OWUMBC —
VN

’@ O and V
6 Environmental THEOREM PROVER

Engineering

Lean for Scientists and Engineers

Tyler R.Josephson
Al & Theory-Oriented Molecular Science (ATOMS) Lab
University of Maryland, Baltimore County

UM STILLR
HERE See o

-

i » S A
. o

e Y <o o R "
L ;) 3 4 n S b

Look at the Sky
Porter Robinson

Twitter: @trjosephson

Email: tjio@umbc.edu

https://twitter.com/trjosephson

Lean for Scientists and Engineers 2024

|. Logic and proofs for scientists and engineers
|. Introduction to theorem proving
2. Writing proofs in Lean
3. Formalizing derivations in science and engineering

2. Functional programming in Lean 4
|. Functional vs. imperative programming
2. Numerical vs. symbolic mathematics
3. Writing executable programs in Lean

3. Provably-correct programs for scientific computing

Logic and proofs for scientists and engineers

SChedUIG (tentative) Functional programming in Lean 4

July 9,2024

July 10,2024
July 16,2024
July 17,2024
July 23,2024
July 24,2024
July 30-31,2024
August 6, 2024
August 7,2024
August |3,2024
August 14,2024
August 20, 2024
August 21,2024

Provably-correct programs for scientific computing
Introduction to Lean and proofs

Equalities and inequalities

Proofs with structure Content inspired by:
Mechanics of Proof, by Heather Macbeth

Proofs with structure . L : .y
Functional Programming in Lean, by David Christiansen

Proofs about functions; types

Calculus-based-proofs

Prof. Josephson traveling

Functions, recursion, structures

Polymorphic functions for floats and reals; lists, arrays

Lists, indexing, Input / output, compiling Lean to C
Break

LeanMD & BET Analysis in Lean

SciLean tutorial, by Tomas Skrivan

Guest instructor: Tomas Skrivan

Schedule for today

* Recap Lectures [-9

* LeanBET

* LeanMD

* What do you want to build?

Errors in scientific computing software

Category of Example Intervention
error
Syntax Not closing Editor

parentheses

Errors in scientific computing software

Category of Example
error
Syntax Not closing
parentheses
Runtime Accessing element in

list that doesn’t exist

Semantic Missing a minus sign,
transposing tensor
indices

Intervention

Editor

Run the program, program gives error

message

Human inspection of the code; test-
driven development; observing
anomalous behavior

Errors in scientific computing software

Category of Example
error
Syntax Not closing
parentheses
Runtime Accessing element in

list that doesn’t exist

Semantic Missing a minus sign,
transposing tensor
indices

Intervention Lean

Editor Editor

Run the program, program gives error Editor
message

Human inspection of the code; test- Editor

driven development; observing
anomalous behavior

Errors in scientific computing software

Category of
error
Syntax

Runtime

Semantic

Floating point /
Round off

Example

Not closing
parentheses

Accessing element in
list that doesn’t exist

Missing a minus sign,
transposing tensor
indices

Subtracting small
values from large
values

Intervention Lean

Editor Editor

Run the program, program gives error Editor
message

Human inspection of the code; test- Editor

driven development; observing
anomalous behavior

Checking energy conservation

A vision for bug-free scientific computing

Selsam, Liang, Dill, “Developing Bug-Free Machine Learning Systems with Formal Mathematics,” ICML 2017.

Standard method: test code empirically

S Debug \

Program [—> Test [—

Code that
passes tests

Our method: verify code mathematically

S Debug ‘\

Specify —* Program [—* Prove —

Code with
correct math

Syntax and semantics in scientific computing

g : : All possible\
[Logically valid] Syntax L
< combinations
Pure math . statements of symbols/
A 4
Scientific models | Symbolic models] Computable
J models
Scientific software { Code }
A 4

Reality 4{ Reality]

Syntax and semantics in scientific computing

Traditionally, the
validity of the
mathematics and the
scientific theory are
established by hand

-

-

All possible\

[Logically valid]<Syntax combinations

statements

of symbols

\ 4

[Symbolic models }

{ Computable

models

J

Humans read the theory

and write the code as Code
best as they can

Then use various automated Y
and manual means to Reality
compare to experiment

Syntax and semantics in scientific computing

Can we represent all
of this in Lean, and
validate the
construction of the
math, scientific models,
and software, in one

4 ar)
Lovically valid 4 All possible
Nntax . .
[oglcally val] P / combinations
statements
\ of symbols

\ 4

[Symbolic models

)

)

{ Computable

models

J

system!?

Code
Then use various automated Y
and manual means.to Reality
compare to experiment

A “list” in Lean is a linked list LiStS VS Arrays A “list” in Python is an array!

\

Linked Lists Arrou/s
3 =
*Each node is commected to « Each e,le,me_v\‘t has an index which
1 the next node. acts like an address in the array
4 * Dynamic in size. + Fixed in size. 4
7
. Accessing an e,le_me_n‘t requires . Ele_me_n‘ts can be acce_sse_o(J
12 traversal of whole list. easily. 12
9 . . . 9
e Tnsertioniond delotion is East. Insertion and deletion tokes o lot
11 of time. 11
* Uses wmore memory than an * Uses |e$s memory Qo»apare,d to a
array because it stores the linked list.
next value as well. ‘

https://medium.com/@pbilal_k/wtf-is-linked-list-5d58b8a3bfe7

Polymorphic functions

* Polymorphism is when a single symbol represents different types
* A polymorphic function takes variables that can be more than one type

* Python uses polymorphism (most languages do), so a relatively short
list of familiar symbols can address diverse tasks

def plus(a,b):

returna+b
plus(1,2) plus(1.0,2.0) plus('1','2’) plus([1],[2])
3 3.0 12 [1, 2]

plus(1.0,2) Polymorphism in Python is ad hoc — under the hood, these are
3.0 compiled as distinct functions

https://en.wikipedia.org/wiki/Polymorphism_(computer_science)

Polymorphism in Lean

* In functional programming languages, polymorphism is made possible using
generic types, which get inhabited by specific types based on context

* For example, let’s revisit the structure Point from last time

* We can define a similar structure PPoint that’s polymorphic (from FPIL 1.6)

structure Point where structure PPoint (a : Type) where
X : Float X:a
y : Float y:a

deriving Repr deriving Repr

https://en.wikipedia.org/wiki/Parametric_polymorphism

Polymorphism to combine theory and computation

Langmuir [Mul a] [Add a] [Div a] [One a] (Keq : o) (P :
Keq * P/ (1 + K_eqxP)

Langmuir 5.@ 9.0

LangmuirAdsorption {8 K P r_ad r_d k_ad k.d A S_tot S : R}
(hrad : r_ad = k_ad * P % S)
(hrd : r.d = k.d % A)
(heq : r_ad = r_d)
(hK : K = k_ad / k_d)
(hS_tot : 5_tot = S + A)
(he : 8 = A / S_tot)

r
r

(hel : S + A # @)
(hc2 : k.d + k ad * P = @)
(he3 : k_d = B) :
8 = Langmuir K P :=
[Langmuir]
[hrad, hrd] heq
[hB, hS_tot, hK]

« (k_.d + k_ad * P} = kd *x A+ k_ad * P x A :=
kad * P xS + k_ad * P % A := [heq]
k_ad *x P % (S + A) :=

Slide from Lecture 9

Input / Output: An Analogy

Kitchen

Dining room

Verified logical syntax

(back of house) Waiter (front of house)
Pure functions .
Mathlib 10 Monad Messy, unpredictable

real world

Slide from Lecture 1

Adsorption

When molecules from a gas or liquid “stick” onto a solid material

—— Freundlich
100 { —— Langmuir
— BET
—— Toth

804

Fowler-Guggenh

2 60-
e) Freundlich g= Kgp" E
Langmuir q= qTfXKKLLpp 40 -
BET 9= (Po - p)(lfn(]CCBBEETT—pl)(p/ Po)) 297
Tor A= (v p ;
CowlerGuggenhem Krop 1o () 4w T

Adsorption of Gases in Multimolecular Layers

Brunauer, Emmett, and Teller (yes, the one from the Manhattan Project)

1938

36000+ citations (Google Scholar)

BET Adsorption

co

V:VOZiSi

l

— [yl
s; = Cx'sg

Loading = f(p)
g = VU CP
(po —p)(1 + (¢ —1)(p/Po))

Linearized form
1 c— 1
p n b

q(po — D) Um UmC Do

Formalizing Chemical Physics in the Lean
Theorem Prover

* [t was hard to sort out “what are assumptions’ from “what are
intermediate steps”

* You also have some bit of freedom around where you start the
formalization process

* We eventually sorted this into 6 foundational premises
* https://github.com/ATOMSLab/LeanBET/blob/main/BET/BETInfinite.lean

* Proved that Eq. 26 and Eq. 28 from Brunauer, et al. follow from these
premises

https://github.com/ATOMSLab/LeanBET/blob/main/BET/BETInfinite.lean

21

oo @0 - ///-NOd
o—o—eo———TgiNoe—a-o© - GOLL-NN
P PR ———gos——o@ - 01 L-NN
c oo e o o - 20LL-NN
#éw— | 00L-TIN
= o O - 400-d1ING-gdL
o— ey —eo—o - LOL-TIN
o—@we [g-47
. - 000L-NN
p_§ oe | zZHN-99-0IN
(& dweo | 99-0IN
2 oe2e—o - G-4ON
O &= o - L-40Na
oo e | LH-WOW
e e | oeseWN) |y
h v & | $/40N-BIN
& [xgc|oy007
T 2 £ g . &= L |-1SNYH
(4] N -—
_ & o o o
o o o o
o o (e) o
(o) © <t N
_ _ _ = ,-b ;W ealy 139
‘af) o
= =
(oY) b
~N = o
o “ 5 | N | ©
C o s 3. [o[s
© ™~ “ 13 m m
5 1 Z o w
(V) S 2 -
S5 = S
~ o’
© a
v = |~
© mmmm d (=]
7y =
Vl < - S
(qe IS
S
et | ©
C 3 =
O T T T T T T
o o o o (e] o
(= o o (o) o
A wn < o N -
— ,-B cwo (4.19) xeydn gN
O VN
= ~—~
2 S m.
O I
O B o €
ol 2 I — _ =
C_ I & — ©
> | | B
O Q, Q|
Q' ©
s 8 o o~ — o m — I_l
%} [} %] (%) %) v I_l
O c s
(0] — m ™
2 _— ~— I~
1 < RN =S
) o) “— & O I
= > _ O —~~
+ < 00 Q ,
(@] c - N
Q — = Q, o= _
- L ~—~ =
m o o <X
m (4] Q o
o o | c SY
S -1 = —
Y A — -
)
o
[V}

Roquerol Criteria

Osterrieth, et al. Adv. Mat. 2022

Open paper

Python code available here:

https://github.com/nakulrampal/betsi-gui

Slide from Lecture 1

Bug-Free BET Analysis

Adsorption data —

Filter data to
focus on “BET
regime”

Linearize the
raw data

Perform linear
regression

Fitted
coefficients

23

Slide from Lecture 1

Filter data to

Adsorption data —| focus on “BET
regime”

\ 4

Linearize the

raw data

Bug-Free BET Analysis

Perform linear Fitted
e

\ 4

Formal proof of BET Theory

g = Um CP
(Po = p)(1 + (¢ = 1)(p/po))
follows from a body of assumptions about

Soo o

V=VOZisi

S3 i
S .

2 s; = Cx'sg
S1

So

BET Adsorption

regression coefficients

Proof that linear

Proof that algebra
for linearization is
correct

regression
minimizes least
squares error

Proof that output corresponds
to meaningful parameters

24

Slide from Lecture 1

Bug-Free BET Analysis

Filter data to

Adsorption data —| focus on “BET
regime”

\ 4

Linearize the

\ 4

Perform linear Fitted
e

raw data regression coefficients

Formal proof of BET Theory
VU CP

q —
(Po = p)(1 + (¢ = 1)(p/po))
follows from a body of assumptions about

Soo o

V=VOZisi

S3 i
S .

2 s; = Cx'sg
S1

So

BET Adsorption

Proof that algebra
for linearization is
correct

\ 4

Proof that linear
regression
minimizes least
squares error

Proof that output corresponds
to meaningful parameters

25

Polymorphic functions to bridge floats and reals

Filter data to
focus on “BET
regime”

\ 4

Adsorption data —

Linearize the

Perform linear
regression

\ 4

raw data

Floating point numbers
Polymorphic functions

Real numbers

R

Formal proof of BET Theory
Um CP

q —
(Po = p)(1 + (¢ = 1)(p/po))
follows from a body of assumptions about

S o0

: V=V02isi
S3 i

s; = Cx'sg

BET Adsorption

A

Proof that algebra regression

—> for linearization is

squares error
correct

Proof that output corresponds
to meaningful parameters

Proof that linear

minimizes least

Fitted
coefficients

Slide from Lecture 1

Regression with Lean matches BETSI standard

Osterrieth, et al. Adv. Mat. 2022

10000

: BETSI

8000 o o
®
7000 @ ® 0. ® e °
° ° o o o
o ®

6000 ®o o9 Gete® _ 00

o0 ® ¢ = ® *
5000 @ \ Lean

4000

Reported Adsorbate Surface Area
(m?/g)

3000 ® ¢ ® 4 o °
2000 o ° oo
Caveat: Filtering 1000

applied in BETSI

Go to code

* Right now (no guarantees about future code versions)

— |. Run BET-CSV-examples.lean
2. Importing StreamRead — triggers the main function in StreamRead
3. Calls CSV_LRM_Model
4. In StreamRead, main calls process
5. process calls dump in StreamRead
6. dump calls parse from CSVCat
|. This is applied recursively and shrinks the buffer
2. Strings get converted into UTF8, then floats
7. Once the buffer is empty, call LRprocess to start doing the math
8. linReg does the math and handles exceptions

— 9. linReg returns LRM_Out

=
e
(q0)
i
(Y]
(q°)
=
=
(4°)
(V]
=
(@)
-
y—
(%)
()
0
()

Molecular simulations

» -
. , -2 -
!‘ Q'. » . 9 3
-9 -
"l ’4... 3 ’O'd’ »
'Q..‘ ANL \”o.’d‘.ﬂﬂ. “"” 4
) Vaﬂ 0 3, o LA
' oA g \v e v
. .‘ “ l, "-‘
LE L AR T 3
% i"t s " O RLA 1
b .“ " vl-.fd.ﬁw‘ T .
'D - « .‘ * .) . J
. N »w e \)ﬂ . B »
» \) vﬁb ol t’. ‘
" VI’ ‘s N‘c
_“ 9 ”4& .\ »)nﬁ . »y
v " » & - ’
"‘ v ‘f ‘ d » -
049‘ W, gr N) .vo
.. » - - -'.0
=2 e b

Try in your browser!
https://physics.weber.edu/schroeder/md/InteractiveMD.html

Simulations are “computer experiments”

» Model System

Real System

Experiment

l

Experimental
Results

|
! '

Computer Approximate
Simulations Theories

l l

Simulation Theoretical
Results Predictions

v

Test of models

v

Test of theories

Adapted from Computer Simulation of Liquids by M. P.Allen and D.J. Tildesley

Molecular simulation is a
computational “experiment”
conducted on a molecular model

Simulation results are compared
to experimental results to test
the effectiveness of models

It has the characteristics of both
theory and experiment

Simulations can be compared
with predictions of analytical
theory to test their validity

Why do molecular simulations!?

Molecular simulation is the only means for accurately
determining the thermophysical properties of a molecular
model system

Computer simulations help us to visualize events that have not
taken place in real or are impossible to observe experimentally

High throughput simulations require less effort per analysis
when compared to traditional means of experimentation

How do molecular simulations work?

Configuration Sampling Data Analyzing

550 .
0"” .(’o
* ¢ *
450
=3
|_
350
Dihedral 50 |
plgem?
Modeling individual particles Computing movement of Analyzing simulation data to
using force fields or quantum model particles estimate thermodynamic

mechanics properties

4

Molecular Modeling

“..all things are made of atoms, and that everything that living things do
can be understood in terms of the jigglings and wigglings of atoms.”!
— Richard Feynman

— | Quantum Mechanics

Uses electronic structure to compute forces by
solving the Schrodinger equation

Angle " -

/’_ Force Fields

Electrostatic

Dihedral
Uses simple empirical functions to model, most commonly

as a sum of bonded and nonbonded interactions

|.The Feynman Lectures On Physics; Addison-Wesley, 1963;Vol. |.

Force Fields

Ebonded - Ebond Eangle
VW
'VW By
i
Bond Angle

Harmonic Potentials Harmonic Potentials

_ Ky 2 _ ko 2
Ubonds(b) — 7(b _ beq) Ubends(g) — 7(9 _ Heq)

http://trappe.oit.umn.edu/

-+

U - energy

b — bond length

beq — equilibrium bond length
6 — bond angle

0cq — equilibrium bond angle
k — force constant

@ = dihedral angle

Edihedral

Dihedral

Cosine Functions

Utorsions (COSine (,0)

Force Fields

E =

non-bonded

r

O\f

van der Waals

Lennard-jones (L))

12 6
_ %) _ (%
U (1ij) = 4¢ij [<7‘ij> <7‘ij) |

http://trappe.oit.umn.edu/

U — energy

1;j — site-site separation
&;j = LJ well depth

o;j — L] distance

q —partial charge

&y — absolute permittivity

E E

van der Waals electrostatic

Electrostatic

Coulomb Potentials

qiqj
47T€0Tij

U (rij) =

How do molecular simulations work?

Electrostatic

Dihedral

Modeling individual particles
using force fields or quantum
mechanics

Configuration Sampling

Computing movement of
model particles

TIK]

550

450

350 -

250

Data Analyzing
|
p [g cm

Analyzing simulation data to
estimate thermodynamic
properties

A — obervable variable

Simulation types p — momentum

T — position
t — time step
N - dimension

Time average is the averaged quantity Vo= atmenst
§ — probability distibution

of a single system over a time interval

/ > > average
'\.r‘l(” fime average

!

t
@) = ¢ [dea o, p @)
0

x“)

.\.I.\'l /’)

MM&M,

N Ensemble average is the averaged quantity of many identical
systems at a certain time using the probability distribution
function of the systems as measure

Fundamentals of Noise Processes by Yoshihisa Yamamoto

4y = f dp" dr™ (", V) AN,)

MD trajectories

MD is the time evolution of atomic systems

_ c y described by Newton’s laws of motions
Energy calculation pat X
(force-field) l
t
Forces Fi= =B/ X, 1
() = 1 [dea (@, p" @)
a,= F/m, —> | Trajectory 0

_Numeri_cal

integration | | v, (t+df) = V(1) + a dt

X (t+df) = x(f),+ v, dt ®€ @
| @ ®

MC moves

Generate new configuration by making perturbations to present
configuration

Compute the change in potential energy, AU = U — Uy

Accept or reject the new configuration based on Metropolis criterion

If the trial is accepted, update running averages with it; if rejected, the
original configuration is updated with the running average

State A

Ensemble

It is a collection of systems or microstates in the
phase space at a certain time and is distributed
according to a probability density function

consistent with the macroscopic constraints
defining the system (NPT, NVT, NVE, etc.)

:.0 ° % ‘o.

Images from Wikipedia:
https://en.wikipedia.org/wikilStatistical_ensemble_(mathematical_physics)

-weight

=tpiston

Isothermal — Isobaric (NPT)

12

Canonical partition function is the normalizing factor for these probabilities:

ANVvT =]/dPNdI‘ exp _HpTrT)
N' h3N kBT

4 (+,) ™)@ the Hamiltonian corresponding to the system’s total energy which is a function
of configurational space (3N positions and 3N momenta). It can be written as the sum of
kinetic and potential energies of the system:

N N Z |].3z|2

2
The momentum integral can be solved analytically: [dp” exp [— |] = (2mmkpT)

1 1
N! h3N

ThUS, we have: QNVT — (ZkaBT)BN/Z /drN exp [_

Simulation snapshots

/‘, : / e
| 1 ~">.., -, | Eight independent simulations
| §: with 40,000 MC cycles for equilibration and
| s e 50,000 MC cycles for production
B CBREER for a system size of /000* molecules
ys % e — “\/ Molar volume of vapor box drops

Gas phase at T = 300K as temperature rises
Box length = 39 A

I /A y S Y=~ o v o]
LN ¢ L N \ = /
A2 \ \

| 5 AT T AT A S P

o - N 3 | ~

[Pk j

Gas phase at T = 160 K
Box length = 262 A

Drastic change observed
near critical region

Vapor box length at 160 K
is ~ 7 times larger than that at 300 K

*Simulation runs above 300 K required 2000 molecules

31

Box length = 43 A

Box length = 35 A

Applications of molecular simulation

* Design materials for gas separation
* Carbon dioxide capture
* Water harvesting from air Between 2000 and 2009,

. P . over 100k papers published
Purification of medical-grade oxygen (Allen &Tildesley, 2017)

* Modeling biomolecular systems
* Protein structure and dynamics
* Drug design
 Simulating lipid bilayers
* Physical chemistry
* Phase transitions and critical phenomena
* Thermodynamics of fluids and mixtures

Ingredients of molecular dynamics simulations

|. Simulation box
2. Particles

3. Force field (interactions among particles)
|. Energies
2. Forces

4. Move particles via Newton’s equations of motion

LeanMD: Formally-verified molecular dynamics

4 F lizati ¢ Prove that MD code is
Math specifications c?rma zatlon O, modeling the NVE
I. Forces are gradients of energy statistical mechanics ensemble
2. Convergence of Ewald sum -
3. Energy conservation [
4. Momentum conservation r \ ~N
5. Ergodicit)
\ goctey) Molecular dynamics ~ N
represented as symbolic Execution specifications
formulas . Verlet algorithm is valid for
- approximating the ODEs
Formal proofs that L 2. Fast Fourier Transform
math is valid - - ~N computes Fourier Transform
. . 3. SHAKE algorithm is correct
Approximation of \ Y,
symbolic formulas as |
executable code

. J

\ 4

Formal proofs that
execution is valid

Compiled into C code

\ 4

Efficient, bug-free
simulations

Energy calculation
(force-field)

Forces

Numerical
integration

E.. {x}

|

F:: _aEpo(l{;Xr'

|

a,= F/mr.

|

v, (t+df) = v(t), + a, dt

|

X, (t+adf) = x(f), + v dt

LeanMD (so far)

Apply APPIY Calculate Calculate Test result
eriodic MINIMUM L ohe L) the total with NIST
P . image : internal
boundaries) Potential standard
distance energy
Particle
positions
Th:bf:?s Theorems Theorems about
Formal ‘ eriodic about minimum Lennard-Jones
proof bzun daries image distance Potential

nwwnpo

NIST Standard Reference Simulation VWebsite

* https://www.nist.gov/programs-projects/nist-standard-reference-
simulation-website

Go to code

Slide from Lecture 1 49

SciLib, database of formally verified science

;. Statistical mechanics

Thermodynamics

Reaction rate theory .
Fluid mechanics
Quantum mechanics

Molecular mechanics

Twitter: @trjosephson

Email: tjo@umbc.edu

https://twitter.com/trjosephson

What do you want to build!?

* Project ideas discussion on Zulip:
https://leanprover.zulipchat.com/#narrow/stream/445230-Lean-for-
Scientists-and-Engineers-2024/topic/Project.20ideas

* Probability theory (formalizing math)

* Formalizing definition of AIXI (reinforcement learning)

* Markov chain Monte Carlo (Metropolis-Hastings)

* Translating textbook on statistics into textbook with Lean examples

* Data science topics
* pandas DataFrames in Lean?
* Linear regression
* Connecting Lean to data visualization tools in external languages (e.g. Python)

https://leanprover.zulipchat.com/
https://leanprover.zulipchat.com/

	Slide 1: Lean for Scientists and Engineers
	Slide 2: Lean for Scientists and Engineers 2024
	Slide 3: Schedule (tentative)
	Slide 4: Schedule for today
	Slide 5: Errors in scientific computing software
	Slide 6: Errors in scientific computing software
	Slide 7: Errors in scientific computing software
	Slide 8: Errors in scientific computing software
	Slide 9: A vision for bug-free scientific computing
	Slide 10: Syntax and semantics in scientific computing
	Slide 11: Syntax and semantics in scientific computing
	Slide 12: Syntax and semantics in scientific computing
	Slide 13: Lists vs Arrays
	Slide 14: Polymorphic functions
	Slide 15: Polymorphism in Lean
	Slide 16: Polymorphism to combine theory and computation
	Slide 17: Input / Output: An Analogy
	Slide 18: Adsorption
	Slide 19: Adsorption of Gases in Multimolecular Layers
	Slide 20: Formalizing Chemical Physics in the Lean Theorem Prover
	Slide 21: Adsorption Analysis using BET Theory
	Slide 22: Roquerol Criteria
	Slide 23: Bug-Free BET Analysis
	Slide 24: Bug-Free BET Analysis
	Slide 25: Bug-Free BET Analysis
	Slide 26: Polymorphic functions to bridge floats and reals
	Slide 27: Regression with Lean matches BETSI standard
	Slide 28: Go to code
	Slide 29: Molecular simulations
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43: Applications of molecular simulation
	Slide 44: Ingredients of molecular dynamics simulations
	Slide 45: LeanMD: Formally-verified molecular dynamics
	Slide 46: LeanMD (so far)
	Slide 47: NIST Standard Reference Simulation Website
	Slide 48: Go to code
	Slide 49: SciLib, database of formally verified science
	Slide 50: What do you want to build?

