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Abstract

The goal of autoformalization is to create a system that automatically
learns to read natural language content and turns it into abstract, machine
verifiable formalization. This is a very difficult task in general, one that
would require strong automated reasoning and natural language process-
ing capabilities by the AI system. Here, it is argued that autoformalization
might be still the most promising path for systems to learn sophisticated,
general purpose reasoning in all domains of mathematics and computer
science. The successful creation of such a system could have far reach-
ing implications not just for mathematical research, but also for software
synthesis. The system could play the role of a strong, general purpose
reasoning component in other AI systems. This paper provides an outline
for a realistic path to reach the formalization capabilities of versed human
mathematicians in the not too far future.
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1 Introduction

Today, AI systems are able to learn solving tasks that used to be thought of tak-
ing uniquely human capabilities until recently: computer vision [77], generating
artistic images [22] and music [30], mastering the game of go [70] and discovering
novel drugs [24], to name just a few. These and many other domains seemed to
require uniquely human intuition and insights, but were transformed by deep
learning in the past few years. While progress has been impressive in those
areas, each particular solution addresses a relatively narrow use case. On the
other hand, general reasoning still seems a uniquely human feat and many [29]
would argue that creating AI agents with general reasoning capabilities rivaling
those of humans would take decades, maybe centuries, if possible at all.

This paper argues that in the next decade, we will see machines to surpass hu-
mans in general reasoning. Our best chance to achieve this is by creating a
super-human mathematician first via autoformalization.

This document gives an overview of the hurdles involved, a realistic path ahead
and indications on why that path is feasible.

This section starts with a basic introduction on why mathematics matters, what
formalization means in general, how does it relate to programming and whether
mathematical reasoning can be considered “general purpose“.

Mathematics is the discipline of pure reasoning. In mathematics, we typically
derive complex statements and create constructs based on minimal number of
assumptions. It is like a small world, where everything is built from extremely
simple and perfectly defined building blocks. Amazingly, even for very simple
systems or processes, one can come up with statements that are substantial or
look surprising. Moreover, simple looking statements can be extremely hard to
verify or argue about.

For example the Collatz conjecture [53] states that if we start with any natural
number n and iterate the following procedure:

• If n is even, divide it by 2,

• If n = 1, then stop,

• If n > 1 is odd, replace it by 3n+ 1,

then we always arrive at 1 in finitely many steps, regardless of the number we
started at.

This is a very simple observation about a well defined process that can be
easily formalized or executed in a computer. In fact, for any starting value n,
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the correctness of the above statement can be tested by running a few lines of
computer code in any sufficiently high level programming language. However,
proving that this process terminates for all integer numbers escapes the abilities
of the most ingenuous human mathematicians today.

Mathematics is the study of all those statements we can make about some sys-
tem described in a non-ambiguous manner. One can think of ”non-ambiguous”
as something that can be given by a computer program. Essentially, every math-
ematical statement can be translated into the question whether some computer
program ever terminates given unlimited computing resources. This is the so
called “halting problem” [79]. The halting problem is not solvable in general.
There is no program that can decide whether given a computer programs will
it ever halt or just run forever.

Still, everything that can be specified precisely can be considered as mathematics
and everything we can talk about precisely is what we can talk about it by
mathematical arguments. Therefore, mathematics is the language of all things
specified formally. That is why it underpins all practical scientific disciplines:
computer science, physics, chemistry and, increasingly, biology as well. The
more we understand a discipline, the more formally we can describe its objects
and phenomena. The more mathematical a discipline becomes, the deeper the
truths are that we can derive about it and the higher our confidence can become
about their correctness.

Mathematical reasoning is not about mathematics per se, it is about reasoning in
general. Whether we want to verify the correctness or resource use of a computer
program or derive the consequences of a physical model, it is all mathematical
reasoning, as long as it is based on fully formalized premises and the general
rules of logic. Some mathematical tasks require very simple reasoning, others,
like the verification of computer chips, may require extremely complex, but still
relatively straightforward reasoning. These tasks might require such a large
number of logical steps that humans find it impossible to check manually, but
often they are easily solved by SAT-solvers [7] – programs whose sole goal is to
decide if a Boolean expression can ever evaluate to true.

For certain classes of expressions, like those that occur frequently in chip design,
SAT solvers work remarkably well[18]. An extreme demonstration of their power
is their use in the computer generated proof of a previously unsolved famous
conjecture in mathematics [35] – the Boolean Pythagorean triples problem. The
final proof was 200 terabyte long.

However, SAT solvers do not always scale for all kinds of reasoning tasks effi-
ciently. For example the verification whether the floating point unit of a chip
works according to the specification might require higher level of reasoning in
order to be performed efficiently [33].
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Also, SAT-solvers cannot verify statements about infinitely many cases. For
example, they can’t even verify that the addition of integer numbers is com-
mutative, as it is a statement about infinitely many possible pairs of numbers.
There are automated methods (so called ATPs [20]) for finding moderately dif-
ficult proofs in first order logic and can handle such cases. Additionally, there
is existing proof automation (via so called “hammers” [42, 8]) for higher order
logic as well. However, most existing proof automation is based on hand en-
gineered heuristics, not on machine learning and is not capable of open-ended
improvements by itself.

This paper proposes a completely different approach to tackle the problem of
automated reasoning. The proposed approach relies heavily on recent advances
in deep and reinforcement learning. We aim for creating a system that is capa-
ble of open-ended self-improvement and tries to avoid the use of hand-crafted
features or algorithms for special purposes. The more generic is the design of
the system, the more freedom it has to improve itself indefinitely.

Mathematical reasoning is just reasoning about anything formal. Reasoning
about anything formal is a powerful general tool. If we want to create an
artificially intelligent system and demonstrate its general intelligence, it should
be able to reason about any area of mathematics or at least it should be able
to learn to do so when given enough time. If that is the case in practice, then
we can be convinced that it is likely that it will be able to learn to cope with
any scientific disciplines as well, once they are formalized precisely.

Of course, not all areas of mathematics are equal. Human mathematics consists
of a large variety of loosely connected domains, each of them having its own
flavor of proofs, arguments and intuition. Human mathematicians spend years
studying just to become experts in a few of those domains. An artificial system
engineered to produce strong results in a particular area is not a “general pur-
pose” reasoning engine. However, if a system demonstrates that it can learn to
reason in virtually any area that it exposed to, then that would be a convincing
demonstration of artificial general intelligence.

Therefore it is natural to ask: Will we ever arrive at the point that an AI agent
can learn to do reasoning as well as the best humans in world in most established
domains of mathematics.

2 What is (Auto-)formalization?

The task of formalization is to turn informal descriptions into some formally
correct and automatically checkable format. Examples of human mathematical
formalization include the formal proofs of the Kepler conjecture [31], the Four-
Color theorem [25] and the Feit-Thompson theorem [26]. These formalization
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works required a lot of effort. For example the formalization of the Kepler
conjecture took over 20 man-years of work.

More generally, “formalization” can refer to any process that takes an informal
description for input and produces machine executable code. By this definition,
formalization covers both programming and mathematical formalization. This
generalized notion is justified, since computer verifiable proofs are in fact pro-
grams to feed some verification engine. The HOL Light [32] and Coq [13] proof
assistants (which were used in the above large scale formalization works) are full
blown programming languages. The proofs are given by “tactics scripts” that
create long sequences true statements connected by elementary inference steps,
where the steps are checked by a small trusted kernel. Once the theorem proved
is produced by the kernel, it is “proven”. The fact that the kernel is small and
unchanged allows for extending the system by arbitrarily complex subroutines
without the danger of compromising the correctness of proofs.

Another, albeit much less practical, correspondence between proofs and pro-
grams is the Curry-Howard isomorphism [37] which serves as theoretical foun-
dation for some of the proof assistants, like Coq, but resembles much less of real
life programming than the above mentioned “tactics scripts” that produce the
sequence of elementary inference steps.

Just like programming, mathematical formalization is a cumbersome, task. For-
malization requires deep programming skills that most mathematicians are less
inclined to focus on. Complex mathematics is especially time consuming to
formalize even for those reasonably skilled with proof assistants. Therefore, it
is highly unlikely that a significant portion of mathematics will be formalized
without significant automation in the coming decades.

That raises the question whether formalization could be automated. The ideal
solution would be a system that could formalize directly from natural language
text of some mathematical topic fully automatically, without minimal interven-
tion from the user. This would allow for formalizing most of known mathematics
without the need for intervention from mathematicians.

We call an automated system that is capable of automatically formalizing sig-
nificant portions of mathematics from a natural language input and verifying it
automatically an autoformalization system.

3 Why is Autoformalization Essential?

Is targeting autoformalization really a prerequisite for training – and evaluating
– AI systems for general purpose reasoning?
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As was argued in the introduction, all formalizable reasoning can be viewed as
mathematical by nature. Conversely, a general purpose reasoning system should
be able to (learning to) reason about any domain of mathematics and should be
able to discover new mathematical domains when needed or useful for another
task.

Avoiding autoformalization (communication in natural language) would cer-
tainly simplify a system the main objective of which is formal reasoning. Formal
reasoning is a hard task in itself and autoformalization just adds a seemingly
unrelated extra complication which seems even harder to engineer. Obviously,
we would like to get away without if it is possible. However, if we want to tackle
mathematical reasoning and evaluate such a system, we are faced with three
related very hard problems:

1. Evaluating a purely formal system would require a wide range of formal-
ized statements which we can set as target task in our prover to train and
evaluate it.

2. Any interaction with our system would be by completely formalized means.
If the system develops its own web of definitions (about which it does not
need to communicate in natural language), it will resemble alien mathe-
matics that is very hard to decipher.

3. Every time the system needs to be applied to a new application domain,
it would require full-blown manual formalization of that domain. This
would limit the usefulness of the system significantly.

Training a mathematical reasoning system without autoformalization might be
still possible if one can develop a concise, well defined notion of “interesting-
ness” of mathematical statements that is used as the objective for open-ended
exploration. However it would be very hard to communicate the system as it is
not rooted in human mathematics.

However, “interestingness” is not an easy to define notion. It is hard to tell
whether some mathematical area will ever have interesting applications or would
provide insights for other domains down the line. Whatever was considered
interesting 100 years ago might look irrelevant or trivial today. Interestingness
is in the eye of the beholder and is highly contextual. There is no known way to
guide a search process automatically towards interesting theorems and notions.

Therefore, the safest option is to use the entirety of human mathematics as a
basis for training and benchmark for testing. Since only a miniscule portion of
mathematics is formalized, the only way for utilizing a significant fraction of
accumulated human mathematical knowledge is by processing it from natural
language.
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What is argued here is that it is easier to engineer and train an AI agent that can
reason and formalize at the same time than one designed for just reasoning or
formalization. One can expect positive feedback loop between reasoning abilities
and formalization capabilities. Improving one aspect of the system should help
collecting new training data for the other:

• Better reasoning allows for filling in larger holes in informal arguments.

• Better translation to formal statements expends the amount of data for
guiding mathematical exploration.

4 The Implications of Successful Autoformaliza-
tion

Autoformalization is not just a challenge: successful autoformalization would
be a huge breakthrough for general AI with significant implications.

Autoformalization would demonstrate that deep and sophisticated natural lan-
guage understanding and exchange is feasible and that machines can commu-
nicate in natural language over ambiguous content and internal experiences.
Essentialy, it would be the first demonstration that natural language is a feasi-
ble communication medium for computers as well.

By nature, autoformalization would have huge immediate practical implications
for mathematics. Initially, a (close to) human level autoformalization system
could be used for verifying existing and new mathematical papers and would
lead to strong semantic search engines for mathematical content. However very
soon after a successful implementation of such a system, we can expect human or
super-human level problem solving skills to emerge and the role of human math-
ematicians would shift from puzzle solving towards posing interesting questions
and giving high level directions and guidance for the system.

In the more general sense of formalization, a solution to autoformalization gives
rise to programming agents that can turn natural language descriptions into
programs. Since programming languages can be formalized completely, reason-
ing system trained on mathematical formalization could be fine-tuned for the
task of creating algorithms in that particular programming language. By for-
malizing domain level knowledge, the system could be made produce code from
natural language input. It would the formal specification of the task, the exe-
cutable code and correctness proof of the newly designed algorithm, all at the
same time.

These capabilities could revolutionize programming and change it fundamen-
tally. Humans could communicate with machines in more concise natural lan-
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guage. This would boost productivity while democratizing the interaction with
computers: everybody with good ideas would be able to create complex and safe
systems quickly, without the help of expensive IT specialists. It would lower
the barrier of entry for new businesses and could usher a new area of creativity
where imagination becomes the deciding factor for success.

Most importantly, this solution would give rise to extremely strong general pur-
pose reasoning engines that could be integrated into AI applications that com-
bine reasoning with perception. One could infuse strong reasoning capabilities
into other systems and serve as a basis for a wide range of applications.

5 The Hurdles of Autoformalization

While autoformalization would have far reaching implications to research and
productivity, it is not easy to design and implement. This is subject of current
research efforts. However, given its potential breadth of applications, it is worth
investing a significant effort into.

In order to study the difficulties of designing a general purpose autoformalization
solution, let us start with a näıve attempt at its construction, based on the
following two components:

1. A reasoning engine (theorem prover),

2. and a translation module that attempts to translate informal (natural
language) statements into formal statements.

We assume that the translation module can generate multiple formal candi-
date statements (maybe taking the history of past unsuccessful formalization
attempts into account). The system is successful if it can formalize a large
fraction of the informal statements after a reasonable number of attempts.

The most direct attempt at the translation system would be a solution that
that learns programming from natural language directly by creating programs
based on their natural language description. However any obvious attempt at
this would require a lot of curated data, since it is hard to create a system that
improves this model in a mostly unsupervised manner. Either the generated
program does what it was specified to do, in which case the translation is already
working, or it generates the wrong code, but there is no clear learning signal
if the code does not work according to the specification. If provided only by
natural language input, the system cannot distinguish between these two cases
and therefore it cannot be learned or bootstrapped without a being given a lot
of ground-truth programs
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Given the seeming impossibility of bootstrapping programming from natural
language alone, we will explore the option on bootstrapping mathematical rea-
soning from natural language.

Can one bootstrap mathematical autoformalization with limited engineering re-
sources in a semi-automatic manner? The first problem is that it seems to
require at least initial core formalization data-sets with a significant amount of
parallel corpus in formalized and informal mathematical content. One limit-
ing factor is the cost and effort of generating this seed corpus of translations.
However in Section 7.5, we will discuss ways to circumvent this issue.

Let us assume that we have a somewhat working “seed” translation model.
Then one can try bootstrapping and training the system by generating several
candidate translations and trying to prove/refute each of them until we find a
formalization that is correct, but not trivial. Still this system needs a working
translation model that has a significant chance of producing the correct formal-
ization, also it requires specifying the notion of “not trivially correct” which is
a bit fuzzy.

So there are at least four major obvious potential failure modes of autoformal-
ization:

1. The seed formalization system is too weak to initiate a feedback loop that
can open-endedly improve itself.

2. Given too weak a criterion for filtering the resulting formal statements,
the system might start to generate mistranslations for further training
of the translation model, ending up with a feedback loop perpetuating
increasingly worse translations.

3. Translation gets stuck: it would generate a lot of incorrect statements that
can never be verified and eventually the system will slow down and stop
to improve.

4. The translation never crosses domain boundaries: it is possible that the
system manages to formalize significant parts of a certain domain, but the
difference between this domain and another new domain is so big, that
the translation never succeeds in generalizing to the new domain. So the
training of the system gets stuck after formalizing limited parts of the
corpus.

The main weak point of our näıve system design is that it creates formal state-
ments directly from informal descriptions. Natural language is very context
dependent: mathematical text might contain hidden assumptions in far away
parts of the text which are impossible to find without a thorough search. For
example, papers tend to refer to text books for “basic terminology”. This means
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that the formalization system would need to look up the textbook and mine it
for all the subtleties of its definitions and verify that those definitions are consis-
tent with those in the repository of the formal system. If not, then the system
would need to create new formal definitions that match those in the paper.
However this might be impossible, since the paper itself might use inconsistent
notations – “abuses of language” – meaning that the same notion might have
subtly different meanings in various parts of the text. In addition to that it
might just have plain errors that are obvious to the human reader. This means
that a simple translation is not a robust solution and is unlikely to work in
practice.

6 A Proposed Path to Autoformalization

Although it is hard to avoid or rule out all the failure modes from the previous
section, one can still design a system that is more robust to the various error
modes and it is more plausible that this robust system can be bootstrapped as
opposed to the solution that relies on direct translation attempts into formal
statements directly.

Here it is proposed that instead of a direct translation, one should rely on
a combination of exploration and approximate translation. By approximate
translation, here we mean a translation model that does not try to produce a
concrete formal transcription as a statement, but instead approximates some
embedding vector thereof.

One engineering question is how to represent informal mathematical content,
that is mathematical papers and text books we want to formalize automatically.
The straightforward looking path would be to represent them textually, for
example by a sequence of unicode characters. This might work well for use
cases that do not require the understanding of formulas, diagrams and graphs.
However mathematical content is heavily based on the use of formulas and also
diagrams and geometric illustrations might play an important role in informing
the reader. Therefore the best path seems to rely on images instead of textual
representation. Given that humans work from the same representation, this can
preempt a lot of unexpected failure modes and engineering that would go into
reconciling various types of textual representations of the same input.

In order for a precise description of the proposed system, we introduce the
following notions: S will denote the set of syntactically correct formal mathe-
matical statements in some formalization environment (e.g. HOL Light). By
S′, we denote those statements with a formal proof. C is the set of possi-
ble forward reasoning rules called “conversions”. C consists of transformations
c : S′ × S′∗ −→ S′ of statements that given a true starting statement s ∈ S′
and a list of other true statements p ∈ S′∗ (list of conversion parameters), it
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generates a new true statement c(s, p). We assume that the informal description
of each statement is given by a picture Rk×l. One can think of that as the raw
image of a page in some mathematical paper. In addition, we will use a fixed
size embedding space for both the formal and informal statements. Our system
will rely on several deep learning models:

• A formal embedding model eθ : S −→ Rn that embeds formal mathemat-
ical statements into an embedding space of dimension n.

• An approximate translation model aξ : Rk×l −→ Rn, that outputs an
approximate embedding of the formal translation of the informal input
statement given as a picture.

• An exploration guidance model gη : S ×Rn ×Rn −→ [0, 1]C × [0, 1]. This
model acts as a premise selection model, combined with a conversion type
prediction, assuming a finite number of possible conversions. fη(s, t, p)
which takes a formal statement s, a target embedding t and a conversion
parameter embedding p and tries to predict the probabilities of next best
conversion steps [0, 1]C and score a potential conversion parameter p at
the same time. The exact working of such models is described in [6].

For technical simplicity, in this section, we made the simplifying assumption
that statements and input images are represented by fixed dimensional spaces.
This assumption is made in order to promote formal clarity of the approach.
However, a practical working system will be most likely some expansion of the
outline presented in this section and would use variable size input and variable
dimensional embedding spaces. This is irrelevant for the core idea. Later sec-
tions will give more refined considerations to various aspects and variations for
various components of the system.

The parameters of the deep learning models eθ, aξ and gη that are trained in
lock step as described below.

Our system will learn to explore true statements guided by target embeddings
and attempts generating automated formalization of informal statements – in
form of the approximated formal embedding vectors of their transcription – at
the same time. Training and inference is not decoupled in our setup. During
this process we will maintain and update the following data sets:

• A fixed set of target statements in informal format T ⊆ Rk×l in raw image
format. These are the pages the contain the statements given informally
that we are aiming to formalize.

• The image of T ′ξ of T under the approximate translation model: {aξ(t)|t ∈
T} ⊆ Rn, the predicted embeddings of the informal statements on the
formal side.
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• A set of already explored mathematical statements D ⊆ S′ of true and
proven statements,

• The embeddings of the explored mathematical statements: D′θ = {eθ(s)|s ∈
D} ⊆ Rn.

Our goal is to find a subset of D′ ⊆ D whose image under eθ aligns well with
T ′. That is the goal is to hit the target embedding vectors of T ′ with (non-
trivially) true formal approximations. The intuition is that if our translation
model is reasonably good, then true – but non-trivally true – translations are
likely to correspond to the informal description (where the target embedding
came from). During our process we aim to train all our models while updating
the datasets T ′, D and D′.

On the formal side, we have an embedding model eθ that embeds mathematical
statements in a way that encourages embedding vectors of semantically similar
statements to be close in the embedding space. Formally, if S denotes the set
of formal mathematical statements we encounter, then eθ : S −→ Rn should
be a machine learning based model (probably some kind of deep neural net-
work) parameterized by θ. This model is trained for one or multiple particular
semantic purposes, for example eθ could be trained as the premise tower of a
network trained for premise selection: that is it embeds statements for the deci-
sion whether the statement is immediately useful for proving another specified
statement. See [2] and [6] for examples of such models. Training those net-
works is possible with a combination of imitation and reinforcement learning by
training on successful proofs. Section 7.3 proposes a large selection of potential
self-supervised training tasks that could also be used for training eθ.

On the informal side, we have a computer vision model aξ that takes the infor-
mal statement represented as a picture p ∈ Rk×l (or a sequence of characters)
and tries to predict aξ(p) = eθ(t(p)), where t(p) is a hypothesized correct formal-
ization of P . One nice side-effect of this approach is that since eθ is assumed to
be an embedding model that reflects semantic similarity, t does not need to be a
proper function: typically, there are multiple correct formalizations of the same
informal statement, the embeddings of which should cluster in Rn and therefore
their approximate embeddings should be near to each other and predictable.

Our goal is to create a feedback loop between training θ and ξ, the parameters of
the models that control the formal statement embedding eθ and the approximate
translation model aξ (while also training η, the parameters of the guidance, but
that is not a strict necessity or could be done independently).

To this end, we would maintain a set of proved theorems, a large set of informal
statements P and translations Tξ = {aξ(p)|p ∈ P} of approximate translations
of informal statements. In order to generate training data for training our trans-
lation and embedding models, we run guided exploration by sampling forward
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reasoning steps using another deep neural network gη from our already proved
theorems with the goal of getting close to as many of the approximate translate
embeddings Tξ as possible. For this purpose, η is trained via reinforcement
learning by using a reward function based on how close do we get to some of
the target embeddings. gη is based on model that can sample both conversions
and conversion parameters (“premises” used for the conversion).

Note that gη should be relatively easy to train using random exploration as well,
as whenever we create a set of conversions with the model, we can pretend that
the embedding of the final statement was our initial goal to start with. This
idea is known as hindsight experience replay and was introduced in [3]. This
way, one can generate a lot of data with high reward without having to cope
with sparse reward issue of theorem proving for unsuccessful proof attempts.

Once our guided search finds enough statements that match some of the pre-
scribed embeddings in Tξ, we would check that they are non-trivially true and
use those as new supervised data for retraining aξ. As we go along, we can incre-
mentally train eθ and gη as well. For example eθ could be trained by analyzing
the dependency structure of the explored statements (the tactic parameters that
led to the new statement), while gη is trained using some reinforcement learning
mechanism using the rewards collected during exploration.

This is the rough outline of the overall idea just in order to highlight the most
crucial part of the system. In general, one needs much more implementation
details for a working system, but this setup already has a lot of visible advantages
compared with the näıve autoformalization variant that would try to generate
formalization candidates directly.

One advantage is that this system is much more robust to errors: if exploration
is powerful enough, then formalization might work even if we fail to translate
some of the statements properly. Also, if the formalization gets stuck, the system
might just relax the distance with which accepts autoformalization attempts,
however this might become risky in the long run.

Still, we would accept that this system should be able to generalize to completely
new domains, as exploration is probably more efficient in the early stages, that
is when a completely new domain is explored, since the basic facts are easier
to find. This early exploration can bootstrap the easy parts of the system and
can give enough information to the translation model so that it can continue
bootstrapping successfully.

In the Section 7, we present a set of possible refinements that are not obviously
critical for the functioning of the system, but can have a high potential for
improving the quality of the system and increasing the chances of success. It is
subject to future research which of those ideas are helpful or necessary for the
system to bootstrap itself.
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7 Further Ideas and Considerations

The last section has given a very rough outline of a system that has the po-
tential of bootstrapping itself for mathematical reasoning via autoformalization.
However there are a lot of additional possible details that might or might not be
essential for such system to work well. These details are more arguable than the
general outline from Section 6 and are to be likely revised in light of insights and
later experiments. Still, here is a selection of the most interesting considerations
that could help engineering a system described in Section 6.

7.1 The Choice of Foundation and Framework

Traditionally, many people would argue that the choice of the right framework
and foundation is essential for the success of a formalization project.

There is some truth in that for human users of interactive proof assistants
the right framework can affect the productivity of formalization, but generally
these effects are hard to quantify and there had been various types of logics
and foundations that have been successfully applied in large scale formalization
efforts:

• The Mizar system[60] is the oldest system in this list and has been used
successfully for formalizing significant areas of mathematics. Although
the most impressive formalization efforts has been performed using HOL
Light and Coq, Mizar has the largest and most diverse library of formal-
ized statements. Mizar is based on a first order foundations using the
axioms of Tarski-Groethdieck set theory [75]. A unique feature is the use
of syntactically weak types that allows for extra flexibility. Axiom schemes
are also required for axiomatizing set theory, in lack of higher order logic.
The Mizar system and library has been in development since 1973 and
gave rise to the Mizar mathematical library that contains close to 60000
formalized theorems.

• HOL Light [32] uses a higher order logic based on simply typed lambda
calculus with generic types. Using very similar foundations as those of
the HOL4 [72] and Isabelle [88]. HOL Light has extensive mathematical
libraries for arithmetic, linear algebra and multivariate complex analysis.
HOL Light was successfully used for formalizing the proof of the Kepler
conjecture [31]. Overall, the formal proof of the Kepler conjecture and
the foundational libraries contain about 30000 theorems. These theorems
and their proofs have been made easily accessible for AI researchers in the
HOList environment [6].

• Coq [13] is a higher order logic theorem prover that is based on calculus of
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inductive constructions [14] which is a dependently typed lambda calculus.
In its basic form, this results in a constructive (non-classical logic) mak-
ing the formalization of certain non-constructive concepts harder. Coq
was successfully used for formalizing the proofs of the four color theo-
rem and the Feit-Thompson theorem. The Coq based theorem proving
environment CoqGym [92] comes with over 70000 theorems.

• Isabelle [88] uses classical higher order logic. It has a theorem library con-
sisting of tens of thousands of formalized and formally proved theorems.

• HOL4 [72] has a logical foundations similar to HOL Light and Isabelle
and has a theorem library containing about ten thousand theorems.

• Metamath [59] is based on a very simple formula rewrite system. Its theo-
rem library contains over 23000 theorems. It is not extended with tactics
or automation, but the relative simplicity of the system is alluring. Meta-
math was used in the first (albeit simplistic) deep reinforcement learning
based automated prover [89].

We have only listed proof assistants that have demonstrated a significant amount
of successful formalization efforts: tens of thousands of theorems, some of them
of great complexity.

There are other logical frameworks that has been been proposed for the formal-
ization of mathematics. For example univalent foundations based on homotopy
type theory is an interesting direction [63], but did not garner significant trac-
tion in practice. Currently the Lean theorem prover [16] is gaining popularity.
Lean has very similar foundations to that of Coq, while not having a significant
library of formalized mathematics yet.

By and large, it seems that all foundations: slightly extended first order logic
with set theory, as well as classical and non-classical higher order logic foun-
dations are suitable for formalizing extremely complex mathematical content.
Most researchers involved in large scale formalization efforts agree that the most
important factor for successful formalization is the availability of existing the-
orem libraries. Even for human formalization efforts, it is not likely that the
change of theorem foundation has a significant effect on performance or formal-
ization speed as long as

• the system is expressive enough,

• can be easily extended with automation,

• and has a large enough library formalized theorems to be used as premises.

Still a few considerations apply when it comes to automatically formalizing from
natural language. Theorem libraries based on purely constructive non-classical
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logic might have a significant mismatch with most mainstream mathematical
text for non-constructive mathematical objects. For example the real numbers
in Coq are introduced quite differently than in most text books. This might be of
concern when trying to match natural language informal mathematics from text
books with their formalized counterparts, especially in the initial stages of the
bootstrapping process. Similar mismatch might affect formalization attempts
based on univalent foundations. It might require a significant extra transla-
tion efforts to account for those differences in logic. As the autoformalization
system becomes sophisticated enough, the effect of such mismatches should be
increasingly mitigated by the higher level reasoning capabilities of the system.

Another issue whether the proof assistant can be extended with new algorithmic
methods (new “tactics”, for example). Also the engineering efforts required to
interface with external libraries, especially machine learning systems is a point
of consideration. This is a big handicap for Mizar, as its unclear and restrictive
licensing causes concerns. Also, it is written in Pascal that has outdated support
for interfacing with modern systems and it seems harder to extend by new
methods.

One last concern is the expressiveness of the logic. Although first order logic is
generally capable expressing the Zermelo-Fraenkel axiom system, upon which
most of mathematics is based, it can only do this with the help of axiom schemes,
which is adds a lot of extra unnatural book-keeping. Also some informal math-
ematical content is expressed most easily by quantifying over propositions and
functions. First order logic does not allow for that directly. This is a slight
handicap in certain situations. However, a strong enough AI system can be able
to learn to cope with those deficiencies. If the system is designed for open-ended
improvement, then only the initial phases of the bootstrap process are effected
by such restrictions of the foundations.

Based on these considerations, HOL based proof assistants (HOL Light, HOL4
and Isabelle) seem to be the most proven and best suited as the basis for the
formalization environment of an autoformalization system due to

1. the significant size of their theorem libraries,

2. the classical nature of their logic,

3. the extensibility of their system,

4. the higher order of their foundations.

7.2 Unsupervised Pretraining for Informal Input

It was argued in Section 6 that it is best to formalize directly from images rather
than textual representations. On the other hand self-supervised pre-training on
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vast natural language text corpora [64, 17, 93] has been key to significant im-
provements on a large number of natural language processing tasks [85]: machine
translation, question answering [66], sentiment analysis [73], natural language
reasoning [98], just to name a few. It is reasonable to assume that all those task
bear relevance to autoformalization as strong autoformalization should require
strong natural language understanding capabilities.

One could be also tempted to think of autoformalization without aligned cor-
pora as an unsupervised machine translation problem that could be tackled by
similar methods to unsupervised translation in natural languages [4], however
this would ignore the fact that formal representations are much more different to
any natural language mathematical text than other natural language corpora.
Also, small errors in translation would render the translated text to be useless.

In general, we would like to reuse the representation capability of language mod-
els trained using BERT [17] style self-supervision, but still retain the possibility
from training for raw images. One idea for accomplishing this is to OCR tex-
tual parts of the image with informal mathematical content, embed the resulting
pieces of text and train computer vision models that learn to reproduce those
embeddings (e.g. via minimum square error regression). This seems like a strong
pretraining methodology for the text part of the image model for formalization,
but would ignore the formulas and graphs.

In order to embed formulas more succinctly, we could reuse some of the ideas
for text embedding and further pretrain our formalization image model by some
new tasks based on images:

1. Skip-token for formulas: cover some part of the formula with solid rect-
angles and predict the covered part.

2. Context prediction for covered context: OCR the context (some surround-
ing sentence) of formulas and try to predict NLP-model embeddings of the
covered sentences.

3. Continuation prediction: Cut an image in half with a horizontal line (at
some empty space) and predict which one is the correct continuation out
of a few possibilities.

This is just a small selection of possible tasks to a give a taste of how one could
devise self-supervised pretraining for raw image representation of mathematical
content that relies on OCR and pretrained language models.

Based on the success of pretraining NLP models on vast amount of text, it is
natural to assume that extensive pretraining of formalization models would be
instrumental for capturing inherent statistics and would result i more semantic
embedding of methematical content in a way that promotes stronger formaliza-
tion performance, especially in the initial stages of a bootstrap process.
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7.3 Unsupervised Formal Pretraining Tasks

Here we address self-supervised pretraining of models on the formal corpus of
mathematical statements. At first sight the seeming lack of formal training data
might make this idea to be less promising. However, this would ignore several
possibilities to acquire a lot of data cheaply:

1. In HOL Light and other higher order tactic based theorem provers, the
number of elementary proof steps can be magnitudes greater than that of
the high level proof steps. [40] Especially long human proofs that can’t
be easily reproduced by automated means can result in a lot of formulas.
This gives us a huge number of true and relevant formulas to train on by
self-supervised methods.

2. It is possible to generate a lot of new true statements by augmenting exist-
ing statements by trivial transformations like variable changes or changing
the order of variable bindings in lambda expressions, etc.

3. Forward conversions (rewriting statements by equalities that match parts
of existing formulas) can generate a large number of true new statements.

Although the diversity of formulas can be negatively effected by these ap-
proaches, they would still allow self-supervised models to be trained on a huge
number of formulas.

One distinct advantage of formal representations that there are much more
natural self-supervised task for them than for the relatively unstructured natural
language text. Here, there is a wealth of highly semantic tasks that has the
potential for creating strong semantic embedding vectors of formulas. Here is
a small taste of tasks could giving rise to interesting and non-trivial neural
representation of mathematical formulas.

1. Skip-tree model: A higher order logic formula can be naturally represented
as a syntax tree. We can remove some random subtree and either predict
some embedding of the missing tree or train a model in a contrastive
manner by trying to select the correct subtree from a set of candidates
(sampled from the same or other formulas in the corpus). Hard negative
mining should come handy for contrastive training.

2. Type inference model: Learn to do (partial) type inference of formulas.
There are several variations that range from predicting the types even if
type information is fully erased from the syntax tree to predicting the
type of individual nodes, when the task can be solved by standard type-
inference methods.
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3. Predicting the embedding of useful lemmas: those that could be used for
simplifying or proving the statement. Or just predict if some identity
could be applied in a rewrite rule to change the statement. This could be
trained as a discriminative model or as a generative model for predicting
the embedding of useful identities, even if they do not occur in the corpus.

4. Predicting the result of rewrites: Given an identity and rewrite rule, try
to predict the embedding of the result of the rewrite. Alternatively pick
the correct result from a set of candidate results.

5. Context prediction: Given a subtree, try to predict the embedding of the
surrounding tree, or pick the containing tree from a list of candidates.

6. Rewrite sequence prediction: Rewrite a formula with a sequence of rewrites,
try to predict the sequence of rewrites that has lead to the result.

7. Generative models: try to generate true formulas from scratch or terms
that can constitute useful substitutions for simplifying theorems.

Many other tasks are conceivable and it is likely that most of those tasks would
be helpful to create stronger semantic embeddings for formal statements. Em-
bedding models trained on semantics task could be useful in proof search, guided
mathematical exploration and in formalization.

7.4 Synthesizing Mathematical Formulas

As mentioned above, generating new mathematical formulas from scratch could
be considered as an unsupervised task for better representations. For example
one could train generative models (recurrent [74], convolutional [15] or trans-
former [84] based neural networks) that predict new theorems token by token
as a sequence the same way it is done in language modeling.

A somewhat less standard approach would be to combine the above idea with
using variational autoencoders [49]. This can be combined with methods to
create syntactically correct sentences if the syntax is known, such as in our
application [52]. The advantage of VAE is that it learns both encode and decode
to a compact representation, however it is known to be tricky to implement
efficiently for discrete outputs, like text or graphs.

More direct (auto-regressive) generation might be of use as well, like in [94].

Besides giving rise to presumably useful representation as pretraining, there are
two other important application domains of this approach:

1. conjecturing,
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2. generating terms used in proofs.

Conjecturing could be useful as part of theorem proving: coming up with other
helpful theorems that are true, could serve as a lemma for the current statement
to be proved while being simpler to prove.

Also conjecturing could be useful for guided exploration by sampling statements
that are true (at least in a decent fraction of the cases), while getting closer to
some target embeddings. Especially variational autoencoders could be suited
for that purpose.

As we saw in Section 6, stronger guided exploration is an important goal, in fact:
a potential enabling factor for our guided exploration based autoformalization
method. Still, it is unclear how well direct formula generation methods would do
on the task of generating true formulas. It is far from clear that the success-rate
of this approach would be useful for any particular purpose.

Another critical application would be the generation of simple terms that can
be useful in proofs. It is important to note that such terms do not need to be
“true” in order to be useful. In fact, they do not have to be propositions, just
have the right type to be substituted into some mathematical expression. For
example if have a theorem like ∀x, y ∈ R : x+ y = y+x, then we can substitute
arbitrary terms into x and y as long as their types allow it. For example, we
can deduce ∀a ∈ R : a + 1 = 1 + a, by substituting 1 into x, and a into y.
Substitutions with relatively simple formulas – that are generated based on the
use case – can be essential for simple specialization or just fitting the correct
variable names in proofs. However, sometimes the using the correct term to
substitute may be very tricky, for example the simplest proof of the famous
Nullstellensatz by Hilbert [97] relies on an inspired substitution.

In short: direct generation of formulas by generative models (autoregressive,
VAE, GAN,... etc.) may or may not be useful for generating more complex true
statements, however it seems to be highly likely to work for generating simple
terms for substitutions in certain context.

For exploration and conjecturing, it looks more realistic to generate approximate
embedding of the conjecture by some direct model and then using reinforcement
learning to find true formulas that matches that embedding as closely as possi-
ble, as was proposed in Section 6.

7.5 Bootstrapping the Translation Model

Section 6 has proposed a master plan for addressing autoformalization. The
weakest point of that plan is to create a translation model that manages to
map informal descriptions (given as image) into embedding vectors of formal
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statements. Although the overall approach was designed to be relative robust
with respect to the quality of the output of the translation model, it is still
questionable on how one could start bootstrapping such a model. Here we
present multiple ideas that might be of use.

In the very early stages of the bootstrap process we could just start with a
rough translation based on bag of word models that tries to match sentences on
both sides based on a matching between tokens. Here the idea is that our initial
formal corpus contains a very limited set of definitions (less than thousand) that
could be translated to their informal counterpart. This could be done with not
too much effort even if certain notions might map to multiple informal expres-
sions (for example “orthogonal” and “perpendicular’). Once such a mapping
is established, we could just use a bag of word model as embeddings on both
sides. In this case, the translation is just given by a word-level translation and
we are embedding both informal and formal statements given by their bag of
word representations.

Also in the initial stages, we could rely on small corpora of known translations:
for example the book on the proof of Kepler conjecture contains matching la-
beled statements for a few hundred of the formalized statements. This is too
small of a corpus to train a reasonable translation mechanism, but it could be
used as a test set or alternatively, a subset of it could enrich the above very
rough alignment between the two corpora with additional training data.

Another way to collect more aligned data would be utilize a small amount of
automatically generated “informalization” of formal statements: one could cre-
ate some somewhat human readable representation of the formal statements
programmatically which could serve as extra training data for the backward
translation of those statements from their informal images to formal embed-
dings.

A more sophisticated variant of the last idea is to exploit cycle-consistency [99]
that was successfully used for unsupervised translation between natural lan-
guages in [54]. The idea is to train two translation models T : L −→ L′ and
T ′ : L′ −→ L between informal natural language L and formal mathematical
statements L′ or the embeddings spaces thereof, while enforcing T ′ ◦ T ≈ idL
and T ◦ T ′ ≈ idL′ . with suitable losses. This could be further anchored by en-
forcing that translated expressions should have a somewhat similar bag-of-word
statistics when one uses a rough initial translation between the concept libraries
of the formal and informal corpora.

In the second phase one could use more sophisticated embedding methods: those
that were trained in an un/self-supervised manner: pretrained models on the
informal side could utilize the ideas of Subsection 7.2, while the embedding
model mapping formal statements to vectors would be trained by the methods
from Subsection 7.3. The initial match between a subset of formal and informal
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statements could be used to train an alignment model between the two embed-
ding spaces by fitting a multi-layer perceptron on those statements for which we
found or generated an alignment. This alignment stage could be semi-supervised
by utilizing limited human supervision via active learning.

As one gains more confidence that the overall alignment can be improved by
matching newly found true statements to the closest matching informal state-
ments, one could start fine-tuning the translation model that translates images
of informal statements directly to the embedding vectors of formal statements.

At this point, it is highly uncertain what is the critical mass and quality of
the initial alignments that is required to bootstrap a self-perpetuating feedback
loop to get to high quality autoformalization system in the end.

7.6 Model Architectures

Computer vision models have improved significantly in the past few years[77, 34,
76, 12, 91], also lately due to the increased use of automated neural architecture
search [102, 55, 65], however it is not very likely that our systems needs a
more sophisticated based network architecture than one that is good enough for
practical OCR, which is a more or less solved problem, especially that most of
our input would come from computer generated images rather than scans.

On the vision side, some gains might be expected from utilizing attention mech-
anism in the context of recurrent evaluation: creating the output in an incre-
mental manner by attending to different parts of the input image. However this
level of engineering may not be necessary for evaluating the feasibility of an
initial prototype.

More gains might be expected on the formalization side by looking up context:
having a database of precomputed formal-to-informal alignment and allowing
the system to retrieve from this growing knowledge-base. This might be useful
for the system to allow for looking up the definitions of ambiguous notions or
just bringing in more knowledge and context to distinguish between alternative
interpretations. However, engineering such a system would require significant
effort.

On the formal side, it appears that both the network architecture and the trans-
lation to input has a significant effect on the performance of the reasoning sys-
tem. Generally, it seems like deep graph embedding networks [86, 62] with lot
of node-sharing do best, but this is a relatively recent finding and it can be ex-
pected that the incorporation of attention mechanisms and utilizing automated
neural architecture search in this particular context could bring significant fur-
ther improvements.
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7.7 Integrating Reverse Proof Search

Currently, tactics based higher order proof search works in reverse order: instead
of trying to get to the theorem from the premises, one starts with the theorem
to be proved and by applying so called tactics, one produces new goals to be
proved. Once one closes all necessary goals, the forward proof can be constructed
by tracing this process in the opposite direction. This is the methodology used
in almost all of the higher order order theorem provers [6, 38, 92].

The reason for using backward reasoning is that it is typically simpler to work
one’s way backwards and find applicable premises than combining exisiting
knowledge in a way that results in the expected result perfectly.

Although the plan for formalization in Section 6 does not include backwards
reasoning is an essential constituent, it would be hard to imagine a practical
system that can do efficient reasoning without backward proof search.

One way to incorporate backward reasoning would be for testing for trivial
equivalence of statements. If one finds a new statement but it can be very
easily proven that it is equivalent to one previously known statement, then the
new statement is unlikely to be interesting, even if it was found as the result
of a lengthy exploration process. This could be used for filtering translation
candidates: statements whose embedding vector is close to an target embedding,
but is still trivially shown to be equivalent to some existing statement in the
theorem library.

Another use for backwards reasoning is to verify conjectures that were generated
by some model directly, or were conjectured based on examples or generalized
from special cases by dropping hypotheses or simple induction. In these cases,
the statement is not generated by forward reasoning steps that necessarily re-
sulted in true statements, but is just conjectured by the system heuristically
and needs to be verified by proper reasoning.

Finally, reverse reasoning could be used for verifying statements that were given
in a formal description by the user.

7.8 Filtering Translation Candidates

As described in the last subsection and was emphasized in Section 6, we need
to filter out translation candidates that are incorrect, trivial or uninteresting.

The first criterion is clear: we do not expect wrong statements to be correct
formalization candidates. Although it might be that our informal corpus con-
tains incorrect statements, they are hopefully in minority. Incorrect statements
do not give strong enough signal for autoformalization, so the best is just not
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consider them for translation results.

It is harder to discard candidate translations that are trivially true (e.g. due
to too general assumptions or other translation errors). In this case, we could
be able to detect these candidates by trying to prove them without utilizing
the premises that the translations would suggest. If they are trivially provable
without relying on those parts of the mathematics that the informal paper
points out as helpful, then it is highly likely that the statement is not the
correct formalization of the provided text.

Also, if a statement is overly long, or has a lot of redundant subtrees, then it is
highly unlikely that it comes from formalizing human contents.

A machine learning based idea would be to also try to learn a model that
translates formal statements into natural language ones and verify that the
back-translated results are in the proximity of the original embedding vector of
natural language input.

These are just a few heuristic indications on deciding whether some statement
with matching embedding vectors are likely to match certain parts of the natural
language corpus. However filtering the formalization candidates is one of the
most critical and weakest point of our proposal. It will need a lot

7.9 Curriculum Learning

Curriculum learning is a promising way of learning how to find longer proofs.
A remarkable result demonstrating the power of strong curriculum is [101] in
which they can train a reinforcement learning system to find proofs consisting
of several thousand proof elementary proof-steps without any search by just by
being predicted by the machine learning system.

Creating good curriculums might be crucial for training strong autoformaliza-
tion systems. Learning to generate a curriculum based on experience or utilizing
the value network of a theorem proving system seems like a very promising di-
rection towards that end.

7.10 Synthesizing New Tactics

Tactics in proof assistants are subroutines that can perform complicated algo-
rithms in order to produce long chains of arguments about the correctness of
certain formulas. Some of the tactics might be heuristic: they may just fail when
timed out or not finding enough evidence, they are also allowed to produce some
new goal statement that implies the current statement, but the produced goal
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statement does not need to be true at all.

Examples of existing tactics include:

1. Find and rewrite some part of a statement by a given set of identities.

2. Applying a SAT-solver to prove a statement purely by propositional logic
reasoning.

3. Applying a first order logic prover to prove an approximate translation of
the statement by first order logic reasoning.

4. Use basic arithmetic reasoning to bring some part of a formula to a normal
form.

5. Use Groebner bases [10] to reason about polynomial identities.

6. Use mixed integer-linear program solver to argue about a set of (Diophan-
tine) inequalities or to solve combinatorial optimization problems.

This is just a small selection of tactics that are applied in proof assistant, but it
should be visible from this list that the complexity and sophistication of tactics
might be very diverse, also tactics might utilize highly complex systems under
the hood.

This means that the difficulty of creation of new tactics is open-ended as it may
range from from the sequencing of a small number of existing tactics to utilizing
complex systems with millions of lines of source code.

Albeit, state of the art software synthesis approaches might scale to the gener-
ation of tactics by combining a modest number of existing tactics, it is unlikely
that one would be able to synthesize a general purpose computer algebra system
from scratch as an initial step.

However, the vast majority of sophisticated human mathematics was discovered
without the aid of computer programs, so we can hope the a performance ap-
proaching or matching that of human mathematicians can be achieved without
the synthesis of new complicated tactics and can be based mostly on explicit
rewrites and simple propositional logic automation alone.

7.11 Semantic Exploration, Experimentation

However higher order logic theorem provers tend to work on the fully syntactic
level and statements are not necessarily connect to objects constructed in the
memory.
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Especially for refutation and counterexample generation, it might be important
to find substitutions into statements that provide a refutation of that statement.
For simpler types like truth values, natural numbers, one could try random
substitutions or SAT-solving, but machine learning could be helpful for trying
to generate terms, the substitution of which yields a refutation of universally
quantified statements.

However more complicated tasks, that rely on objects that are harder to create,
for example polynomial, rings or topological spaces with more complex prop-
erties would profit from more sophisticated databases of mathematical objects.
Again these objects could be described constructively in the same language as
the statement is given, but it would be beneficial to engineer special purpose
example repositories that can be used for refuting or verifying non-trivial state-
ments.

Also there has been work in finding finite models for statements (especially in
the context of refutations) via SAT solvers [87, 9] and also using a quickcheck
style random counterexample generator [11]. It seems promising that similarly
to deep learning based proof search guidance, one could also train machine
learning systems for guiding counterexample generators as well.

In general it is a promising research direction to use deep learning based models
to embed not just the syntactic form of formulas, but also some experience
stream that is associated with experimentation with the statements, for the
result of random or guided substitutions and rewrites.

7.12 Multi-Agent Specialization

One difference between theorem proving and learning game playing engines for
two-player games like go, is the breadth of mathematics. The reason for this is
the fact that in games, each player should be able to answer moves by any other
player, which keeps the skills required for strong game-play concentrated in a
relatively narrow domain. However, in mathematics, there are a lot of directions
to be explored and each of those domains require different styles of reasoning
and intuition. Most human expert mathematicians are skilled in only a handful
of mathematical areas thoroughly.

For neural network based systems, it would mean that it might require very
large neural networks to distill all the skills required to cope with any areas
of mathematics. One way to cope with that issue would be utilizing mixture
of expert models [96]. However, this requires a fixed gating mechanism and
therefore would be relatively hard to extend.

A more flexible multi-agent architecture would be based on artificial market
mechanisms that allows arbitrary agents to bet on the status of mathematical
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conjectures and would be rewarded for correct predictions, proving theorems
formally and for introducing interesting new conjectures.

Although the above direction opens a large box of interesting mechanism de-
sign [61] issues, but besides a straightforward way of scaling up the system
flexibly, it could present a great way to decouple reward function design from
the implementation of agents. Also it would allow for easier benchmarking of
competing approaches in a realistic setting – measuring the competitiveness of
agents with respect to the whole system, instead of comparing with a small
selection of cherry picked agents. An interesting theoretical work on Logical
Induction [21] proposes that a betting market based multi-agent system under
resource constraints is useful for assigning consistent probability values to math-
ematical statements. This could give some theoretical backing and inspiration
to this solution.

8 Short History of Autoformalization

The idea of autoformalization was first presented in 1961 by John McCarthy [58],
suggesting that: “checking mathematical proofs is potentially one of the most
interesting and useful applications of automatic computers”. An early attempt
at autoformalization dates back to the 1990 doctoral thesis of Donald Simons [71]
in the proof checking context. A first thorough study on the topic was performed
in the doctoral thesis of Claus Zinn [100] in 2004. However none of those works
resulted in even partially useful solutions.

Realizing both the importance and challenges of autoformalization, Josef Urban
started to work on the topic in the early 2000s. He devised a first large scale
benchmark for reasoning in large theories [80], especially motivated by the in-
sight that reasoning in the presence of a large knowledge base of mathematical
facts must be a critical component in any autoformalization system.

In 2007, Josef Urban published his pioneering MaLARea [82] system for reason-
ing in large theories. A crucial aspect of it is a machine learning based solution
to the premise selection problem in large knowledge bases. This was made pos-
sible by his first order logic translation [81] of the Mizar corpus by enabling
the benchmarking of various premise selection methods by leveraging state of
the art automated first order theorem provers, especially theorem prover E [68].
Ever since then, he with Cezary Kaliszyk have been spearheading the research
of automated reasoning in large theories [36, 51, 1, 41, 44, 46, 43, 44, 8]. Also
their research includes most of the pioneering attempts at various aspects of
autoformalization as well: [47, 48].

The domain of autoformalization and reasoning in large theories is deeply con-
nected to that of automated theorem proving which is a large domain with lot
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of history. However, given the extensive literature on that topic, here I just
sketch the high level picture on how it relates to the topic and high level vision
of this paper.

Most of traditional proof automation was done for propositional logic (mostly
via SAT-solvers) and for first order logic, via automated theorem provers (ATP)
and SMT-solvers. However all of that automation is done via combinatorial
search methods that work with intermediate formulas that can grow very big
and hard to interpret and process for humans and neural networks.

Most human formalization effort was done by interactive proof assistants (ITPs).
Although proof automation by hammers for ITPs has gained some traction, most
complex formalization work was done in ITPs with very simple automation,
using relatively weak first order logic solvers (like the auto tactic in Coq or
MESON in HOL light). However, despite this relatively low level of automation,
proof assistants have been used for formalizing the proof of extremely complex
theorems, like that of the Feit-Thomposon theorem and the Kepler Conjecture
(although the proof the Kepler conjecture made extensive use of linear program
solvers as well). This proposal aims at automatizing the human process by
augmenting ITPs with deep neural network based reasoners which looks like the
most promising path toward open-ended improvements. Although integration
of ITPs with ATPs is possible, it is relatively complex and does not seem to be
necessary in the presence of really strong AI systems in charge of controlling the
ITP system. Therefore, we consider most previous work on first order automated
theorem proving relatively irrelevant in the context of this proposal.

9 Indications of Feasibility

Given the great complexity and breadth of the problem, it is justified to ask
why is autoformalization even considered as a realistic goal in the short term
– that is, within years. This section tries to give a heuristic arguments for the
feasibility of this task by methods that are either known or are on a strong
improvment trajectory.

The success of autoformalization hinges on solving two difficult looking tasks:

1. General purpose symbolic reasoning

2. Strong natural language understanding

I argue that deep learning will enable the advancement of both of those areas to
the extent that is necessary for human level formalization and reasoning perfor-
mance in the coming years. Although the two domains are getting increasingly
connected, let us try to revise their recent progress in separation with the focus
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on the question on whether they are on a path that makes strong autoformal-
ization realistic in the short term.

9.1 Search and Reasoning

Recently, it has been demonstrated by AlphaZero [69] that the same relatively
simple algorithm based on Monte Carlo tree search (MCTS) [50] and residual
convolutional networks [34] could achieve higher than human performance in
several two-person games: go, chess and shogi, by self-play alone, utilizing the
same algorithm for each of those games, without learning on any human expert
games at all. Effectively, AlphaZero was able to rediscover all of the important
chess, go and shogi knowledge in few days that took human players centuries of
work to discover.

Out of those games, go is the most impressive feat as it required skills that
were considered to be human specific: strong intuition and very deep reason-
ing. Often, making the correct move in go requires foresight to dozens of moves
ahead, anticipating all possible counter-moves by the opponent. Acquiring pro-
fessional level skills takes a decade long studying for the world’s best players.
This requires analyzing thousands of games and learning a lot of special tricks
which often require very deep understanding on how to counter hard-to-spot
traps that could be set by another skilled opponent.

AlphaZero managed to acquire such skills just by utilizing the pattern matching
capabilities of deep convolutional networks and bootstrapping itself using the
incremental information propagation of MCTS, gradually deepening its foresight
via self-play. One can say that the less than 50 million floating point parameters
of the policy network encodes all the accumulated knowledge that it would take
exceptionally gifted human players to learn in a life-time and which surpasses
the knowledge that took dozens of generations of go players to collect.

This suggests that MCTS could serve as the method of choice for automated
reasoning as well, just as was suggested and demonstrated in [19, 45]. While
these works are based on relatively simple prover, logic and datasets and do not
address premise selection, they still give a strong indication of the potential of
MCTS in the more general reasoning context.

However, mathematical reasoning differs from game playing in many respects:

1. The impossibility of self play: for example if open ended exploration is con-
sidered as an alternative, it would be hard to decide what to explore. Also
self-play provides a nice, well behaved, adaptive curriculum for training.
The lack of self play makes automated curriculum learning much harder
for theorem proving.
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2. Large, indefinitely growing knowledge base, resulting in a virtually infinite
action space.

3. Very sparse reward: in two player games either player wins in most cases,
so it is relatively easy to assign reward to each situation to train on. In the
case of theorem proving, it is very hard to assign reward to failed proof
attempts.

4. The diversity of mathematical knowledge: by nature, two-player games are
very coherent, since each player has to be able to answer any move by any
other player. Basically, each player has to accumulate the same body of
knowledge in order to compete with all other possible players. This means
that the accumulated knowledge concentrates on a much narrower area,
also unsupervised exploration can work due to this high coherence. On
the other hand, mathematics consists of wide range of loosely connected
disciplines and it takes a lot of human experts to cover each of them. This
suggests that both discovering and compressing the reasoning skills for all
of interesting mathematics might be much harder, if not impossible.

In 2016, as evidence started to mount for the scalability of deep learning, espe-
cially for its potential for open ended improvement when provided with enough
data and given enough depth and parameters, DeepMath was the first attempt
for its application at premise selection for the Mizar corpus [81] via convolutional
networks yielding some initial improvements for this task. Also theorem prover
E was improved by integrating neural network guidance [57], but those works
were relatively inefficient due to requiring many neural network evaluations even
for relatively simple proofs.

In 2017, TacticToe [23], has demonstrated convincingly that tactic based higher
order theorem proving via machine learning (even without the use of deep learn-
ing) is not just realistic, but can outperform previous ATP based baselines by
a large margin.

More recently the DeepHOL system [6] gave further demonstration for the power
of deep learning in the more general case: for higher order logic and in the
presence of a large knowledge base of premises to be used. In fact, it turns out
that a relatively simple Dagger [67] style training-set accumulation in connection
with WaveNet [83] convolutional networks and simple depth-first search, can
outperfom relatively complex solutions. This was demonstrated on a practical
large scale benchmark proposed in the same paper.

However, a sequence of symbols is not the most natural representation for math-
ematical formulas. Formulas can be best described as graphs, suggesting the
use of graph neural networks, which was suggested first in [86] and was then
verified to yield significant gains (40% relative increase in success rate) on the
HOList benchmark in the end-to-end proving scenario [62] as well.
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While all previous machine learning based solutions relied on training human
proofs, DeepHOL-Zero [5] has demonstrated that relatively simple exploration
heuristics allow to bootstrap systems that can reason as well without training
on existing human proof logs. Although this approach still needs a repository
of statements, a large fraction of which with short proofs, it is still remarkable,
since proof search can pick premises from a large repository at every step.

Still most of the proofs found automatically are relatively short. This gives
ground for skepticism: can these methods scale to proofs that are really long,
taking 100s or even 1000s steps? In fact there is promising work in that direc-
tion as well: [101] demonstrates successfully, that with the right curriculum, at
least in a limited setting, it is possible to train models that can create proofs of
several thousand steps without error. However, it requires a very careful, syn-
thetic training schedule with a lot of automatically generated tasks of increasing
complexity.

One can argue by the analogy of AlphaZero and based on the fact that network
architecture changes have a huge effect on prover performance that open-ended
improvement of proof-search should be possible by using the a decent network
architecture. Graph neural networks and transformer networks are the most
promising candidates today, but given the pace of progress in neural network
architecture design, this might change quickly. Leveraging automated network
architecture search is another promising option to leverage.

Still this leaves open the question of obtaining training data and devising the
right curriculum. As Section 6 suggested, training data could be collected by
natural language guided exploration, while Section 7.9 suggests some initial
ideas for bootstrapping a good curriculum.

9.2 Natural Language Processing and Understanding

Since 2017, natural language processing went through a revolution similar to
that of computer vision, due to new neural model architectures, especially
transformer networks [84] and large scale self-supervised training on vast cor-
pora [64, 17, 93]. This has spurred fast advances in machine translation and
language understanding. On some of the benchmark, this has resulted in human
or close to human performance, for example on SQuAD 1.0 [95]. However this
has lead to development of improved benchmarks to target the common weak
points of those algorithms. Still, progress is still strong in this domain and im-
proved model architectures and training on better tasks and larger corpora have
yielded significant gains at a steady pace. Based on the analogy with computer
vision, one can also foresee that natural architecture search could give rise to
further advances in this field as well.

An autoformalization system can leverage those advances for stronger transla-
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tion models from natural language to the embedding space of formal statements.

9.3 Generative Modelling

Another important task in mathematical reasoning is to come up with new terms
to be substituted. This can be used for creating counterexamples and also in
creative proofs, for example for coming up with useful induction hypothesis.
Finally, conjecturing might require the generation of new statements based on
analogies and previous experiences.

However, neural networks based generative models have demonstrated increas-
ingly higher quality performance on a wide range of generative tasks: image
generation, music generation, text generation and the generation of chemical
compounds. This models have demonstrated impressive improvements in the
quality of generated artifacts. For example computer generated faces start to
become increasingly indistinguishable from human ones and neural networks
could generate novel compounds for drug discovery as well.

The fast pace of improvements suggests that generating true or useful mathe-
matical formulas should be feasible and efficient as well.

9.4 Overview

Here is a short overview of the factors that support the potential success of
autoformalization in the coming years:

1. The success of deep learning infused search in two person games, especially
AlphaZero [69] style Monte Carlo tree search [50].

2. The demonstrations of the usefulness of deep learning in automated rea-
soning: premise selection [2] and proof guidance [57, 6, 62]

3. The demonstration that automated proof search can be learned without
imitation [5].

4. The recent success of graph neural networks in various domains [90], in-
cluding theorem proving [86, 62] and the fast progress in this domain.

5. The success of imposing cyclic translation consistency [99] in image gener-
ation and unsupervised translation [54] give strong indications that auto-
formalization could be bootstrapped using very limited set of labeled pairs
of formalized theorems.

6. The success of hindsight experience replay [3] to address the sparse reward
problem for robotics applications.
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7. The quick pace of progress in natural language processing via large, deep
network models, and large scale self-supervised pretraining. Impressive
results in several translation and natural language understanding bench-
marks [56].

8. Generative neural models improve at a fast pace and yield impressive result
in a wide range of domains from image generation to drug discovery.

9. Multi-agent system with agents specialized in different domains of math-
ematics with a common, growing repository of statements could provide
means both for scaling up the performance without individual neural net-
works growing too big, also they would help assessing the plausibility of
mathematical statements [21] and could give a rise to open-ended self-
improvement.

10. Automated optimization of neural architectures via neural architecture
search [102, 78] and other automated methods [28] help scaling up the
performance of deep networks.

11. Although the steady pace of miniaturization of integrated chips is ap-
proaching a certain end [39], the computation resources available for deep
learning purposes are still expanding quickly and are getting cheaper. For
example, as of July 2019, Google’ TPUv3 based pods can deliver over
100 petaFLOPS performance for deep learning purposes [27]. However
hardware is just one side of the story: software advances in deep learn-
ing framework have resulted in huge improvements for machine learning
workloads on the same hardware.

10 General Summary and Conclusions

We have argued in this paper, that:

1. Autoformalization enables the development of a human level mathematical
reasoning engine in the next decade. This could lead to the development
of a human or super-human artificial mathematicians and programmers.

2. The implementation of autoformalization presents significant technical
and engineering challenges.

3. Successful implementation of mathematical reasoning (theorem proving)
and autoformalization has many implications that go far beyond just
transforming mathematics itself: It could usher a new era of computer
human interaction and result in the creation of a general purpose reason-
ing module to be used in other AI systems.
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4. A reasoning system based purely on self-driven exploration for reasoning
without informal communication capabilities would be hard to evaluate
and use.

5. It is easier to engineer and bootstrap a system that learns to perform both
formalization and reasoning than either task in separation.

6. It is easier to create a formalization system from image than text data.

7. A näıve, direct translation approach for autoformalization would be brit-
tle, hard to engineer and unlikely to work.

8. Combining approximate formalization (predicting embedding vectors in-
stead of formulas) and guided exploration is a relatively robust and promis-
ing direction to autoformalization than direct translation.

9. As long as the foundational system is strong enough for formalizing the
set theory and demonstrated its feasibility on some large scale human
formalization effort, its choice should have negligible effect. However clas-
sical higher order logic might be the closest match for informally given
mathematics and the easiest to bootstrap, initially.

10. Deep Learning should be crucial for open ended improvement and reaching
human level reasoning and formalization performance.

11. Recent progress in neural architectures, language modelling, self- and
semi-supervised training, reinforcement learning, automated neural archi-
tecture search, and AI driven theorem proving paves the way for strong
automated reasoning and formalization systems.
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