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Abstract

Improving the reliability of mathematical reasoning in large language models (LLMs) is 
critical for applications in education, automated theorem proving, and formal verification. 
This paper investigates whether the functional diversity of prover models, specifically 
their non-overlapping failures, can be harnessed through ensembling to improve collective 
performance. We present a theoretical risk decomposition framework for an OR-aggregated 
ensemble of theorem provers, demonstrating that the ensemble's risk is equal to the average 
individual risk minus an 'ambiguity effect' that quantifies the diversity of the provers. Our 
analysis formalizes the intuition that diversity, defined as non-overlapping failures, is strictly 
beneficial in this context. We hypothesize that such ensembles may not only surpass the 
accuracy of any individual model but could also potentially generate proofs for statements 
previously unprovable by any single prover. Furthermore, we aim to investigate whether these 
techniques can be applied to current state-of-the-art models to push performance on more 
difficult, unsaturated benchmarks such as PutnamBench.

Keywords: Mathematical Reasoning, Large Language Models (LLMs), Automated Theorem 
Proving, Ensemble Methods, Model Diversity, Generalization, Formal Verification

1. Introduction

Improving mathematical reasoning in large language model (LLM) ensembles is essential 
due to its profound implications across education, automated theorem proving, and broader 
artificial intelligence (AI) reasoning tasks [1,2]. Reliable reasoning enables AI models to 
generate correct and verifiable solutions, significantly benefiting formal verification of critical 
software and scientific results, and strengthening AI’s general reasoning capabilities [3].
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In the past few years, there has been remarkable progress on benchmarks such as the 
MiniF2F [4], with recent models achieving >95% accuracy on the test-set [5,6].

Figure 1: Growth in MiniF2F-Test performance over time from [6]

Here we see that as we improve on the benchmark, we leave many older models unused. 
As such, in this paper we ask the following questions:

1. Can we make use of non-overlapping failures (i.e. ‘functional diversity’) of prover 
models that do not saturate MiniF2F-Test to improve their collective accuracy?

2. Is it possible, via ensembling, to write validated proofs for propositions that no individual 
model can prove?

3. Can we apply these techniques to the current SOTA models to achieve stronger perfor
mance on as-yet unsaturated benchmarks such as PutnamBench? [7]

This paper answers question 1, sketches a theory for question 2, and defers an empirical 
study of question 3 to follow-on work.

2. Related Work

Previous ensemble strategies, such as majority-vote or confidence-based ensembles, typi
cally measure diversity only at the output level (i.e. the final answers) [8]. There has also 
been some work to define and evaluate diversity measures on ensembles and determine their 
correlation to ensemble error [9], though findings have been mixed. Despite this, the crucial 
notion of “reasoning-path diversity” remains comparatively understudied.

A few recent works on LLMs touch on this idea. For example, Naik et. al [10] discuss 
reasoning-path diversity through the lense of prompting techniques that encourage diversity 
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of thought via different combinations of ‘personas’ and problem-solving approaches (e.g. the 
pair (Alan Turing, Action Rationale)) when attempting a problem.

We hypothesize that such diversity underpins robust generalization in structured tasks 
like mathematics.

3. Methodology

3.1. Ensemble Risk Decomposition

Assume 𝑆 = {ℎ1, …, ℎ𝑚} is a set of provers where

ℎ𝑖(𝑥) = {1      if ℎ𝑖 proves 𝑥
0      otherwise (1)

Define ℎ𝑆(𝑥) = ⋁𝑚
𝑖=1 ℎ𝑖(𝑥) be the (logical) OR-aggregator over the ℎ𝑖

Using the 0/1 loss defined as ℓ(𝑥, 𝑦) = 1{𝑥 ≠ 𝑦} ,

Assume (𝑋, 𝑌) ∼ 𝒫︀ where 𝑋 is a proposition and 𝑌 ∈ {0, 1} is it’s associated provability. 
The risk of a prover h is defined as:

ℛ︀(ℎ) = 𝐸𝑋𝑌 [ℓ(ℎ(𝑋), 𝑌)] (2a)

= 𝑃(ℎ(𝑋) ≠ 𝑌) (2b)

= 𝑃(ℎ(𝑋) = 1, 𝑌 = 0) + 𝑃(ℎ(𝑋) = 0, 𝑌 = 1) (2c)

Note that we can take 𝑃(ℎ(𝑋) = 1, 𝑌 = 0) = 0 because we assume the proof assistant (e.g. 
Lean) will not give “false positives” (it will not admit a proof when a statement is not provable). 
Giving:

ℛ︀(ℎ) = 𝑃(ℎ(𝑋) = 0, 𝑌 = 1) (3)

Now we introduce a simple identity inspired by Prop. 7 from [8]

ℛ︀(ℎ𝑆) = 1
|𝑆| ∑ ℛ︀(ℎ𝑖)
⏟

average risk

− 1
|𝑆| ∑[ℛ︀(ℎ𝑖) − ℛ︀(ℎ𝑆)]
⏟

ambiguity effect

(4)

For (4) it must be the case that ℛ︀(ℎ𝑖) ≥ ℛ︀(ℎ𝑆) since ℎ𝑖(𝑥) ≤ ⋁𝑚
𝑖=1 ℎ𝑖(𝑥) = ℎ𝑆(𝑥) because the 

(logical) OR-aggregator is monotonic. If ℎ𝑖 fails to produce a proof then an OR aggregation of 
other provers in S can only improve the result (i.e. by successfully proving the statement). In 
other words, assuming ℎ𝑖 ∈ 𝑆 :
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{(𝑋, 𝑌) | ℎ𝑆(𝑋) ≠ 𝑌} (5a)

⊆ {(𝑋, 𝑌) | ℎ𝑖(𝑋) ≠ 𝑌}, ∀(𝑋, 𝑌) ∼ 𝒫︀ (5b)

meaning that ℛ︀(ℎ𝑖) ≥ ℛ︀(ℎ𝑆), ∀𝑖 ∈ {1, …, |𝑆|} , so the ambiguity effect is non-negative:

1
|𝑆| ∑(ℛ︀(ℎ𝑖) − ℛ︀(ℎ𝑆)) ≥ 0 (6)

Practically, this tells us that in order for 𝑅(ℎ𝑆) to decrease as new provers are added to S, 
either (𝑖) the average individual risk must decrease, or (𝑖𝑖) the ambiguity effect must increase 
(or both).

In the proof assistant setting, diversity therefore corresponds to non-overlapping prover 
failures (or equivalently, the ‘uniqueness’ of prover successes). The OR aggregator is monot
onic and ensures that any disagreement on the provability of a theorem in an ensemble is 
strictly beneficial. This formalizes the classical ensemble intuition that “two classifiers are 
diverse if they make different errors on new data points”[11] and frames it as strictly beneficial 
in the context of neural theorem provers.

4. Experiments

4.1. Experiment Design

First, we empirically verify that an OR-ensemble raises coverage under a fixed proof bud
get. Per problem we allow exactly 24 proof attempts. A single baseline model may consume 
all 24; the ensemble shares the same budget across three models:

• AI-MO/Kimina-Prover-Preview-Distill-7B
• Goedel-LM/Goedel-Prover-SFT, and
• deepseek-ai/DeepSeek-Prover-V2-7B

so each model contributes 8 attempts (8 × 3 = 24). Those 8 attempts are drawn uniformly 
(without replacement) from the 24 independent attempts we previously generated for that 
model. Source code and data is available here.

4.2. Results

We repeat this sampling 10 000 times (Monte-Carlo) and report the resulting distribution 
of successes.
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Figure 2: Distribution of number of theorems proved by ensemble and best individual model

We report the individual model performances below:

Model Accuracy

AI-MO/Kimina-Prover-Preview-Distill-7B 72/244

Goedel-LM/Goedel-Prover-SFT 87/244

deepseek-ai/DeepSeek-Prover-V2-7B 83/244

On average, the ensemble proves 94.6 theorems from MiniF2F-test which is an absolute 
gain of 7.6 theorems over the best individual model (Goedel-LM/Goedel-Prover-SFT), or an 
improvement of 8.7%. In 10,000 sampling trials, the ensemble always proved strictly more 
theorems than the best individual model.

4.3. Interpretation

The ensemble theory we developed earlier works at an exact and distribution level. That 
is, it assumes that we can know for a prover model whether it can or cannot prove a theorem 
given unlimited attempts. Nonetheless, it’s clear from the experiment that real implementa
tions of prover models at the 7B size on a limited pass@24 budget possess sufficiently positive 
ambiguity effect that it becomes practically significant. This makes sense since different 
prover models often exhibit fundamental differences in their architecture, training data, and 
optimization methods We posit that these differences lead to differences in reasoning paths 
and consequently, non-overlapping failures.
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5. Ensemble Lemma Proving

We now turn to the second question: “Is it possible, via ensembling, to write validated proofs 
for propositions that no individual model can prove?”. While the risk decomposition in (4) 
explains why an ensemble outperforms a single model on average, it does not directly address 
this more ambitious goal.

To see the limitations of our current framework, assume we have an ensemble of 
two provers 𝑆 = {ℎ1, ℎ2} . Next, assume ∃(𝑥1, 1) ∈ 𝒫︀ | ℎ1(𝑥1) = 1 ∧ ℎ2(𝑥1) = 0 and ∃(𝑥2, 1) ∈
𝒫︀ | ℎ1(𝑥2) = 0 ∧ ℎ2(𝑥2) = 1 . That is, there exists a provable statement 𝑥1 that only prove ℎ1 ∈
𝑆 proves and another provable statement 𝑥2 ∈ 𝑆 that only ℎ2 proves. Then there exists another 
statement that is simply the re-statement that both 𝑥1 and 𝑥2 hold. This statement is provable 
and the intermediate “lemmas” 𝑥1 and 𝑥2 are provable by an OR-ensemble ℎ𝑆 . However, we 
lack a meta-prover that can decompose problems into ℎ𝑆 -provable sub-problems. For this 
particular case, all we need is a

ℎAND(𝑥, 𝑆) = {1 if 𝑥 = ⋀𝑛
𝑖=1 𝜑𝑖 and ℎ𝑆(𝜑𝑖) = 1

ℎ𝑆(𝑥) o.w.
(7)

which will have strictly lower risk than ℎ𝑆 under the original distribution 𝒫︀ when the ambi
guity effect in the risk decomposition of ℎ𝑆 is non-zero.

So while an ensemble with a lower risk is more likely to successfully prove a greater 
number of constituent lemmas, we cannot construct a complete proof that is beyond the reach 
of any single prover until such a meta-prover is supplied.

Fortunately, a concrete instance of such a meta-prover already exists. In [12] the authors 
separate strategic reasoning from tactical reasoning: a high-level Planner (a general-purpose 
LLM) decomposes the theorem into a sequence of lemmas (subgoals) 𝜑1, …, 𝜑𝑛 , while a step-
level Prover model tries to close each lemma. The top-level statement is accepted only if every 
lemma is proved, i.e. you can conceptualize an ℎPlanner that combines the Planner and Prover 
as follows:

ℎPlanner(𝜑) = 1 ⟺ ⋀

𝑛

𝑖=1

ℎProver(𝜑𝑖) = 1 (8)

The implication is that assuming the existence of such a Planner, we can substitute ℎ𝑆 for 
ℎProver in (8) leading to

ℎPlanner'(𝜑) = 1 ⟺ ⋀

𝑛

𝑖=1

ℎ𝑆(𝜑𝑖) = 1 (9)
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which can fully take advantage of the non-overlapping failures benefit of OR-ensembles at 
the subgoal level.

6. Future Work

We return to the 3 questions we originally posed in the introduction:

1. Can we make use of non-overlapping failures (i.e. ‘functional diversity’) of prover 
models that do not saturate MiniF2F-Test to improve their collective accuracy?

2. Is it possible, via ensembling, to write validated proofs for propositions that no individual 
model can prove?

3. Can we apply these techniques to the current SOTA models to achieve stronger perfor
mance on as-yet unsaturated benchmarks such as PutnamBench? [7]

We have shown empirically that OR-aggregation under a fair budget for comparison 
improves collective accuracy. We have also sketched how using a planner can allow us to apply 
the non-overlapping failures of an existing ensemble at the subgoal level and how this may 
allow us to make more progress on as-yet unproved theorems from an ensemble. With our 
current work, we’ve answered Question 1 and we have argued theoretically that the answer 
to Question 2 can be ‘yes’ provided a suitable meta-planner. For a future version, we need to 
give empirical evidence that supports our ensemble lemma proving framework to answer the 
empirical aspect of Question 2 before moving on to Question 3.

In the next version, we plan to include empirical evidence that demonstrates that the non-
overlapping failures exhibited for the MiniF2F-test can also be observed at the subgoal level for 
proof skeletons sketched by the planner. This will provide empirical evidence for Question 2.

We also plan to upgrade the 7B models we’ve used to newer/larger versions. The upgrades 
planned are as follows:

Model Upgraded Model

AI-MO/Kimina-Prover-Preview-Distill-7B AI-MO/Kimina-Prover-72B

Goedel-LM/Goedel-Prover-SFT Goedel-LM/Goedel-Prover-V2-32B

deepseek-ai/DeepSeek-Prover-V2-7B deepseek-ai/DeepSeek-Prover-V2-671B

We choose the set of upgraded models because even with greater parameter counts, the 
model architecture, optimization strategy, and training material will be similar. Doing this 
gives us confidence that our current results are more likely to hold when we scale up. That 
is, that these upgraded models will still exhibit non-overlapping failures albeit perhaps on 
different problems. This will allow us to better answer Question 3: whether we can improve 
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on SOTA using the techniques outlined in this paper. If diversity continues to deliver at scale, 
ensemble-plus-planner systems could become the cheapest upgrade path for strong neural 
theorem provers.
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