
Motivation First Try Second try Still missing

Vertex algebras in Lean: coming soon?

Scott Carnahan

Dept. of Mathematics, University of Tsukuba

2025年1月15日
Lean Together 2025

Scott Carnahan Vertex algebras in Lean: coming soon?



Motivation First Try Second try Still missing Where Why What

Where do we see vertex algebras?

Representations of affine Lie algebras

Affine Lie algebras are central extensions of loop algebras g[t, t−1]
of simple Lie algebras. Smooth representations have natural
actions of certain vertex algebras.

Monstrous Moonshine

Vertex algebras give natural representations of sporadic simple
groups, like the monster, and connect them with modular
functions. “If you’re studying the monster and not using vertex
algebras, you’re basically working with a stone axe.” – Borcherds
(1998 Fields medal)

A mathematically rigorous part of 2d conformal field theory

In physics, conformal field theory comes up in the study of second
order phase transitions, and string worldsheets.

Scott Carnahan Vertex algebras in Lean: coming soon?



Motivation First Try Second try Still missing Where Why What

A personal reason to formalize:

Theorem (Huang-Lepowsky-Zhang, around 2010)

If a vertex operator algebra satisfies (technical conditions) then the
category of its modules has a (rather natural) braided tensor
structure.

The proof is unpublished, and about 400 pages, split into 8 ArXiv
preprints.
I have a paper with M. Miyamoto: “Regularity of fixed-point
vertex operator subalgebras” (ArXiv: 1603.05645) that (a) uses
their theorem in an essential way, and (b) has been rejected (in
part) for depending on this un-refereed result.
People who use our result may have the same referee trouble!

Scott Carnahan Vertex algebras in Lean: coming soon?



Motivation First Try Second try Still missing Where Why What

A vertex algebra over a CommRing R is a triple (V , 1,Y ), where:

V is an R-module,

1 ∈ V is a distinguished “unit” vector, and

Y : Z× V × V → V is a family of bilinear products, written
(n, u, v) 7→ unv ,

satisfying the following axioms:

(bounded) For any u, v ∈ V , unv = 0 for n ≫ 0.

(unit) u−11 = u and un1 = 0 for n ≥ 0

(Jacobi identity) For any u, v ,w ∈ V and p, q, r ∈ Z,∑
i≥0

(
p

i

)
(ur+iv)p+q−i w =

∑
i≥0

(−1)i
(
r

i

)
up+r−i (vq+iw)

−
∑
i≥0

(−1)r+i

(
r

i

)
vq+r−i (up+iw).

Scott Carnahan Vertex algebras in Lean: coming soon?



Motivation First Try Second try Still missing Necessities Binomial rings Formalization1

What do we need to formalize this?

1 For (V , 1), use AddCommGroupWithOne V and Module R V.

2 For Y : Z× V × V → V , we can use
Z → V →l [R]V →l [R]V such that for any u, v ∈ V ,
unv = 0 for n ≫ 0.

3 For sums like
∑

i≥0(−1)i
(r
i

)
up+r−i (vq+iw), we need binomial

coefficients with integers on top.

Alternative: use generating functions (later)

1 Set Y (u, x)v =
∑

n∈Z unvx
−n−1, so Y : V ⊗ V → V ((x)) -

use LaurentSeries V?

2 Jacobi identity seems to involve composites - maybe need
LaurentSeries (LaurentSeries V).

Scott Carnahan Vertex algebras in Lean: coming soon?



Motivation First Try Second try Still missing Necessities Binomial rings Formalization1

General binomial coefficients
(x
n

)
: need a way to say that for any

element x and natural number n, the product
x(x − 1) · · · (x − n + 1) is uniquely divisible by n!.

First try (Aug. 2023)

class BinomialSemiring (R: Type ) extends Semiring R

where

inj smul factorial : ∀ (n : N) (r s : R),

n.factorial * r = n.factorial * s → r = s

exist binomial coeffs : ∀ (r : R) (n : N),
∃ (x : R), n.factorial * x =

Polynomial.eval r (pochhammer R n)

Problems: Uses choice unnecessarily, casts from N instead of using
nsmul, ∀ can be absorbed, etc.

Scott Carnahan Vertex algebras in Lean: coming soon?



Motivation First Try Second try Still missing Necessities Binomial rings Formalization1

On Zulip, Junyan Xu suggested making the quotient an explicit
function. Other refinements from PR review.

Current form

class BinomialRing (R : Type*) [AddCommMonoid R]

[Pow R N] where

nsmul right injective {n : N} (h: n ̸= 0) :

Injective (n • · : R → R)

multichoose : R → N → R

factorial nsmul multichoose (r : R) (n : N) :

n.factorial • multichoose r n =

(ascPochhammer N n).smeval r

Given AddCommGroupWithOne R, we define Ring.choose x n as
multichoose (r - n + 1) n.

Scott Carnahan Vertex algebras in Lean: coming soon?



Motivation First Try Second try Still missing Necessities Binomial rings Formalization1

First try: direct attack

structure VertexAlgebra [CommRing R]

[AddCommGroupWithOne V] [Module R V] where

Y : Z → V →l[R] V →l[R] V

bound (u v : V) : ∃ n : N, m > n → Y m u v = 0

mul neg one unit (u : V) : Y (-1) u (1 : V) = u

mul nat unit (u : V) (n : N) : Y n u (1 : V) = 0

jacobi (u v w : V) (r s t : Z) :

finsum (fun i 7→ (Ring.choose r i) •
Y (r+s-i) (Y (t+i) u v) w) =

finsum (fun i 7→ (negOnePow i) •
(Ring.choose t i) • Y (r+t-i) u (Y (s+i) v w)) -

finsum (fun i 7→ (negOnePow (t+i)) •
(Ring.choose t i) • Y (s+t-i) v (Y (r+i) u w))

Scott Carnahan Vertex algebras in Lean: coming soon?



Motivation First Try Second try Still missing Necessities Binomial rings Formalization1

Problems

Working with big equations is cumbersome.

Need lots of explicit choice to work with bound.

The literature uses lots of power series manipulations, which
are hard to translate to explicit coefficient manipulations.

Solution:

Develop formal power series API, rewrite axioms in terms of formal
power series.

Y (u, x)v =
∑

n∈Z unvx
−n−1, so Y (u, x) is a linear map

V → V ((x)).

Jacobi identity can be split into “locality” and “associativity”
for maps V → V ((x)).

Scott Carnahan Vertex algebras in Lean: coming soon?



Motivation First Try Second try Still missing Hahn Formalization2

Example: Locality

Fact: For any u, v in a vertex algebra V , there is some n ∈ N such
that (x − y)nY (u, x)Y (v , y) = (x − y)nY (v , y)Y (u, x).
Proof: Take t big enough, so the left side of the Jacobi identity
vanishes. The other sums give the x−r−1y−s−1 coefficients of
(x − y)tY (u, x)Y (v , y) and (x − y)tY (v , y)Y (u, x).

Composites

We want to make sense of (x − y)n • Y (u, x)Y (v , y) for n ∈ Z.
Y (u, x)Y (v , y) is an R-linear map V → V ((x))((y)).
The target admits scalar multiplication from R((x))((y)), so that
is where we expand (x − y)n.

Rather than iterating LaurentSeries, we consider the more
general framework of Hahn series.

Scott Carnahan Vertex algebras in Lean: coming soon?



Motivation First Try Second try Still missing Hahn Formalization2

If Γ is a poset, a HahnSeries is a formal power series Γ → R with
“partially well-ordered” support.
When Γ is an OrderedAddCommMonoid and R is a Ring, we get
Ring (HahnSeries Γ R).
LaurentSeries R is HahnSeries Z R.
LaurentSeries (LaurentSeries R) is HahnSeries Z×l Z R.

Problem: diamond (pointed out to me by Eric Weiser)

Given a Module R V instance, it is dangerous to make a Module

(HahnSeries Γ R) (HahnSeries Γ V) instance - get a diamond
for V = HahnSeries Γ R.

Solution: type alias

We define HahnModule as a type alias for HahnSeries, and define
an instance Module (HahnSeries Γ R) (HahnModule Γ′ R V).

Scott Carnahan Vertex algebras in Lean: coming soon?



Motivation First Try Second try Still missing Hahn Formalization2

First, we define heterogeneous vertex operators, as a general form
of left multiplication:

abbrev HVertexOperator (Γ R V W : Type*)

[PartialOrder Γ ] [CommRing R] [AddCommGroup V]

[Module R V] [AddCommGroup W] [Module R W] :=

V →l[R] (HahnModule Γ R W)

These have an action of HahnSeries Γ R. Special case:

abbrev VertexOperator (R V : Type*) [CommRing R]

[AddCommGroup V] [Module R V] :=

HVertexOperator Z R V V

We have a “normalized coefficient” function: ncoeff n takes the
x−n−1 coefficient.

Scott Carnahan Vertex algebras in Lean: coming soon?



Motivation First Try Second try Still missing Hahn Formalization2

“Residue product” vertex operators

A(y)nB(y) = Resx=0(x−y)nA(x)B(y)−Resx=0(x−y)nB(y)A(x).

Here, n ∈ Z, and Resx=0 just takes the x−1-coefficient.

structure VertexAlgebra (R V : Type*) [CommRing R]

[AddCommGroupWithOne V] [Module R V] where

Y : V →l[R] VertexOperator R V

unit neg one (u : V) : (Y u (1 :V)).ncoeff (-1) = u

unit nat (u : V) (n : N ) :

(Y u (1 : V)).ncoeff n = 0

local (u v : V) : isLocal (Y u) (Y v)

resProd eq (u v : V) (n : Z) :

resProd (Y u) n (Y v) = (Y u v).ncoeff n

Scott Carnahan Vertex algebras in Lean: coming soon?



Motivation First Try Second try Still missing Additional Necessities

Necessities for basic theory

Some infinite dimensional Lie algebras, their central
extensions, and their “smooth” representations

(x − y)n • Y (u, x)Y (v , y) for n ∈ Z.

Intermediate theory

Twisted modules: V ⊗M → M((z1/N))

Log-intertwining operators: M1 ⊗M2 → z rM3((z))[log z ]

“Composites” of log-intertwining operators.

More advanced theory

Analytic correlation functions ⟨ϕ,Y (u1, x1) · · ·Y (un, xn)v⟩ for
x1, . . . , xn on a Riemann surface.

Some diff. eqs. (satisfied by the correlation functions)

Semi-infinite cohomology

Scott Carnahan Vertex algebras in Lean: coming soon?



Motivation First Try Second try Still missing Additional Necessities

What I really want: Good API for rational functions
(x − y)k(x − z)m(y − z)n, (k,m, n ∈ Z).

Application: Dong’s Lemma for residue products

Given A,B,C : V → V ((x)), if A, B, and C are local, then A and
BnC is local, for any n ∈ Z.

Standard proof involves substitutions, like
(x − z) = (x − y) + (y − z). I’d like to write this using something
more concise than monomial 1 toLex(toLex(0,1),0) +

monomial (-1) toLex(toLex(1,0),0).

Scott Carnahan Vertex algebras in Lean: coming soon?



Motivation First Try Second try Still missing Additional Necessities

Things I learned:

Definitions are hard to get right.

It is good to get an early start at defining things, even if they
are likely to be bad at first.

If you ask a question on Zulip, you may get an answer to a
better question that you didn’t think to ask.

PR review is great for learning good style and new ideas.

If a proof seems like a grind, maybe some API is missing.

Scott Carnahan Vertex algebras in Lean: coming soon?


	Motivation
	Where
	Why
	What

	First Try
	Necessities
	Binomial rings
	Formalization1

	Second try
	Hahn
	Formalization2

	Still missing
	Additional Necessities


