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Lean for Scientists and Engineers 2024

1. Logic and proofs for scientists and engineers

1. Introduction to theorem proving

2. Writing proofs in Lean

3. Formalizing derivations in science and engineering

2. Functional programming in Lean 4
1. Functional vs. imperative programming

2. Numerical vs. symbolic mathematics

3. Writing executable programs in Lean

3. Provably-correct programs for scientific computing



Schedule (tentative)

July 9, 2024 Introduction to Lean and proofs

July 10, 2024 Equalities and inequalities

July 16, 2024 Proofs with structure

July 17, 2024 Proofs with structure II

July 23, 2024 Proofs about functions; types

July 24, 2024 Calculus-based-proofs

July 30-31, 2024 Prof. Josephson traveling

August 6, 2024 Functions, recursion, structures

August 7, 2024 Polymorphic functions for floats and reals; lists, arrays

August 13, 2024 Lists, indexing, Input / output, compiling Lean to C 

August 14, 2024 Break

August 20, 2024 LeanMD & BET Analysis in Lean

August 21, 2024 SciLean tutorial, by Tomáš Skřivan

Logic and proofs for scientists and engineers

Functional programming in Lean 4

Provably-correct programs for scientific computing

Guest instructor: Tomáš Skřivan

Content inspired by:

Mechanics of Proof, by Heather Macbeth

Functional Programming in Lean, by David Christiansen



Schedule for today

• Recap Lectures 1-9

• LeanBET

• LeanMD

• What do you want to build?



Errors in scientific computing software

Category of 

error

Example Intervention

Syntax Not closing 

parentheses

Editor
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Errors in scientific computing software

Category of 

error

Example Intervention

Syntax Not closing 

parentheses

Editor

Runtime Accessing element in 

list that doesn’t exist

Run the program, program gives error 

message

Semantic Missing a minus sign, 

transposing tensor 

indices

Human inspection of the code; test-

driven development; observing 

anomalous behavior
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Errors in scientific computing software

Category of 

error

Example Intervention Lean

Syntax Not closing 

parentheses

Editor Editor

Runtime Accessing element in 

list that doesn’t exist

Run the program, program gives error 

message

Editor

Semantic Missing a minus sign, 

transposing tensor 

indices

Human inspection of the code; test-

driven development; observing 

anomalous behavior

Editor

Floating point / 

Round off

Subtracting small 

values from large 

values

Checking energy conservation
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A vision for bug-free scientific computing
Selsam, Liang, Dill, “Developing Bug-Free Machine Learning Systems with Formal Mathematics,” ICML 2017.

9



All possible

combinations

of symbols

Logically valid 

statements

Reality

Pure math

Syntax

Code

Scientific models Symbolic models
Computable 

models

Syntax and semantics in scientific computing

Reality

Scientific software

Slide from Lecture 3



All possible

combinations

of symbols

Logically valid 

statements

Syntax

Code

Symbolic models
Computable 

models

Syntax and semantics in scientific computing

Reality

Traditionally, the 

validity of the 

mathematics and the 

scientific theory are 

established by hand

Humans read the theory 

and write the code as 

best as they can

Then use various automated 

and manual means to 

compare to experiment
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All possible

combinations

of symbols

Logically valid 

statements

Syntax

Code

Symbolic models
Computable 

models

Syntax and semantics in scientific computing

Reality

Can we represent all 

of this in Lean, and 

validate the 

construction of the 

math, scientific models, 

and software, in one 

system?

Then use various automated 

and manual means to 

compare to experiment
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Lists vs Arrays

https://medium.com/@bilal_k/wtf-is-linked-list-5d58b8a3bfe7

1

4

7

12

9

11

1

4

7

12

9

11

A “list” in Python is an array!A “list” in Lean is a linked list

Slide from Lecture 8



Polymorphic functions

• Polymorphism is when a single symbol represents different types

• A polymorphic function takes variables that can be more than one type

• Python uses polymorphism (most languages do), so a relatively short 
list of familiar symbols can address diverse tasks

def plus(a,b):
    return a + b

plus(1,2)
3

plus('1','2’)
'12'

plus([1],[2])
[1, 2]

plus(1.0,2.0)
3.0

plus(1.0,2)
3.0

Polymorphism in Python is ad hoc – under the hood, these are 

compiled as distinct functions

Slide from Lecture 8

https://en.wikipedia.org/wiki/Polymorphism_(computer_science)


Polymorphism in Lean

• In functional programming languages, polymorphism is made possible using 
generic types, which get inhabited by specific types based on context

• For example, let’s revisit the structure Point from last time

• We can define a similar structure PPoint that’s polymorphic (from FPIL 1.6)

structure PPoint (α : Type) where
  x : α
  y : α
deriving Repr

structure Point where
  x : Float
  y : Float
deriving Repr

Slide from Lecture 8

https://en.wikipedia.org/wiki/Parametric_polymorphism


Polymorphism to combine theory and computation



Input / Output: An Analogy

Kitchen

(back of house)

Dining room

(front of house)
Waiter

Pure functions

Mathlib

Verified logical syntax

Messy, unpredictable

real world
IO Monad

Slide from Lecture 9



Adsorption

Freundlich q = K F pn

Langmuir q = qm ax K L p
1+ K L p

BET q = qm cB E T p
(p0− p) (1+ (cB E T − 1)(p/ p0 ) )

Toth q = qm ax p

(b+ pt )1 / t

Fowler-Guggenheim K FG p = ✓
1− ✓

exp 2✓w
R T

a) b) c) d)

e)

When molecules from a gas or liquid “stick” onto a solid material

Slide from Lecture 1



Adsorption of Gases in Multimolecular Layers

Brunauer, Emmett, and Teller (yes, the one from the Manhattan Project)

1938

36000+ citations (Google Scholar)

Linearized form

Loading = f(p)



Formalizing Chemical Physics in the Lean 
Theorem Prover

• It was hard to sort out “what are assumptions” from “what are 
intermediate steps”

• You also have some bit of freedom around where you start the 
formalization process

• We eventually sorted this into 6 foundational premises

• https://github.com/ATOMSLab/LeanBET/blob/main/BET/BETInfinite.lean

• Proved that Eq. 26 and Eq. 28 from Brunauer, et al. follow from these 
premises

https://github.com/ATOMSLab/LeanBET/blob/main/BET/BETInfinite.lean


Adsorption Analysis using BET Theory
Osterrieth, et al. Adv. Mat. 2022

Linearized form

Loading = f(p)
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Roquerol Criteria

Open paper

Python code available here:

https://github.com/nakulrampal/betsi-gui

Osterrieth, et al. Adv. Mat. 2022



Bug-Free BET Analysis

Adsorption data

Filter data to 

focus on “BET 

regime”

Linearize the 

raw data

Perform linear 

regression

Fitted 

coefficients
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Bug-Free BET Analysis

Adsorption data

Filter data to 

focus on “BET 

regime”

Linearize the 

raw data

Perform linear 

regression

Fitted 

coefficients

Proof that linear 

regression 

minimizes least 

squares error

Proof that algebra 

for linearization is 

correct

Formal proof of BET Theory

follows from a body of assumptions about  

Proof that output corresponds 

to meaningful parameters
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Linearize the 

raw data
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Polymorphic functions to bridge floats and reals

Adsorption data

Filter data to 

focus on “BET 

regime”

Linearize the 

raw data

Perform linear 

regression

Fitted

coefficients

Proof that linear 

regression 

minimizes least 

squares error

Proof that algebra 

for linearization is 

correct

Formal proof of BET Theory

follows from a body of assumptions about  

Proof that output corresponds 

to meaningful parameters

Polymorphic functions
Floating point numbers

Real numbers

ℝ
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Regression with Lean matches BETSI standard
Osterrieth, et al. Adv. Mat. 2022

BETSI

Lean

27Slide from Lecture 1

Caveat: Filtering 
applied in BETSI



Go to code

• Right now (no guarantees about future code versions)
1. Run BET-CSV-examples.lean

2. Importing StreamRead – triggers the main function in StreamRead 

3. Calls CSV_LRM_Model

4. In StreamRead, main calls process

5. process calls dump in StreamRead

6. dump calls parse from CSVCat
1. This is applied recursively and shrinks the buffer

2. Strings get converted into UTF8, then floats

7. Once the buffer is empty, call LRprocess to start doing the math

8. linReg does the math and handles exceptions

9. linReg returns LRM_Out



Molecular simulations

Try in your browser!
https://physics.weber.edu/schroeder/md/InteractiveMD.html

Slides from Samiha Sharlin



Simulation results are compared 
to experimental results to test 
the effectiveness of models

Simulations can be compared 
with predictions of analytical 
theory to test their validity

Adapted from Computer Simulation of Liquids by M. P. Allen and D.J.Tildesley

Simulations are “computer experiments”

Molecular simulation is a 

computational “experiment” 

conducted on a molecular model

It has the characteristics of both 

theory and experiment



Why do molecular simulations?

Molecular simulation is the only means for accurately 
determining the thermophysical properties of a molecular 
model system

Computer simulations help us to visualize events that have not 
taken place in real or are impossible to observe experimentally

High throughput simulations require less effort per analysis 
when compared to traditional means of experimentation
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Molecular Modeling Configuration Sampling Data Analyzing

Modeling individual particles 

using force fields or quantum 

mechanics

Computing movement of  

model particles

How do molecular simulations work?

Analyzing simulation data to 

estimate thermodynamic 

properties

Bond

Angle

Dihedral

+ -

Electrostatic

van der Waals
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Force Fields

Molecular Modeling

“ ..all things are made of atoms, and that everything that living things do 

can be understood in terms of the jigglings and wigglings of atoms.”1

-- Richard Feynman 

1. The Feynman Lectures On Physics; Addison-Wesley, 1963; Vol. 1. 

Quantum Mechanics

Uses electronic structure to compute forces by 

solving the Schrödinger equation

Bond

Angle

Dihedral

+ -

Electrostatic

van der Waals

Uses simple empirical functions to model, most commonly 

as a sum of bonded and nonbonded interactions
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Molecular Modeling Configuration Sampling
Data Analyzing

Modeling individual particles 

using force fields or quantum 

mechanics

Computing movement of  

model particles

How do molecular simulations work?

Analyzing simulation data to 

estimate thermodynamic 

properties

Bond

Angle

Dihedral

+ -

Electrostatic

van der Waals









It is a collection of systems or microstates in the 
phase space at a certain time and is distributed 
according to a probability density function 
consistent with the macroscopic constraints 
defining the system (NPT, NVT, NVE, etc.)

Ensemble

Canonical (NVT)

Grand canonical (µVT)

Isothermal – Isobaric (NPT) 12
Images from Wikipedia: 

https://en.wikipedia.org/wiki/Statistical_ensemble_(mathematical_physics)



Canonical partition function is the normalizing factor for these probabilities:

4 +# , )# 	is the Hamiltonian corresponding to the system’s total energy which is a function 

of configurational space (3N positions and 3N momenta). It can be written as the sum of 

kinetic and potential energies of the system:

The momentum integral can be solved analytically:

Thus, we have:



31

Simulation snapshots

Liquid phase at T = 160 K

Box length = 35 Å

Gas phase at T = 160 K

Box length = 262 Å

Eight independent simulations

with 40,000 MC cycles for equilibration and 

50,000 MC cycles for production 

for a system size of 1000* molecules

Molar volume of vapor box drops 

as temperature rises

Drastic change observed 

near critical region

Vapor box length at 160 K 

is ~ 7 times larger than that at 300 K 

Liquid phase at T = 300 K

Box length = 43 Å

Gas phase at  T = 300K

Box length = 39 Å

*Simulation runs above 300 K required 2000 molecules



Applications of molecular simulation

• Design materials for gas separation
• Carbon dioxide capture

• Water harvesting from air

• Purification of medical-grade oxygen

• Modeling biomolecular systems
• Protein structure and dynamics

• Drug design

• Simulating lipid bilayers

• Physical chemistry
• Phase transitions and critical phenomena

• Thermodynamics of fluids and mixtures

Between 2000 and 2009,

over 100k papers published

(Allen & Tildesley, 2017)



Ingredients of molecular dynamics simulations

1. Simulation box

2. Particles

3. Force field (interactions among particles)
1. Energies

2. Forces

4. Move particles via Newton’s equations of motion



LeanMD: Formally-verified molecular dynamics

Execution specifications
1. Verlet algorithm is valid for 

approximating the ODEs

2. Fast Fourier Transform 

computes Fourier Transform

3. SHAKE algorithm is correct

Formal proofs that

execution is valid

Math specifications
1. Forces are gradients of energy

2. Convergence of Ewald sum

3. Energy conservation

4. Momentum conservation

5. Ergodicity

Formal proofs that

math is valid

Molecular dynamics 

represented as symbolic 

formulas

Approximation of 

symbolic formulas as 

executable code

Compiled into C code

Efficient, bug-free 

simulations

Formalization of 

statistical mechanics

Prove that MD code is 

modeling the NVE 

ensemble
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LeanMD (so far)



NIST Standard Reference Simulation Website

• https://www.nist.gov/programs-projects/nist-standard-reference-
simulation-website



Go to code



SciLib, database of formally verified science

Reaction rate theory Molecular mechanics

Fluid mechanics

Thermodynamics

Quantum mechanics

Statistical mechanics

Twitter: @trjosephson

Email: tjo@umbc.edu
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What do you want to build?

• Project ideas discussion on Zulip: 
https://leanprover.zulipchat.com/#narrow/stream/445230-Lean-for-
Scientists-and-Engineers-2024/topic/Project.20ideas

• Probability theory (formalizing math)

• Formalizing definition of AIXI (reinforcement learning)

• Markov chain Monte Carlo (Metropolis-Hastings)

• Translating textbook on statistics into textbook with Lean examples

• Data science topics
• pandas DataFrames in Lean?

• Linear regression

• Connecting Lean to data visualization tools in external languages (e.g. Python)

https://leanprover.zulipchat.com/
https://leanprover.zulipchat.com/
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