
Tyler R. Josephson

AI & Theory-Oriented Molecular Science (ATOMS) Lab

University of Maryland, Baltimore County

Twitter: @trjosephson

Email: tjo@umbc.edu

Lean for Scientists and Engineers

Look at the Sky

Porter Robinson

https://twitter.com/trjosephson

Lean for Scientists and Engineers 2024

1. Logic and proofs for scientists and engineers

1. Introduction to theorem proving

2. Writing proofs in Lean

3. Formalizing derivations in science and engineering

2. Functional programming in Lean 4
1. Functional vs. imperative programming

2. Numerical vs. symbolic mathematics

3. Writing executable programs in Lean

3. Provably-correct programs for scientific computing

Schedule (tentative)

July 9, 2024 Introduction to Lean and proofs

July 10, 2024 Equalities and inequalities

July 16, 2024 Proofs with structure

July 17, 2024 Proofs with structure II

July 23, 2024 Proofs about functions; types

July 24, 2024 Calculus-based-proofs

July 30-31, 2024 Prof. Josephson traveling

August 6, 2024 Functions, recursion, structures

August 7, 2024 Polymorphic functions for floats and reals; lists, arrays

August 13, 2024 Lists, indexing, Input / output, compiling Lean to C

August 14, 2024 Break

August 20, 2024 LeanMD & BET Analysis in Lean

August 21, 2024 SciLean tutorial, by Tomáš Skřivan

Logic and proofs for scientists and engineers

Functional programming in Lean 4

Provably-correct programs for scientific computing

Guest instructor: Tomáš Skřivan

Content inspired by:

Mechanics of Proof, by Heather Macbeth

Functional Programming in Lean, by David Christiansen

Schedule for today

• Recap Lectures 1-9

• LeanBET

• LeanMD

• What do you want to build?

Errors in scientific computing software

Category of

error

Example Intervention

Syntax Not closing

parentheses

Editor

5Slide from Lecture 1

Errors in scientific computing software

Category of

error

Example Intervention

Syntax Not closing

parentheses

Editor

Runtime Accessing element in

list that doesn’t exist

Run the program, program gives error

message

Semantic Missing a minus sign,

transposing tensor

indices

Human inspection of the code; test-

driven development; observing

anomalous behavior

6Slide from Lecture 1

Errors in scientific computing software

Category of

error

Example Intervention Lean

Syntax Not closing

parentheses

Editor Editor

Runtime Accessing element in

list that doesn’t exist

Run the program, program gives error

message

Editor

Semantic Missing a minus sign,

transposing tensor

indices

Human inspection of the code; test-

driven development; observing

anomalous behavior

Editor

7Slide from Lecture 1

Errors in scientific computing software

Category of

error

Example Intervention Lean

Syntax Not closing

parentheses

Editor Editor

Runtime Accessing element in

list that doesn’t exist

Run the program, program gives error

message

Editor

Semantic Missing a minus sign,

transposing tensor

indices

Human inspection of the code; test-

driven development; observing

anomalous behavior

Editor

Floating point /

Round off

Subtracting small

values from large

values

Checking energy conservation

8Slide from Lecture 1

A vision for bug-free scientific computing
Selsam, Liang, Dill, “Developing Bug-Free Machine Learning Systems with Formal Mathematics,” ICML 2017.

9

All possible

combinations

of symbols

Logically valid

statements

Reality

Pure math

Syntax

Code

Scientific models Symbolic models
Computable

models

Syntax and semantics in scientific computing

Reality

Scientific software

Slide from Lecture 3

All possible

combinations

of symbols

Logically valid

statements

Syntax

Code

Symbolic models
Computable

models

Syntax and semantics in scientific computing

Reality

Traditionally, the

validity of the

mathematics and the

scientific theory are

established by hand

Humans read the theory

and write the code as

best as they can

Then use various automated

and manual means to

compare to experiment

Slide from Lecture 3

All possible

combinations

of symbols

Logically valid

statements

Syntax

Code

Symbolic models
Computable

models

Syntax and semantics in scientific computing

Reality

Can we represent all

of this in Lean, and

validate the

construction of the

math, scientific models,

and software, in one

system?

Then use various automated

and manual means to

compare to experiment

Slide from Lecture 3

Lists vs Arrays

https://medium.com/@bilal_k/wtf-is-linked-list-5d58b8a3bfe7

1

4

7

12

9

11

1

4

7

12

9

11

A “list” in Python is an array!A “list” in Lean is a linked list

Slide from Lecture 8

Polymorphic functions

• Polymorphism is when a single symbol represents different types

• A polymorphic function takes variables that can be more than one type

• Python uses polymorphism (most languages do), so a relatively short
list of familiar symbols can address diverse tasks

def plus(a,b):
 return a + b

plus(1,2)
3

plus('1','2’)
'12'

plus([1],[2])
[1, 2]

plus(1.0,2.0)
3.0

plus(1.0,2)
3.0

Polymorphism in Python is ad hoc – under the hood, these are

compiled as distinct functions

Slide from Lecture 8

https://en.wikipedia.org/wiki/Polymorphism_(computer_science)

Polymorphism in Lean

• In functional programming languages, polymorphism is made possible using
generic types, which get inhabited by specific types based on context

• For example, let’s revisit the structure Point from last time

• We can define a similar structure PPoint that’s polymorphic (from FPIL 1.6)

structure PPoint (α : Type) where
 x : α
 y : α
deriving Repr

structure Point where
 x : Float
 y : Float
deriving Repr

Slide from Lecture 8

https://en.wikipedia.org/wiki/Parametric_polymorphism

Polymorphism to combine theory and computation

Input / Output: An Analogy

Kitchen

(back of house)

Dining room

(front of house)
Waiter

Pure functions

Mathlib

Verified logical syntax

Messy, unpredictable

real world
IO Monad

Slide from Lecture 9

Adsorption

Freundlich q = K F pn

Langmuir q = qm ax K L p
1+ K L p

BET q = qm cB E T p
(p0− p) (1+ (cB E T − 1)(p/ p0))

Toth q = qm ax p

(b+ pt)1 / t

Fowler-Guggenheim K FG p = ✓
1− ✓

exp 2✓w
R T

a) b) c) d)

e)

When molecules from a gas or liquid “stick” onto a solid material

Slide from Lecture 1

Adsorption of Gases in Multimolecular Layers

Brunauer, Emmett, and Teller (yes, the one from the Manhattan Project)

1938

36000+ citations (Google Scholar)

Linearized form

Loading = f(p)

Formalizing Chemical Physics in the Lean
Theorem Prover

• It was hard to sort out “what are assumptions” from “what are
intermediate steps”

• You also have some bit of freedom around where you start the
formalization process

• We eventually sorted this into 6 foundational premises

• https://github.com/ATOMSLab/LeanBET/blob/main/BET/BETInfinite.lean

• Proved that Eq. 26 and Eq. 28 from Brunauer, et al. follow from these
premises

https://github.com/ATOMSLab/LeanBET/blob/main/BET/BETInfinite.lean

Adsorption Analysis using BET Theory
Osterrieth, et al. Adv. Mat. 2022

Linearized form

Loading = f(p)

21Slide from Lecture 1

Roquerol Criteria

Open paper

Python code available here:

https://github.com/nakulrampal/betsi-gui

Osterrieth, et al. Adv. Mat. 2022

Bug-Free BET Analysis

Adsorption data

Filter data to

focus on “BET

regime”

Linearize the

raw data

Perform linear

regression

Fitted

coefficients

23Slide from Lecture 1

Bug-Free BET Analysis

Adsorption data

Filter data to

focus on “BET

regime”

Linearize the

raw data

Perform linear

regression

Fitted

coefficients

Proof that linear

regression

minimizes least

squares error

Proof that algebra

for linearization is

correct

Formal proof of BET Theory

follows from a body of assumptions about

Proof that output corresponds

to meaningful parameters

24Slide from Lecture 1

Bug-Free BET Analysis

Adsorption data

Filter data to

focus on “BET

regime”

Linearize the

raw data

Perform linear

regression

Fitted

coefficients

Proof that linear

regression

minimizes least

squares error

Proof that algebra

for linearization is

correct

Formal proof of BET Theory

follows from a body of assumptions about

Proof that output corresponds

to meaningful parameters

25Slide from Lecture 1

Polymorphic functions to bridge floats and reals

Adsorption data

Filter data to

focus on “BET

regime”

Linearize the

raw data

Perform linear

regression

Fitted

coefficients

Proof that linear

regression

minimizes least

squares error

Proof that algebra

for linearization is

correct

Formal proof of BET Theory

follows from a body of assumptions about

Proof that output corresponds

to meaningful parameters

Polymorphic functions
Floating point numbers

Real numbers

ℝ

26Slide from Lecture 1

Regression with Lean matches BETSI standard
Osterrieth, et al. Adv. Mat. 2022

BETSI

Lean

27Slide from Lecture 1

Caveat: Filtering
applied in BETSI

Go to code

• Right now (no guarantees about future code versions)
1. Run BET-CSV-examples.lean

2. Importing StreamRead – triggers the main function in StreamRead

3. Calls CSV_LRM_Model

4. In StreamRead, main calls process

5. process calls dump in StreamRead

6. dump calls parse from CSVCat
1. This is applied recursively and shrinks the buffer

2. Strings get converted into UTF8, then floats

7. Once the buffer is empty, call LRprocess to start doing the math

8. linReg does the math and handles exceptions

9. linReg returns LRM_Out

Molecular simulations

Try in your browser!
https://physics.weber.edu/schroeder/md/InteractiveMD.html

Slides from Samiha Sharlin

Simulation results are compared
to experimental results to test
the effectiveness of models

Simulations can be compared
with predictions of analytical
theory to test their validity

Adapted from Computer Simulation of Liquids by M. P. Allen and D.J.Tildesley

Simulations are “computer experiments”

Molecular simulation is a

computational “experiment”

conducted on a molecular model

It has the characteristics of both

theory and experiment

Why do molecular simulations?

Molecular simulation is the only means for accurately
determining the thermophysical properties of a molecular
model system

Computer simulations help us to visualize events that have not
taken place in real or are impossible to observe experimentally

High throughput simulations require less effort per analysis
when compared to traditional means of experimentation

4

Molecular Modeling Configuration Sampling Data Analyzing

Modeling individual particles

using force fields or quantum

mechanics

Computing movement of

model particles

How do molecular simulations work?

Analyzing simulation data to

estimate thermodynamic

properties

Bond

Angle

Dihedral

+ -

Electrostatic

van der Waals

5

Force Fields

Molecular Modeling

“ ..all things are made of atoms, and that everything that living things do

can be understood in terms of the jigglings and wigglings of atoms.”1

-- Richard Feynman

1. The Feynman Lectures On Physics; Addison-Wesley, 1963; Vol. 1.

Quantum Mechanics

Uses electronic structure to compute forces by

solving the Schrödinger equation

Bond

Angle

Dihedral

+ -

Electrostatic

van der Waals

Uses simple empirical functions to model, most commonly

as a sum of bonded and nonbonded interactions

8

Molecular Modeling Configuration Sampling
Data Analyzing

Modeling individual particles

using force fields or quantum

mechanics

Computing movement of

model particles

How do molecular simulations work?

Analyzing simulation data to

estimate thermodynamic

properties

Bond

Angle

Dihedral

+ -

Electrostatic

van der Waals

It is a collection of systems or microstates in the
phase space at a certain time and is distributed
according to a probability density function
consistent with the macroscopic constraints
defining the system (NPT, NVT, NVE, etc.)

Ensemble

Canonical (NVT)

Grand canonical (µVT)

Isothermal – Isobaric (NPT) 12
Images from Wikipedia:

https://en.wikipedia.org/wiki/Statistical_ensemble_(mathematical_physics)

Canonical partition function is the normalizing factor for these probabilities:

4 +# ,)# 	is the Hamiltonian corresponding to the system’s total energy which is a function

of configurational space (3N positions and 3N momenta). It can be written as the sum of

kinetic and potential energies of the system:

The momentum integral can be solved analytically:

Thus, we have:

31

Simulation snapshots

Liquid phase at T = 160 K

Box length = 35 Å

Gas phase at T = 160 K

Box length = 262 Å

Eight independent simulations

with 40,000 MC cycles for equilibration and

50,000 MC cycles for production

for a system size of 1000* molecules

Molar volume of vapor box drops

as temperature rises

Drastic change observed

near critical region

Vapor box length at 160 K

is ~ 7 times larger than that at 300 K

Liquid phase at T = 300 K

Box length = 43 Å

Gas phase at T = 300K

Box length = 39 Å

*Simulation runs above 300 K required 2000 molecules

Applications of molecular simulation

• Design materials for gas separation
• Carbon dioxide capture

• Water harvesting from air

• Purification of medical-grade oxygen

• Modeling biomolecular systems
• Protein structure and dynamics

• Drug design

• Simulating lipid bilayers

• Physical chemistry
• Phase transitions and critical phenomena

• Thermodynamics of fluids and mixtures

Between 2000 and 2009,

over 100k papers published

(Allen & Tildesley, 2017)

Ingredients of molecular dynamics simulations

1. Simulation box

2. Particles

3. Force field (interactions among particles)
1. Energies

2. Forces

4. Move particles via Newton’s equations of motion

LeanMD: Formally-verified molecular dynamics

Execution specifications
1. Verlet algorithm is valid for

approximating the ODEs

2. Fast Fourier Transform

computes Fourier Transform

3. SHAKE algorithm is correct

Formal proofs that

execution is valid

Math specifications
1. Forces are gradients of energy

2. Convergence of Ewald sum

3. Energy conservation

4. Momentum conservation

5. Ergodicity

Formal proofs that

math is valid

Molecular dynamics

represented as symbolic

formulas

Approximation of

symbolic formulas as

executable code

Compiled into C code

Efficient, bug-free

simulations

Formalization of

statistical mechanics

Prove that MD code is

modeling the NVE

ensemble

45Slide from Lecture 1

LeanMD (so far)

NIST Standard Reference Simulation Website

• https://www.nist.gov/programs-projects/nist-standard-reference-
simulation-website

Go to code

SciLib, database of formally verified science

Reaction rate theory Molecular mechanics

Fluid mechanics

Thermodynamics

Quantum mechanics

Statistical mechanics

Twitter: @trjosephson

Email: tjo@umbc.edu

49Slide from Lecture 1

https://twitter.com/trjosephson

What do you want to build?

• Project ideas discussion on Zulip:
https://leanprover.zulipchat.com/#narrow/stream/445230-Lean-for-
Scientists-and-Engineers-2024/topic/Project.20ideas

• Probability theory (formalizing math)

• Formalizing definition of AIXI (reinforcement learning)

• Markov chain Monte Carlo (Metropolis-Hastings)

• Translating textbook on statistics into textbook with Lean examples

• Data science topics
• pandas DataFrames in Lean?

• Linear regression

• Connecting Lean to data visualization tools in external languages (e.g. Python)

https://leanprover.zulipchat.com/
https://leanprover.zulipchat.com/

	Slide 1: Lean for Scientists and Engineers
	Slide 2: Lean for Scientists and Engineers 2024
	Slide 3: Schedule (tentative)
	Slide 4: Schedule for today
	Slide 5: Errors in scientific computing software
	Slide 6: Errors in scientific computing software
	Slide 7: Errors in scientific computing software
	Slide 8: Errors in scientific computing software
	Slide 9: A vision for bug-free scientific computing
	Slide 10: Syntax and semantics in scientific computing
	Slide 11: Syntax and semantics in scientific computing
	Slide 12: Syntax and semantics in scientific computing
	Slide 13: Lists vs Arrays
	Slide 14: Polymorphic functions
	Slide 15: Polymorphism in Lean
	Slide 16: Polymorphism to combine theory and computation
	Slide 17: Input / Output: An Analogy
	Slide 18: Adsorption
	Slide 19: Adsorption of Gases in Multimolecular Layers
	Slide 20: Formalizing Chemical Physics in the Lean Theorem Prover
	Slide 21: Adsorption Analysis using BET Theory
	Slide 22: Roquerol Criteria
	Slide 23: Bug-Free BET Analysis
	Slide 24: Bug-Free BET Analysis
	Slide 25: Bug-Free BET Analysis
	Slide 26: Polymorphic functions to bridge floats and reals
	Slide 27: Regression with Lean matches BETSI standard
	Slide 28: Go to code
	Slide 29: Molecular simulations
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43: Applications of molecular simulation
	Slide 44: Ingredients of molecular dynamics simulations
	Slide 45: LeanMD: Formally-verified molecular dynamics
	Slide 46: LeanMD (so far)
	Slide 47: NIST Standard Reference Simulation Website
	Slide 48: Go to code
	Slide 49: SciLib, database of formally verified science
	Slide 50: What do you want to build?

