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Where do we see vertex algebras?

Representations of affine Lie algebras

Affine Lie algebras are central extensions of loop algebras g[t, t−1]
of simple Lie algebras. Smooth representations have natural
actions of certain vertex algebras.

Monstrous Moonshine

Vertex algebras give natural representations of sporadic simple
groups, like the monster, and connect them with modular
functions. “If you’re studying the monster and not using vertex
algebras, you’re basically working with a stone axe.” – Borcherds
(1998 Fields medal)

A mathematically rigorous part of 2d conformal field theory

In physics, conformal field theory comes up in the study of second
order phase transitions, and string worldsheets.
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A personal reason to formalize:

Theorem (Huang-Lepowsky-Zhang, around 2010)

If a vertex operator algebra satisfies (technical conditions) then the
category of its modules has a (rather natural) braided tensor
structure.

The proof is unpublished, and about 400 pages, split into 8 ArXiv
preprints.
I have a paper with M. Miyamoto: “Regularity of fixed-point
vertex operator subalgebras” (ArXiv: 1603.05645) that (a) uses
their theorem in an essential way, and (b) has been rejected (in
part) for depending on this un-refereed result.
People who use our result may have the same referee trouble!
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A vertex algebra over a CommRing R is a triple (V , 1,Y ), where:

V is an R-module,

1 ∈ V is a distinguished “unit” vector, and

Y : Z× V × V → V is a family of bilinear products, written
(n, u, v) 7→ unv ,

satisfying the following axioms:

(bounded) For any u, v ∈ V , unv = 0 for n ≫ 0.

(unit) u−11 = u and un1 = 0 for n ≥ 0

(Jacobi identity) For any u, v ,w ∈ V and p, q, r ∈ Z,∑
i≥0

(
p

i

)
(ur+iv)p+q−i w =

∑
i≥0

(−1)i
(
r

i

)
up+r−i (vq+iw)

−
∑
i≥0

(−1)r+i

(
r

i

)
vq+r−i (up+iw).
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What do we need to formalize this?

1 For (V , 1), use AddCommGroupWithOne V and Module R V.

2 For Y : Z× V × V → V , we can use
Z → V →l [R]V →l [R]V such that for any u, v ∈ V ,
unv = 0 for n ≫ 0.

3 For sums like
∑

i≥0(−1)i
(r
i

)
up+r−i (vq+iw), we need binomial

coefficients with integers on top.

Alternative: use generating functions (later)

1 Set Y (u, x)v =
∑

n∈Z unvx
−n−1, so Y : V ⊗ V → V ((x)) -

use LaurentSeries V?

2 Jacobi identity seems to involve composites - maybe need
LaurentSeries (LaurentSeries V).
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General binomial coefficients
(x
n

)
: need a way to say that for any

element x and natural number n, the product
x(x − 1) · · · (x − n + 1) is uniquely divisible by n!.

First try (Aug. 2023)

class BinomialSemiring (R: Type ) extends Semiring R

where

inj smul factorial : ∀ (n : N) (r s : R),

n.factorial * r = n.factorial * s → r = s

exist binomial coeffs : ∀ (r : R) (n : N),
∃ (x : R), n.factorial * x =

Polynomial.eval r (pochhammer R n)

Problems: Uses choice unnecessarily, casts from N instead of using
nsmul, ∀ can be absorbed, etc.
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On Zulip, Junyan Xu suggested making the quotient an explicit
function. Other refinements from PR review.

Current form

class BinomialRing (R : Type*) [AddCommMonoid R]

[Pow R N] where

nsmul right injective {n : N} (h: n ̸= 0) :

Injective (n • · : R → R)

multichoose : R → N → R

factorial nsmul multichoose (r : R) (n : N) :

n.factorial • multichoose r n =

(ascPochhammer N n).smeval r

Given AddCommGroupWithOne R, we define Ring.choose x n as
multichoose (r - n + 1) n.
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First try: direct attack

structure VertexAlgebra [CommRing R]

[AddCommGroupWithOne V] [Module R V] where

Y : Z → V →l[R] V →l[R] V

bound (u v : V) : ∃ n : N, m > n → Y m u v = 0

mul neg one unit (u : V) : Y (-1) u (1 : V) = u

mul nat unit (u : V) (n : N) : Y n u (1 : V) = 0

jacobi (u v w : V) (r s t : Z) :

finsum (fun i 7→ (Ring.choose r i) •
Y (r+s-i) (Y (t+i) u v) w) =

finsum (fun i 7→ (negOnePow i) •
(Ring.choose t i) • Y (r+t-i) u (Y (s+i) v w)) -

finsum (fun i 7→ (negOnePow (t+i)) •
(Ring.choose t i) • Y (s+t-i) v (Y (r+i) u w))
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Problems

Working with big equations is cumbersome.

Need lots of explicit choice to work with bound.

The literature uses lots of power series manipulations, which
are hard to translate to explicit coefficient manipulations.

Solution:

Develop formal power series API, rewrite axioms in terms of formal
power series.

Y (u, x)v =
∑

n∈Z unvx
−n−1, so Y (u, x) is a linear map

V → V ((x)).

Jacobi identity can be split into “locality” and “associativity”
for maps V → V ((x)).
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Example: Locality

Fact: For any u, v in a vertex algebra V , there is some n ∈ N such
that (x − y)nY (u, x)Y (v , y) = (x − y)nY (v , y)Y (u, x).
Proof: Take t big enough, so the left side of the Jacobi identity
vanishes. The other sums give the x−r−1y−s−1 coefficients of
(x − y)tY (u, x)Y (v , y) and (x − y)tY (v , y)Y (u, x).

Composites

We want to make sense of (x − y)n • Y (u, x)Y (v , y) for n ∈ Z.
Y (u, x)Y (v , y) is an R-linear map V → V ((x))((y)).
The target admits scalar multiplication from R((x))((y)), so that
is where we expand (x − y)n.

Rather than iterating LaurentSeries, we consider the more
general framework of Hahn series.
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If Γ is a poset, a HahnSeries is a formal power series Γ → R with
“partially well-ordered” support.
When Γ is an OrderedAddCommMonoid and R is a Ring, we get
Ring (HahnSeries Γ R).
LaurentSeries R is HahnSeries Z R.
LaurentSeries (LaurentSeries R) is HahnSeries Z×l Z R.

Problem: diamond (pointed out to me by Eric Weiser)

Given a Module R V instance, it is dangerous to make a Module

(HahnSeries Γ R) (HahnSeries Γ V) instance - get a diamond
for V = HahnSeries Γ R.

Solution: type alias

We define HahnModule as a type alias for HahnSeries, and define
an instance Module (HahnSeries Γ R) (HahnModule Γ′ R V).
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First, we define heterogeneous vertex operators, as a general form
of left multiplication:

abbrev HVertexOperator (Γ R V W : Type*)

[PartialOrder Γ ] [CommRing R] [AddCommGroup V]

[Module R V] [AddCommGroup W] [Module R W] :=

V →l[R] (HahnModule Γ R W)

These have an action of HahnSeries Γ R. Special case:

abbrev VertexOperator (R V : Type*) [CommRing R]

[AddCommGroup V] [Module R V] :=

HVertexOperator Z R V V

We have a “normalized coefficient” function: ncoeff n takes the
x−n−1 coefficient.
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“Residue product” vertex operators

A(y)nB(y) = Resx=0(x−y)nA(x)B(y)−Resx=0(x−y)nB(y)A(x).

Here, n ∈ Z, and Resx=0 just takes the x−1-coefficient.

structure VertexAlgebra (R V : Type*) [CommRing R]

[AddCommGroupWithOne V] [Module R V] where

Y : V →l[R] VertexOperator R V

unit neg one (u : V) : (Y u (1 :V)).ncoeff (-1) = u

unit nat (u : V) (n : N ) :

(Y u (1 : V)).ncoeff n = 0

local (u v : V) : isLocal (Y u) (Y v)

resProd eq (u v : V) (n : Z) :

resProd (Y u) n (Y v) = (Y u v).ncoeff n
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Necessities for basic theory

Some infinite dimensional Lie algebras, their central
extensions, and their “smooth” representations

(x − y)n • Y (u, x)Y (v , y) for n ∈ Z.

Intermediate theory

Twisted modules: V ⊗M → M((z1/N))

Log-intertwining operators: M1 ⊗M2 → z rM3((z))[log z ]

“Composites” of log-intertwining operators.

More advanced theory

Analytic correlation functions ⟨ϕ,Y (u1, x1) · · ·Y (un, xn)v⟩ for
x1, . . . , xn on a Riemann surface.

Some diff. eqs. (satisfied by the correlation functions)

Semi-infinite cohomology
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What I really want: Good API for rational functions
(x − y)k(x − z)m(y − z)n, (k,m, n ∈ Z).

Application: Dong’s Lemma for residue products

Given A,B,C : V → V ((x)), if A, B, and C are local, then A and
BnC is local, for any n ∈ Z.

Standard proof involves substitutions, like
(x − z) = (x − y) + (y − z). I’d like to write this using something
more concise than monomial 1 toLex(toLex(0,1),0) +

monomial (-1) toLex(toLex(1,0),0).
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Things I learned:

Definitions are hard to get right.

It is good to get an early start at defining things, even if they
are likely to be bad at first.

If you ask a question on Zulip, you may get an answer to a
better question that you didn’t think to ask.

PR review is great for learning good style and new ideas.

If a proof seems like a grind, maybe some API is missing.
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