Q: true – then P ∨ Q: true
P: false, Q: true – then P ∨ Q: true
P: true, Q: false – then P ∨ Q: true
P: false, Q: false – then P ∨ Q: false


