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Abstract. We give a purely algebraic proof of the formula nP = (ϕn(x, y) : ωn(x, y) :

ψn(x, y)) in Jacobian coordinates where P = (x, y) = (x : y : 1) is a nonsingular point on

the curve given by a long Weierstrass equation Y 2+a1XY +a3Y = X3+a2X
2+a4X+a6,

and ϕn, ωn, ψn are explicit polynomials in a1, a2, a3, a4, a6, X, Y with integer coefficients,

with ψn the well-known division polynomials. As a prerequisite, we give purely algebraic

proofs that the even-odd recurrence used to define ψn and a particular Somos 4 recurrence

both give rise to elliptic divisibility sequences.

1. Notations and the statement

This note is aimed at proving in a purely algebraic way a well-known explicit formula for

scalar product nP for n ∈ Z and P ̸= O a nonsingular point on a curve in long Weierstrass

form. To state the formula, we introduce the following notations:

• Let J(X, Y, Z) := Y 2+a1XY Z+a3Y Z
3−(X3+a2X

2Z2+a4XZ
4+a6Z

6) denote the

(2,3,1)-homogeneous Weierstrass polynomial, so that J(X, Y, Z) = 0 is the equation

in Jacobian coordinates of the curve. ai (i = 1, 2, 3, 4, 6) can be explicit elements in

a field, or indeterminates in a polynomial ring.

• Let JX(X, Y, Z) := 3X2 +2a2XZ
2 + a4Z

4 − a1Y Z denote the negation of the partial

derivative of J w.r.t. X.

• Let JY (X, Y, Z) := 2Y + a1XZ + a3Z
3 denote the partial derivative of J w.r.t. Y .

• Given a field K and a1, . . . , a6 ∈ K, a point P = (x : y : z) on the curve J over

K (a K-point of J) is an equivalence class of triples (x, y, z) ̸= (0, 0, 0) satisfying

J(x, y, z) = 0 under the equivalence relation (x, y, z) ∼ (u2x, u3y, uz) (u ∈ K \ {0}).
1



2 JUNYAN XU

If z ̸= 0, P corresponds to the point (x/z2, y/z3) on the affine curve J(X, Y, 1) = 0,

and if z = 0, then both x and y are nonzero, and P is the unique point at infinity

((y/x)2 : (y/x)3 : 0) = (1 : 1 : 0).

• A point (x : y : z) of J over a field is nonsingular if JX(x, y, z) ̸= 0 or JY (x, y, z) ̸= 0.

The set of nonsingular K-points of J is denoted J(K) and is an abelian group by

transferring the well-known group law in affine coordinates (cf. [1]). We will discuss

the group law in Jacobian coordinates in Section 2.

• Define

b2 := a21 + 4a2

b4 := 2a4 + a1a3

b6 := a23 + 4a6

b8 := a21a6 + 4a2a6 − a1a3a4 + a2a
2
3 − a24.

Notice that if we assign weight i to ai, then bi also has weight i.

• ([2], Exercise 3.7) Define division polynomials {ψn}n∈Z ⊆ Z[a1, a2, a3, a4, a6, X, Y ]

by the recurrence∗

ψ2n+1 = ψn+2ψ
3
n − ψn−1ψ

3
n+1 for n ≥ 2(1a)

ψ2ψ2n = ψn(ψ
2
n−1ψn+2 − ψn−2ψ

2
n+1) for n ≥ 3(1b)

ψn = −ψ−n for n < 0(1c)

∗Since ψ2 is a nonzero element in the polynomial ring over Z (which is an integral domain), it is not a
zero divisor, so ψ2n is a well-defined polynomial provided that the right-hand side of the second equation is
divisible by ψ2, which can be proven by induction: either n is even and ψnψn+2 and ψnψn−2 are divisible
by ψ2

2 , or n is odd and ψ2
n−1 and ψ2

n+1 are divisible by ψ2
2 .

Alternatively, it is also possible to define an auxiliary sequence {ψ̃n}n∈Z in a division-free way such that

ψn = ψ̃n for n odd and ψn = ψ2ψ̃n for n even. See normEDS in mathlib, [9], or Section 5.

https://leanprover-community.github.io/mathlib4_docs/Mathlib/NumberTheory/EllipticDivisibilitySequence.html#normEDS
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and initial values∗

ψ0 = 0, ψ1 = 1

ψ2 = 2Y + a1X + a3 = JY (X, Y, 1)

ψ3 = 3X4 + b2X
3 + 3b4X

2 + 3b6X + b8

ψ4 = ψ2(2X
6 + b2X

5 + 5b4X
4 + 10b6X

3 + 10b8X
2 + (b2b8 − b4b6)X + b4b8 − b26)

We also define

ψc
n = (ψ2

n−1ψn+2 − ψn−2ψ
2
n+1)/ψ2,(1d)

so that

ψ2n = ψnψ
c
n,(1e)

and

ψ
2(1)
2 = 4X3 + b2X

2 + 2b4X + b6 = ψ2
2 − 4J(X, Y, 1)(1f)

which is a polynomial in a single variable that evaluates to ψ2
2 when applied to a

point on J .

• If we assign weight 2 to X, 3 to Y , and i to ai, we can check that ψn is weighted

homogeneous of degree n2 − 1 for n = 1, 2, 3, 4 and by induction for all n, and that

ψc
n has degree 3n2.

In general, for a weighted homogeneous polynomial f in Z[a1, . . . , a6, X, Y ] of de-

gree d(f), we can consider its homogenization w.r.t. a new variable Z:

(2) fh := Zd(f)f(X/Z2, Y/Z3)

∗Exercise 3.7 in [2] does not cover the n ≤ 0 cases, even though e.g. the definition of ω1 depends on ψ−1

and ϕ1 depends on ψ0.
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which can be obtained by replacing each term cX iY j by cX iY jZd(c), where d(c) is the

degree of the coefficient c, a homogeneous polynomial in indeterminates a1, . . . , a6.

The resulting fh is homogeneous of the same degree d(f) if we assign weight 2 to X,

3 to Y , 1 to Z, and 0 to ai.

If we substitute a homogeneous polynomial of degree 2k into X, one of degree 3k

into Y and one of degree k−1 into Z in fh, we again get a homogeneous polynomial,

of degree d(f)k. ϕn and ωn defined below form such a valid triple with ψn, with

k = n2.

As examples, we have ψh
2 = JY and ψh

3 = 3X4+b2X
3Z2+3b4X

2Z4+3b6XZ
6+b8Z

8.

• Define two more sequences of polynomials {ϕn}n∈Z, {ωn}n∈Z by the equations

ϕn = Xψ2
n − ψn−1ψn+1(3a)

ψc
n = JY (ϕn, ωn, ψn)(3b)

Solving for ωn we obtain

(3c) ωn = (ψc
n − a1ϕnψn − a3ψ

3
n)/2,

†

which does not obviously have coefficients in Z, but we will assume this for now and

prove it later in Section 3. An easy computations shows ϕn has degree 2n2 and ωn

has degree 3n2.

For convenience, we shall use Pn to denote the triple of polynomials (ϕn, ωn, ψn), so

for a polynomial f in X, Y, Z, f(Pn) means f(ϕn, ωn, ψn), and for a polynomial f in

X1, Y1, Z1, X2, Y2, Z2, f(Pm, Pn) means f(ϕm, ωm, ψm, ϕn, ωn, ψn). If f is a polynomial

in X, Y only, we take f(Pn) to mean f(ϕn/ψ
2
n, ωn/ψ

3
n). For homogeneous f ∈ Z[a1,

. . . , a6, X, Y ] we therefore have fh(Pn) = ψ
d(f)
n f(Pn) according to (2). An important

†Exercise 3.7 in [2] neglects the a1 and a3 terms; [8] gives the correct definition.
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example is

(3d) 2
ωn

ψ3
n

+
ϕn

ψ2
n

+ a3 = ψ2(Pn) =
ψh
2 (Pn)

ψ3
n

=
JY (Pn)

ψ3
n

=
ψc
n

ψ3
n

=
ψ2n

ψ4
n

.

The main theorem we will prove is

Theorem 1. Let K be a field, a1, a2, a3, a4, a6 ∈ K, and P = (x, y) = (x : y : 1) ∈ J(K).

Then we have

(4) nP = (ϕn(x, y) : ωn(x, y) : ψn(x, y))

for every n ∈ Z.

This is Exercise 3.7(d) in [2], but without assuming J is nonsingular everywhere. It is

easy to verify that

ψc
0 = 2, (ϕ0 : ω0 : ψ0) = (1 : 1 : 0) = O

ψc
1 = ψ2, (ϕ1 : ω1 : ψ1) = (X : Y : 1) = P

ψc
−n = ψc

n, (ϕ−n : ω−n : ψ−n) = (ϕn : JY (ϕn, ωn, ψn)− ωn : −ψn) = −P

so we only need to deal with n ≥ 2. (For the last equality in each row, we need to plug in

X = x and Y = y, or else consider the universal point P = (X, Y ) on the universal curve.)

It turns out (see Section 2) that there exists “doubling polynomials” DX , DY , DZ ∈ Z[a1,

. . . , a6, X, Y, Z] and “addition polynomials” AX , AY , AZ ∈ Z[a1, . . . , a6, X1, Y1, Z1, X2, Y2, Z2]

such that for any field K and P := (x : y : z) = (x1 : y1 : z1), Q := (x2 : y2 : z2) ∈ J(K), we

have

P +Q = (AX(x1, y1, z1, x2, y2, z2) : AY (x1, y1, z1, x2, y2, z2) : AZ(x1, y1, z1, x2, y2, z2)) if P ̸= Q

P + P = (DX(x, y, z) : DY (x, y, z) : DZ(x, y, z))



6 JUNYAN XU

This is a particularly nice property of the Jacobian coordinates, which e.g. the projective

coordinates do not enjoy (and in affine coordinates it is definitely necesary to special-case

P = O, Q = O and P +Q = O). In fact we have AZ = X1Z
2
2 −X2Z

2
1 (independent of Y1, Y2)

and DZ = ZJY , both weighted homogeneous of degree 4, which forces AX and DX to have

degree 8 and AY and DY to have degree 12.

Now assume Formula (4) is true for all positive m < n, and split into two cases (n =

2m + 1 and n = 2m) following the proof of Theorem 5.21 in [3]. In the first case we know

mP = (ϕm(x, y) : ωm(x, y) : ψm(x, y)) and (m+1)P = (ϕm+1(x, y) : ωm+1(x, y) : ψm+1(x, y))

by induction hypothesis, and we have mP ̸= (m + 1)P because P ̸= O. Therefore we just

need to verify the following identities, either for specialized a1, . . . , a6, x, y ∈ K satisfying

J(x, y, 1) = 0, or as identities between polynomials in Z[a1, . . . , a6, X, Y ] modulo J(X, Y, 1),

i.e. in the universal ring U := Z[a1, . . . , a6, X, Y ]/⟨J(X, Y, 1)⟩:

ϕ2m+1 ≡ AX(Pm, Pm+1)(5a)

ω2m+1 ≡ AY (Pm, Pm+1)(5b)

ψ2m+1 ≡ AZ(Pm, Pm+1)(5c)

where we use the standard notation ≡ to denote congruence (modulo J(X, Y, 1) by default,

and the same convention applies throughout the paper if the modulus is not specified). In

the second case we know mP = (ϕm(x, y) : ωm(x, y) : ψm(x, y)) so we just need to verify

ϕ2m ≡ DX(Pm)(6a)

ω2m ≡ DY (Pm)(6b)

ψ2m ≡ DZ(Pm).(6c)

It is interesting to note that my proofs of (6a), (6b) and (5a) also invokemP = (ϕm : ωm : ψm)

(and (m+ 1)P for (5a)), and not just for the specific (x, y), but the universal (X, Y ) on the

universal curve.
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It is often convenient to work in the field of fractions Frac(U): J(Frac(U)) is an abelian

group with (X, Y ) a nonsingular point on it (of infinite order because of (4) and J(X, Y,

1) ∤ ψn for n ̸= 0), so we can use group axioms (e.g. associativity) to identify rational

functions in X, Y modulo J(X, Y, 1).

It is easy to verify that (5c) and (6c) actually hold exactly (without modding out J(X, Y,

1)), as was already done in [3]: (6c) is simply the equation ψ2n = ψnψ
c
n given (3b), and for

(5c), just plug in the definition (3a) of ϕn:

AZ(Pm, Pn) = ϕmψ
2
n − ϕnψ

2
m(7a)

= (Xψ2
m − ψm+1ψm−1)ψ

2
n − (Xψ2

n − ψn+1ψn−1)ψ
2
m

= ψn+1ψn−1ψ
2
m − ψm+1ψm−1ψ

2
n = ψn+mψn−m

where the last identity is justified by the defining equation (1a) when n = m+1 and by the

elliptic relation E(n,m, 1, 0) (12) in general. If n,m ̸= 0, this could also be written in the

form

(7b)
ϕm

ψ2
m

− ϕn

ψ2
n

=
ψn+mψn−m

ψ2
mψ

2
n

.

At this stage, it suffices to prove Formula (4) for elliptic curves (i.e. nonsingular every-

where) over the complex numbers (for which one can use a complex analytic proof using the

Weierstrass ℘ function‡), because the universal ring U embeds as a subring of the complex

numbers§ say via some e : U ↪→ C. Apply Formula (4) to the point (e(X), e(Y )) on the ellip-

tic curve with coefficients e(a1), . . . , e(a6) over C and n = m,m+1 and 2m+1: these together

with (5c) and mP + (m+ 1)P = (2m+ 1)P forces (5a) and (5b) to hold because ψ2m+1 ̸= 0

‡See e.g. Theorem II.2.1 of [4], but some coordinate change will be required to derive division polynomials
for curves with a1, a2, a3 terms.

§For example, we can choose six algebraically independent complex numbers and map a1, a2, a3, a4, a6
and X to them, and map Y to a solution of the quadratic equation J(X,Y, 1) = 0 in C, which exists
because C is algebraically closed; this defines an injective ring homomorphism because the discriminant of
the quadratic equation is a polynomial of degree 3 in X and therefore cannot be a perfect square.
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in U , and similarly (4) for n = m and 2m together with (6c) and mP +mP = (2m)P forces

(6a) and (6b) to hold because ψ2m ̸= 0 in U for m > 0 (Exercise 3.7(b) of [2] shows that ψ2
n

lies in the subring Z[a1, . . . , a6, X] ⊆ U and has leading term n2Xn2−1 as a polynomial in the

single variable X). We nonetheless continue to pursue a purely algebraic proof by verifying

the four remaining identities (5a, 5b, 6a, 6b).

2. Group law in Jacobian coordinates

In this section we derive formulas for AX , AY , DX and DY and show they indeed have

coefficients in Z. First suppose P = (x, y) = (x1, y1) and Q = (x2, y2) are points of J on the

affine plane. If P and Q has different x-coordinates, the slope of the secant line through P

and Q is

(8a) k = (y1 − y2)/(x1 − x2),

so the x-coordinate of P +Q is

(8b) x3 = k(k + a1)− (a2 + x1 + x2),

the y-coordinate of −(P +Q) is

(8c) y−3 = k(x3 − x1) + y1 = kx3 +
x1y2 − y1x2
x1 − x2

,

and the y-coordinate of P +Q is

(8d) y3 = −(y−3 + a1x3 + a3) = −
(
(k + a1)x3 +

x1y2 − y1x2
x1 − x2

+ a3

)
.

If P = Q, we consider the slope of the tangent line at P instead, which is

(8e) k = JX(x, y, 1)/JY (x, y, 1).
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If we work with Jacobian coordinates P = (x : y : z) = (x1 : y1 : z1) and Q = (x2 : y2 : z2),

(8a) becomes

(8f) k =
y1/z

3
1 − y2/z

3
2

x1/z21 − x2/z22
=

y1z
3
2 − y2z

3
1

z1z2(x1z22 − x2z21)
,

and (8b) becomes

(8g)
x3
z23

= k(k + a1)−
(
a2 +

x1
z21

+
x2
z22

)
,

and it looks like that z3 needs to be z1z2(x1z
2
2 − x2z

2
1) to account for the denominator.

But by some magic, z3 = x1z
2
2 − x2z

2
1 is in fact enough. This can be seen by multiplying

the right-hand side of (8g) by z23 and replacing the x31 term in x1z
2
3 = x1(x1z

2
2 − x2z

2
1)

2 by

x31 − J(x1, y1, z1) and similarly for the x32 in x2z
2
3 . This parsimonious choice of z3 makes the

formula more broadly applicable and in fact cover all cases with P ̸= Q, including the cases

P ̸= Q = O, Q ̸= P = O, and P = −Q ̸= Q. A similar magic happens for y3 (no need to

substitute x3 this time), and we arrive at the formulas

AX = −Z1Z2(2Y1Y2 + a1(X1Y2Z1 +X2Y1Z2) + a3(Y1Z
3
2 + Y2Z

3
1))(9a)

+ Z2
1Z

2
2(2a2X1X2 + a4(X1Z

2
2 +X2Z

2
1)) + 2a6Z

4
1Z

4
2 +X1X2(X1Z

2
2 +X2Z

2
1)

AZ = X1Z
2
2 −X2Z

2
1(9b)

AY Z = Y1Z
3
2 − Y2Z

3
1(9c)

AXY = X1Y2Z1 −X2Y1Z2(9d)

A−
Y = (X3

1Y2Z
3
2 −X3

2Y1Z
3
1) + a1(X1Y

2
2 Z

4
1 −X2Y

2
1 Z

4
2) + a4Z1Z2(X1Y1Z

5
2 −X2Y2Z

5
1)(9e)

− (2Y1Y2 − 2a2X1X2Z1Z2 + a3(Y2Z
3
1 + Y1Z

3
2)− 2a6Z

3
1Z

3
2)AY Z

− (3X1X2Z1Z2 + a4Z
3
1Z

3
2)AXY − a1Y1Y2Z1Z2AZ

AY = −(A−
Y + a1AXAZ + a3A

3
Z)(9f)
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If we define

A′
X = A2

Y Z + a1Z1Z2AY ZAZ − (a2Z
2
1Z

2
2 +X1Z

2
2 +X2Z

2
1)A

2
Z(9g)

A−′
Y = AY ZAX + AXYA

2
Z(9h)

following (8b) and (8c), we can verify

Z2
1Z

2
2AX = A′

X + Z6
1J(X2, Y2, Z2) + Z6

2J(X1, Y1, Z1)(9i)

Z1Z2A
−
Y = A−′

Y(9j)

The formulas (9a - 9f) have been verified by David Angdinata in Lean (AX , AY ). No

similar magics happen for the projective coordinates, and in fact one has to take z3 =

z1z2(x1z2 − x2z1)
3; due to the presence of the factor z1z2, there is no hope the formula can

apply to P + O or O + P with P ̸= O. The cube is necessary for y3, not for x3, so there is

some inefficiency going on here, which is not present for the Jacobian coordinates, because

the weighting there is exactly 2:3 for x:y.

We check that the formulas continue to work in the nontrivial case P = −Q ̸= Q. By

weighted homogeneity of AX , we assume z1 = z2 = 1, so x1 = x2 = x and y ̸= y2 =

−(y + a1x+ a3), i.e. JY (x, y, 1) ̸= 0. We compute

AZ(x, y, 1, x, y2, 1) = x− x = 0

AX(x, y, 1, x, y2, 1) = −(−2y(y + a1x+ a3)− a1x(a1x+ a3)− a3(a1x+ a3))

+ (2a2x
2 + 2a4x) + 2a6 + 2x3

= 2(y2 + x3 + a2x
2 + a4x+ a6) + (2y + a1x+ a3)(a1x+ a3)

= 2(y2 + y2 + a1xy + a3y) + (2y + a1x+ a3)(a1x+ a3)

= 2y(2y + a1x+ a3) + (2y + a1x+ a3)(a1x+ a3)

= (2y + a1x+ a3)
2 = JY (x, y, 1)

2 ̸= 0

https://github.com/leanprover-community/mathlib4/blob/640f3a416b16adc546f80ef0e86ca2766c9e21e1/Mathlib/AlgebraicGeometry/EllipticCurve/Jacobian.lean#L351-L356
https://github.com/leanprover-community/mathlib4/blob/640f3a416b16adc546f80ef0e86ca2766c9e21e1/Mathlib/AlgebraicGeometry/EllipticCurve/Jacobian.lean#L381-L391
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where the third identity uses J(x, y, 1) = 0, and

AY (x, y, 1, x, y2, 1) = JY (x, y, 1)(−x3 + a1x(a1x+ a3) + a4x

− (−2y(y + a1x+ a3)− 2a2x
2 − a3(a1x+ a3)− 2a6) + (3x2 + a4)x)

= JY (x, y, 1)(2(y
2 + x3 + a2x

2 + a4x+ a6) + (2y + a1x+ a3)(a1x+ a3))

= JY (x, y, 1)
3 ̸= 0

For Q ̸= P = O, we check (AX : AY : AZ) evaluated at (1, 1, 0, x, y, 1) is (x : y : 1); for

P ̸= Q = O, we check that evaluation at (x, y, 1, 1, 1, 0) gives (x : y : −1). If P = Q it is

easy to check the formulas produce (0 : 0 : 0) and therefore do not work.

Next we deal with the doubling formulas. In Jacobian coordinates, (8e) becomes

(10) k =
JX(x/z

2, y/z3, 1)

JY (x/z2, y/z3, 1)
=
z−4JX(x, y, z)

z−3JY (x, y, z)
=

JX(x, y, z)

zJY (x, y, z)

and it is therefore natural to take DZ = ZJY , and (8b) and (8d) become

DX = J2
X + a1ZJXJY − (a2Z

2 + 2X)J2
Y(11a)

D−
Y = JX(DX −XJ2

Y ) + Y J3
Y(11b)

DY = −(D−
Y + a1DXDZ + a3D

3
Z)(11c)

The formulas continue to hold when P = Q = O, since JX(1, 1, 0) = 3, JY (1, 1, 0) = 2,

DX(1, 1, 0) = 32 − 2 · 1 · 22 = 1, D−
Y (1, 1, 0) = 3(1− 1 · 22) + 1 · 23 = −1, DZ(1, 1, 0) = 0, and

DY (1, 1, 0) = 1. It also holds when P = −P = Q, in which case we have JY (x, y, z) = 0, so

DX(x, y, z) = JX(x, y, z)
2 ̸= 0 (since (x : y : z) is nonsingular), D−

Y (x, y, z) = JX(x, y, z)
3,

DZ(x, y, z) = 0, and DY (x, y, z) = −JX(x, y, z)3.

Now, bring to mind that (ϕ2 : ω2 : ψ2) is also supposed to give doubling formulas.

Since DZ = Z4ψ2(X/Z
2, Y/Z3), we should expect DX = Z8ϕ2(X/Z

2, Y/Z3) and DY =
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Z12ω2(X/Z
2, Y/Z3) modulo J , and indeed if we take

DX = XJ2
Y − ψh

3(11d)

DY = (ψch
2 − a1DXDZ − a3D

3
Z)/2(11e)

(where ϕh
3 and ψch

2 are the homogenization according to (2) of ψ3 and ψ
c
2 respectively), then

we can verify that (11d) − (11a) = (12X + b2Z
2)J and (11e) − (11c) = (8Y 2 − 4a1XY Z −

(a1b2− 8a3)Y Z
3− 28X3− (7b2+4a21)X

2Z2− (b2(b2− 2a2)+ 4(b4− a4))XZ
4− (b2(b4− a4)−

4(b6 − 2a6))Z
6)J .

3. Elliptic relations and Somos recurrence

The defining recurrence (1a - 1b) of ϕn are special cases of the more general elliptic relation

(12) E(a, b, c, d) : ψa+bψa−bψc+dψc−d = ψa+cψa−cψb+dψb−d − ψb+cψb−cψa+dψa−d,

where a, b, c, d ∈ Z or a, b, c, d are all half-integers¶. More precisely, (1a) is E(n + 1, n, 1, 0)

and (1b) is E(n + 1, n − 1, 1, 0). If ψ0 = 0 and ψ−n = −ψn, we can check that arbitrarily

permuting a, b, c, d and/or negating any number of a, b, c, d yield equivalent relations. The

collection of all E(a, b, c, d) is equivalent to the axiom for elliptic nets introduced in [7]. [6]

and Exercise 3.7(g) and 3.34 in [2] concern the specialized relations E(m,n, r, 0).

It is a surprising fact that (1a - 1b) is sufficient to imply all other elliptic relations, which

is traditionally proven using elliptic functions [7, 6]‖, but we’ll also give a purely algebraic

proof. An especially useful family of elliptic relations is the Somos 4 recurrence

(13a) E(n, 2, 1, 0) : ψn+2ψn−2 = ψ2
2ψn+1ψn−1 − ψ3ψ

2
n

¶Allowing the half-integer case does not make the relation more general, because the four subscripts in
each term still add up to an even number, and there is at least one way to break the four subscripts into two
pairs, each adding up to an even number. However, allowing half-integers is necessary to carry out certain
inductive proofs about these relations.

‖See also Silverman’s comment in [9].
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which determines one term (ψn+2) of the sequence ψ from the previous four terms plus the

constants ψ2 and ψ3, provided ψn−2 is not a zero divisor. This is highlighted in Section

4.3-4.4 (page 51) in [5] and attributed to [6].

Given a sequence satisfying a Somos recurrence of the form

(13b) ψn+2ψn−2 = Aψn+1ψn−1 −Bψ2
n,

we show that (ψn+2ψ
2
n−1 + ψ2

n+1ψn−2 + Aψ3
n)/ψn+1ψnψn−1 is an invariant independent of n.

Indeed, multiplying a relation of the form

(13c) C(ψn+2ψ
2
n−1 + ψ2

n+1ψn−2 + Aψ3
n) = Dψn+1ψnψn−1

by ψn+2, we obtain

Dψn+2ψn+1ψnψn−1 = C(ψ2
n+2ψ

2
n−1 + ψn+2ψn−2ψ

2
n+1 + Aψn+2ψ

3
n)

= C(ψ2
n+2ψ

2
n−1 + (Aψn+1ψn−1 −Bψ2

n)ψ
2
n+1 + (ψn+3ψn−1 +Bψ2

n+1)ψ
2
n)

= C(ψn+3ψ
2
n + ψ2

n+2ψn−1 + Aψ3
n+1)ψn−1,

where the second identity uses the Somos recurrence (13b) twice, at n and n + 1. If ψn−1

is not a zero divisor, we can cancel it from both sides and arrive at (13c) with n replaced

by n+ 1. In general, if k < n and ψk−1, ψk, . . . , ψn−2 are not zero divisors, we can prove by

induction

ψk+1ψkψk−1(ψn+2ψ
2
n−1 + ψ2

n+1ψn−2 + Aψ3
n) = (ψk+2ψ

2
k−1 + ψ2

k+1ψk−2 + Aψ3
k)ψn+1ψnψn−1.

Specializing to division polynomials (or more generally an elliptic divisibility sequence) and

k = 2, and cancelling ψ2 from both sides, we obtain

(13d) ψ3(ψn+2ψ
2
n−1 + ψ2

n+1ψn−2 + ψ2
2ψ

3
n) = (ψc

2 + ψ4
2)ψn+1ψnψn−1.



14 JUNYAN XU

We have ψ3 | ψn+1ψnψn−1 (or even ψ3ψ2 | ψn+1ψnψn−1) because ψ is a divisibility sequence.

However, ψ3 only divides the other factor ψc
2 + ψ4

2 modulo 8J(X, Y, 1):

(13e) ψc
2 + ψ4

2 = (6X2 + b2X + b4)ψ3 + 8J(X, Y, 1)(2J(X, Y, 1) + ψ
2(1)
2 ).

This is a more precise version of formula 2.5 in [8], and when plugged into the right-hand

side of (13d), it gives

8J(X, Y, 1) | ψ3(ψn+2ψ
2
n−1 + ψ2

n+1ψn−2 + ψ2
2ψ

3
n − (6X2 + b2X + b4)ψn+1ψnψn−1).

Since both 2 and J(X, Y, 1) are prime elements in the polynomial ring (a UFD) and does

not divide ψ3, we conclude

(13f) ψn+2ψ
2
n−1 + ψ2

n+1ψn−2 + ψ2
2ψ

3
n ≡ (6X2 + b2X + b4)ψn+1ψnψn−1 (mod 8J(X, Y, 1)).

Another application of the Somos recurrence is to prove the integrality of ωn. It suffices

to show that 2ψ2ωn has even coefficients, because 2 is coprime to ψ2. We have

2ψ2ωn = ψ2(ψ
c
n − a1ϕnψn − a3ψ

3
n)

= ψ2
n−1ψn+2 − ψn−2ψ

2
n+1 − ψ2(a1(Xψ

2
n − ψn+1ψn−1)ψn + a3ψ

3
n)

≡ ψ2
2ψ

3
n + (b2X + b4)ψn+1ψnψn−1 + ψ2((a1X + a3)ψ

3
n + a1ψn+1ψnψn−1) (mod 2)

= ψ2(ψ2 + a1X + a3)ψ
3
n + (a1ψ2 + b2X + b4)ψn+1ψnψn−1

= 2ψ2(Y + a1X + a3)ψ
3
n + 2(a1Y + (a21 + 2a2)X + a4 + a1a3)ψn+1ψnψn−1

≡ 0 (mod 2),

where the first congruence is by (13f).

4. Verification of identities

In this section, we verify the four identities (5a, 5b, 6a, 6b), and we switch from m to n in

the subscripts. These are just one sentence in [3] (“one performs a similar verification for ϕn
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and ωn”), and it is surprising that the four proofs I worked out are of quite different flavor

from each other. I would be curious to learn about alternative, especially simpler, proofs.

We first verify the two doubling identities (6a) and (6b). Since JY = ψh
2 is the (weighted)

homogenization of ψ2 and Pn = (ϕn, ωn, ψn) lies on J by inductive hypothesis, we can replace

JY (Pn)
2 by ψ

2(1)h
2 (Pn) = ψh

2 (Pn)
2 − 4J(Pn). On the other hand, we also have JY (Pn) = ψc

n

by (3b). The right-hand side of (6a) is

ϕnJY (Pn)
2 − ψh

3 (Pn)

≡ Xψ2
n(ψ

c
n)

2 − ψn+1ψn−1ψ
2(1)h
2 (Pn)− ψh

3 (Pn) (mod J(X, Y, 1))

= Xψ2
2n − ψn+1ψn−1(4ϕ

3
n + b2ϕ

2
nψ

2
n + 2b4ϕnψ

4
n + b6ψ

6
n)− (3ϕ4

n + b2ϕ
3
nψ

2
n + 3b4ϕ

2
nψ

4
n + 3b6ϕnψ

6
n + b8ψ

8
n)

= Xψ2
2n + ψ3ψ

8
n − 2ψ

2(1)
2 ψ6

nψn+1ψn−1 + (6X2 + b2X + b4)ψ
4
n(ψn+1ψn−1)

2 − (ψn+1ψn−1)
4

where the last identity is by substituting ϕn = Xψ2
n − ψn+1ψn−1 plus brute force, while the

left-hand side is

ϕ2n = Xψ2
2n − ψ2n+1ψ2n−1

= Xψ2
2n − (ψn+2ψ

3
n − ψn−1ψ

3
n+1)(ψn+1ψ

3
n−1 − ψn−2ψ

3
n)

= Xψ2
2n − ψ6

nψn+2ψn−2 + ψ3
nψn+1ψn−1(ψn+2ψ

2
n−1 + ψn−2ψ

2
n+1)− (ψn+1ψn−1)

4

≡ Xψ2
2n − ψ6

n(ψ
2
2ψn+1ψn−1 − ψ3ψ

2
n)

+ ψ3
nψn+1ψn−1((6X

2 + b2X + b4)ψn+1ψnψn−1 − ψ2
2ψ

3
n)− (ψn+1ψn−1)

4 (mod J(X, Y, 1))

= Xψ2
2n + ψ3ψ

8
n − 2ψ2

2ψ
6
nψn+1ψn−1 + (6x2 + b2X + b4)ψ

4
n(ψn+1ψn−1)

2 − (ψn+1ψn−1)
4

(where the congruence (fourth line) uses both (13a) and (13f)), which only differ from the

left-hand side by ψ2
2 vs. ψ

2(1)
2 .

We can also directly show J(Pn) = 0 in the universal ring U . For this calculations it is most

convenient to work in Frac(U), where we are free to replace denominators by expressions



16 JUNYAN XU

congruent modulo J(X, Y, 1). We have

J(Pn) = ωn(ωn + a1ϕnψn + a3ψ
3
n)− (ϕ3

n + a2ϕ
2
nψ

2
n + a4ϕnψ

4
n + a6ψ

6
n)

=
ψc
n − a1ϕnψn − a3ψ

3
n

2
· ψ

c
n + a1ϕnψn + a3ψ

3
n

2
− · · ·

=
(ψc

n)
2 − (a1ϕnψn + a3ψ

3
n)

2

4
− · · ·

=
(ψ2

n−1ψn+2 − ψn−2ψ
2
n+1)

2/ψ2
2 − · · ·

4
− · · ·

=
((ψ2

n−1ψn+2 + ψn−2ψ
2
n+1)

2 − 4ψn+2ψn−2(ψn+1ψn−1)
2)/ψ

2(1)
2 − · · ·

4
− · · ·

Using (13a) and (13f) again to replace ψn+2ψn−2 and ψ
2
n−1ψn+2+ψn−2ψ

2
n+1 but changing any

resulting ψ2
2 to ψ

2(1)
2 and expand ϕn = Xψ2

n − ψn+1ψn−1 by brute force, we get exactly zero.

We can in fact write (6a) in a very succinct equivalent form: multiplying both sides by ψ2
n

(which is nonzero in U), the right-hand side becomes

ϕn(ψnJY (Pn))
2 − ψ2

nψ
h
3 (Pn) = ϕn(ψnψ

c
n)

2 − ψ2
nψ

h
3 (Pn) = ϕnψ

2
2n − ψ2

nψ
h
3 (Pn),

so (6a) is equivalent to ψ2
nψ

h
3 (Pn) ≡ ϕnψ

2
2n − ϕ2nψ

2
n = ψ3nψn using (7a), or ψnψ

h
3 (Pn) ≡ ψ3n.

This is the m = 3 case of the general formula

(14a) ψmn ≡ ψnψ
h
m(Pn)

which can also be writen as

ψmn/ψn ≡ ψh
m(Pn)

for n ̸= 0 (notice that ψn | ψmn for all m,n because ψ is a divisibility sequence). Since

ψh
m = ψm2−1

n ψm(Pn), this is also equivalent to ψmn ≡ ψm2

n ψm(Pn), the last identity in (2.3)

of [8]:

(14b) ψmn(P ) = ψm2

n (P )ψm(nP )
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(understood to hold modulo J(X, Y, 1)). For m = 2, (14a) says JY (Pn) = ψh
2 (Pn) ≡

ψ2n/ψn = ψc
n, which holds exactly by definition (3b) (without modding out J(X, Y, 1))

and the m = 1 and m = 0 cases are trivial.

For (6b), since we have already proven DX(Pn) = ϕ2n and DZ(Pn) = ψ2n, the right-hand

side is simply (ψch
2 (Pn) − a1ϕ2nψ2n − a3ψ

3
2n)/2 according to (11e), while the left-hand side

is (ψc
2n − a1ϕ2nψ2n − a3ψ

3
2n)/2, so it remains to prove ψc

2n ≡ ψch
2 (Pn). Expanding the left-

hand side using (1d) and (1a) leads to factors ranging from ψn−3 to ψn+3, and many of the

resulting terms I do not know how to deal with.

Instead, we notice that our goal ψc
2n ≡ ψch

2 (Pn) is exactly equivalent to the m = 4 case of

(14a): multiplying both sides by ψ2n = ψnψ
c
n we get

ψ4n = ψ2nψ
c
2n ≡ ψnψ

c
nψ

ch
2 (Pn)

= ψnψ
h
2 (Pn)ψ

ch
2 (Pn) = ψn(ψ2ψ

c
2)

h(Pn) = ψnψ
h
4 (Pn).

We first prove the special case of (14a) with n = 2: ψ2m ≡ ψ2ψ
h
m(P2), which we will use

in the form

(14c) ψ2m ≡ ψm2

2 ψm(P2)

to exploit self-similarity within the division polynomials using the fact that 4 = 2 × 2. We

will in fact show that for fixed n, if (14a) holds for m = 0, 1, 2, 3, 4 then it holds for all

n ∈ Z; therefore the m = 4 case we are tackling now is the last obstruction to proving it in

full generality. It is clear that switch from m to −m does not affect validity of (14a), so we

assume m > 0 and argue by induction: if m = 2k + 1 > 4, we can use the elliptic relation

E((k + 1)n, kn, n, 0) to write

ψmnψ
3
n = ψ(k+1)n+knψ(k+1)n−knψ

2
n

= ψ(k+1)n+nψ(k+1)n−nψ
2
kn − ψkn+nψkn−nψ

2
(k+1)n
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= ψ(k+2)nψ
3
kn − ψ(k−1)nψ

3
(k+1)n

≡ ψnψ
h
k+1(Pn)(ψnψ

h
k (Pn))

3 − ψnψ
h
k−1(Pn)(ψnψ

h
k+1(Pn))

3

= ψ4
n(ψk+1ψ

3
k − ψk−1ψ

3
k+1)

h(Pn)

= ψ4
nψ

h
2k+1(Pn) = ψ4

nψ
h
m(Pn)

where the congruence is by induction hypothesis, since k + 2 < 2k + 1; we then cancel ψ3
n

from both sides to conclude (14a). Basically we exploit homogeneity and scaling invariance

of the elliptic relations, and the same argument applies for m = 2k > 4, where we use

E((k + 1)n, (k − 1)n, n, 0) and cancel ψ2nψ
2
n from both sides instead.

Some digression to further showcase the power of this technique: if we look at only the first

three rows of the above computation, we see that we can deduce ψn | ψmn from induction

hypotheses ψn | ψ(k−1)n, . . . , ψn | ψ(k+2)n, so to show ψn | ψmn for all m,n we just need to

verify it for m = 1, 2, 3, 4. The m = 1 case is trivial, and for m = 2, 4 we have ψn | ψ2n | ψ4n

because ψ2n = ψnψ
c
n. For m = 3, use E(2n, n, 1, 0) : ψ3nψn = ψ2n+1ψ2n−1ψ

2
n − ψn+1ψn−1ψ

2
2n.

We can also cancel ψ2
n from both sides of

ϕmnψ
2
n = ϕnψ

2
mn − ψ(m+1)nψ(m−1)n

≡ ϕh
1(Pn)(ψnψ

h
m(Pn))

2 − ψnψ
h
m+1(Pn)ψnψ

h
m−1(Pn)

= ψ2
n(Xψ

2
m − ψm+1ψm−1)

h(Pn) = ψ2
nϕ

h
m(Pn)

(where the first identity is by (7a)) to show ϕmn ≡ ϕh
m(Pn), and easily show

ψc
mn = ψ2mn/ψmn ≡ (ψnψ

h
2m(Pn))/(ψnψ

h
m(Pn)) = ψch

m (Pn),

as well as

ωmn = (ψc
mn − a1ϕmnψmn − a3ψ

3
mn)/2

≡ (ψch
m (Pn)− a1ϕ

h
m(Pn)ψnψ

h
m(Pn)− a3ψ

3
nψ

h
m(Pn)

3)/2
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= (ψc
m − a1ϕmψm − a3ψ

3
m)

h(Pn)/2 = ωh
m(Pn)

noticing that the homogenization of ai is aiZ
i which evaluates to aiψ

i
n at Pn. This establishes

the remaining two identities in (2.3) of [8].

It remains to verify the identity ψ2m ≡ ψ2ψ
h
m(P2) for m = 4, which we have shown is

equivalent to the more manageable goal ψc
4 ≡ ψch

2 (P2). Even though Mathematica success-

fully verifies it, this is still a huge computation and may cause trouble in Lean: in fully

expanded form (bi replaced by ai), ϕ2 has 14 terms, ψ2 has 3 terms (ω2 has 58 terms but is

not involved), and ψch
2 is a polynomial with 37 terms of degree 6 in X (ϕ2) and degree 12

in Z (ψ2), resulting in a total of 19,162 terms in ψch
2 (P2), compared to 17,747 terms in ψc

4.

Their difference is 4J(X, Y, 1) times a sum of 10,303 terms.

A more practical way to verify the identity is to expand ψc
4 using the defining recurrence, re-

sulting in 3ψ4
2ψ

3
3ψ

c
2−(ψ8

2+ψ
3
3)(ψ

c
2)

2−2ψ6
3 ≡ 3

(
ψ

2(1)
2

)2

ψ3
3ψ

c
2−

((
ψ

2(1)
2

)4

+ ψ3
3

)
(ψc

2)
2−2ψ6

3, a

polynomial in X only, and to transform ψch
2 (P2) = ψ12

2 ψ
c
2(ϕ2/ψ

2
2) ≡

(
ψ

2(1)
2

)6

ψc
2

(
ϕ
(1)
2 /ψ

2(1)
2

)
,

where ϕ
(1)
2 = Xψ

2(1)
2 − ψ3 is the polynomial in X congruent to ϕ2. Since both sides are

polynomials in X and congruent modulo J(X, Y, 1), they must in fact be equal, and this can

be verified (both sides have 5,387 terms). Using this proof we won’t need to manually input

an expression of 10,303 terms into Lean.

Back to the proof of ψ4n ≡ ψnψ
h
4 (Pn), or equivalently ψ4n ≡ ψ16

n ψ4(Pn). We compute

ψ4n

ψ4
2n

≡ ψ
(2n)2

2 ψ2n(P2)

(ψn2

2 ψn(P2))4
=
ψ2n(P2)

ψn(P2)4

= 2
ωn(P2)

ψn(P2)3
+ a1

ϕn(P2)

ψn(P2)2
+ a3

≡ 2
ω2(Pn)

ψ2(Pn)3
+ a1

ϕ2(Pn)

ψ2(Pn)2
+ a3

=
ψ4(Pn)

ψ2(Pn)4
=

ψ4(Pn)

(ψ2n/ψ4
n)

4 =
ψ16
n ψ4(Pn)

ψ4
2n

,
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where the second, third, and fourth identities use (3d), and the second congruence is by

computing (2n)P in two different ways: as n(2P ) = nP2 or as 2(nP ) = 2Pn. Notice

that Pn = (ϕn, ωn, ψn) gives a valid formula for nP by induction hypothesis, and n(2P ) =

(2n)P = 2(nP ) relies on associativity of the group law, which is a nontrivial fact but can

also be proven algebraically [1].

This computation is best carried out in Frac(U), where all the Z-coordinates (ψ2n, ψn(P2)

and ψn(P2)) never vanish, as the universal point (X, Y ) has infinite order.

Having dealt with the doubling formulas, we proceed to the addition formulas (5a) and

(5b). In general, given two points Q = (x1, y1) and R = (x2, y2) on J , we have −Q = (x1,

−y1 − a1x1 − a3). If x1 ̸= x2, let −Q+R = (x, y) and Q+R = (x3, y3), then (8a) and (8b)

apply to both addition and yield

x3 = k(k + a1)− (a2 + x1 + x2), x = k′(k′ + a1)− (a2 + x1 + x2),

where

k =
y1 − y2
x1 − x2

, k′ =
(−y1 − a1x1 − a3)− y2

x1 − x2
,

and we have

x3 = x+ k(k + a1)− k′(k′ + a1)

= x+ (k − k′)(k + k′ + a1)

= x+
(2y1 + a1x1 + a3)

x1 − x2
· −(2y2 + a1x2 + a3)

x1 − x2

= x− ψ2(Q)ψ2(R)

(x1 − x2)2
.

Now consider the two points Pn = (ϕn/ψ
2
n, ωn/ψ

3
n) and Pn+1 = (ϕn+1/ψ

2
n+1, ωn+1/ψ

3
n+1)

over Frac(U), which indeed have distinct X-coordinates. We have Pn = nP and Pn+1 =

(n+1)P by induction hypothesis, so Pn+Pn+1 = (2n+1)P and −Pn+Pn+1 = P = (X, Y ),
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and the above formula becomes

x3 = X − ψ2(Pn)ψ2(Pn+1)

(ϕn/ψ2
n − ϕn+1/ψ2

n+1)
2

= X −
(ψ2n/ψ

4
n)(ψ2(n+1)/ψ

4
n+1)(

ψ2n+1/ψ2
nψ

2
n+1

)2
= X −

ψ(2n+1)−1ψ(2n+1)+1

ψ2
2n+1

=
ϕ2n+1

ψ2
2n+1

.

where the second identity uses (7b) and (3d). Since x3 = AX(Pn, Pn+1)/AZ(Pn, Pn+1)
2 in

Frac(U) by the addition formulas in Jacobian coordinates and we already know ψ2n+1 =

AZ(Pn, Pn+1), we conclude that ϕ2n+1 ≡ AX(Pn, Pn+1), namely (5a). It might be possible to

“homogenize” this argument to make it work within the polynomial ring Z[a1, . . . , a6, X, Y ],

but that probably makes it more cumbersome and less insightful.

Given that we already showed x3 = ϕ2n+1/ψ
2
2n+1, it suffices to show y3 = ω2n+1/ψ

3
2n+1 =

(ψ2(P2n+1)− a1x3 − a3)/2 in Frac(U) to prove (5b), or 2y3 + a1x3 + a3 = ψ2(P2n+1). Write

k =
y1 − y2
x1 − x2

=
(ψ2(Pn)− a1x1 − a3)/2− (ψ2(Pn+1)− a1x2 − a3)/2

x1 − x2
=
ψ2(Pn)− ψ2(Pn+1)

2(x1 − x2)
−a1

2

and
x1y2 − x2y1
x1 − x2

=
x1ψ2(Pn+1)− x2ψ2(Pn)

2(x1 − x2)
− a3

2

we obtain from (8d)

2y3 = −
(
ψ2(Pn)− ψ2(Pn+1)

x1 − x2
+ a1

)
x3 −

x1ψ2(Pn+1)− x2ψ2(Pn)

x1 − x2
− a3,

so

(x1 − x2)(2y3 + a1x3 + a3)

= − x3(ψ2(Pn)− ψ2(Pn+1))− x1ψ2(Pn+1) + x2ψ2(Pn)
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= −
(
X − ψ2n+2ψ2n

ψ2
2n+1

)
(ψ2(Pn)− ψ2(Pn+1))−

(
X − ψn+1ψn−1

ψ2
n

)
ψ2(Pn+1) +

(
X − ψn+2ψn

ψ2
n+1

)
ψ2(Pn)

=
ψn+1ψ

c
n+1ψnψ

c
n

ψ2
2n+1

(ψ2(Pn)− ψ2(Pn+1)) +
ψn+1ψn−1

ψ2
n

ψ2(Pn+1)−
ψn+2ψn

ψ2
n+1

ψ2(Pn).

Since ψ2(Pn) = ψc
n/ψ

3
n by (3d), all terms in the last expression are products of terms of the

sequence ψ and are free of all variables a1, . . . , a6, X, Y , and it suffices to show that it is

equal to

(x1 − x2)ψ2(P2n+1) =
ψ2n+1

ψ2
n+1ψ

2
n

·
ψc
2n+1

ψ3
2n+1

=
ψc
2n+1

ψ2
2n+1ψ

2
n+1ψ

2
n

which has the same property. Computational experiments show that the identity holds

for any elliptic divisibility sequence ψ, so we should be able to prove it in that generality.

Multiplying by the denominator ψ2
2n+1ψ

2
n+1ψ

2
n and using ψ2(Pn) = ψc

n/ψ
3
n, our goal becomes

ψ2n+3ψ
2
2n − ψ2n−1ψ

2
2n+2

ψ2

= ψc
2n+1 = ψc

n+1ψ
c
n(ψ

c
nψ

3
n+1 − ψc

n+1ψ
3
n) + ψ2

2n+1(ψn−1ψ
c
n+1 − ψn+2ψ

c
n).

It turns out

ψ2n+3ψ
2
2n − ψ2n−1ψ

2
2n+2

ψ2

− ψc
n+1ψ

c
n(ψ

c
nψ

3
n+1 − ψc

n+1ψ
3
n)

=
(ψn+3ψ

3
n+1 − ψnψ

3
n+2)ψ

2
n(ψ

c
n)

2 − (ψn+1ψ
3
n−1 − ψn−2ψ

3
n)ψ

2
n+1(ψ

c
n+1)

2

ψ2

− (ψc
n)

2ψ3
n+1

ψn+3ψ
2
n − ψn−1ψ

2
n+2

ψ2

+ (ψc
n+1)

2ψ3
n

ψn+2ψ
2
n−1 − ψn−2ψ

2
n+1

ψ2

.

There are a total of 8 terms if expanded out. Among these, the 1st term cancel with the 6th,

and the 4th with the 7th, and the 2nd term pair up with the 5th, and the 3rd with the 8th,

simplifying to
(
(ψn−1ψ

c
n+1)

2 − (ψn+2ψ
c
n)

2
)
ψ2n+1. Factoring the difference of squares, we see

that our goal reduces to ψ2ψ2n+1 = ψn−1ψ
c
n+1 + ψn+2ψ

c
n. Expanding ψc we see that this is

exactly equivalent to E(n+1, n, 2, 0). (One can discover this factor by expanding everything

to terms around ψn and factoring the resulting expression.)
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5. Elliptic relations from the defining recurrence

See [9] for now.
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