
Formalizing Brownian motion

April 27, 2024

Our goal is to write down the steps necessary in order to formalize Brownian motions (or
Rd-valued Gaussian processes) in some generality using mathlib.
Remark 0.1 (Notation). We will write (E, r) for some extended pseudo-metric space, P(E) for
the set of probability measures on the Borel σ-algebra on E, k ∈ {R,C}, and Cb(E,k) the set
of k-valued bounded continuous functions on E. For some P ∈ P(E) and f ∈ Cb(E,k), we let
P[f ] :=

∫
f(x)P(dx) ∈ k be the expectation.

0 Some simple probability results
The following is a simple consequence of dominated convergence, and often needed in probability
theory.
Definition 0.1. Let E be some set and f, f1, f2, ... : E → k. We say that f1, f2, .. : converges to
f boundedly pointwise if fn

n→∞−−−−→ f pointwise and supn ||fn|| <∞. We write fn
n→∞−−−−→bp f

lemma:bp Lemma 0.2. Let (Ω,A,P) be a probability (or finite) measure space, and X,X1, X2, ... : Ω → k

such that Xn
n→∞−−−−→bp X. Then, E[Xn]

n→∞−−−−→ E[X].
Proof. Note that the constant function x 7→ supn ||fn|| is integrable (since P is finite), so the result
follows from dominated convergence.

Definition 0.3. Let X,X1, X2, ..., all E-valued random variables.
1. We say that Xn

n→∞−−−−→ X almost everywhere if P(limn→∞Xn = X) = 1. We also write
Xn

n→∞−−−−→ae X.

2. We say that Xn
n→∞−−−−→ X in probability (or in measure) if, for all ε > 0,

lim
n→∞

P(r(Xn, X) > ε) = 0.

The two notions here are denoted ∀ᵐ (x : α) ∂P, Filter.Tendsto (fun n => X n x) Filter.atTop (nhds
(X x)) and MeasureTheory.TendstoInMeasure, respectively.

l:aep Lemma 0.4. Let X,X1, X2, ... be E-valued random variables with Xn
n→∞−−−−→ae X. Then, Xn

n→∞−−−−→p

X.
This result is called MeasureTheory.tendstoInMeasure_of_tendsto_ae in mathlib. We also need

the (almost sure) uniquess of the limit in measure, which is not formalized in mathlib yet:
l:puni Lemma 0.5 (Uniqueness of a limit in probability). Let X,Y,X1, X2, ... be E-valued random vari-

ables with Xn
n→∞−−−−→p X and Xn

n→∞−−−−→p Y . Then, X = Y , almost surely.
Proof. We write, using monotone convergence and Lemma ??

P(X 6= Y ) = lim
ε↓0

P(r(X,Y ) > ε) ≤ lim
ε↓0

lim
n→∞

P(r(X,Xn) > ε/2) + P(r(Y,Xn) > ε/2) = 0.

l:supsum Lemma 0.6. Let I be some (finite or infinite) set and (Xt)t∈I be a family of random variables
with values in [0,∞). Then, supt∈I Xt ≤

∑
t∈I Xt.
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1 Separating algebras and characteristic functions
Definition 1.1 (Separating class of functions). Let M ⊆ Cb(E,k).

1. If, for all x, y ∈ E with x 6= y, there is f ∈ M with f(x) 6= f(y), we say that M separates
points.

2. If, for all P,Q ∈ P(E),

P = Q iff P[f ] = Q[f ] for all f ∈ M,

we say that M is separating in P(E).

3. If (i) 1 ∈ M and (ii) if M is closed under sums and products, then we call M a (sub-)algebra.
If k = C, and (iii) if M is closed under complex conjugation, we call M a star-(sub-)algebra.

In mathlib, 1. and 3. of the above definition are already implemented:

structure Subalgebra (R : Type u) (A : Type v) [CommSemiring R] [Semiring A]

[Algebra R A] extends Subsemiring :

Type v

abbrev Subalgebra.SeparatesPoints {α : Type u_1} [TopologicalSpace α]

{R : Type u_2} [CommSemiring R] {A : Type u_3} [TopologicalSpace A]

[Semiring A] [Algebra R A] [TopologicalSemiring A] (s : Subalgebra R C(α, A))

: Prop

The latter is an extension of Set.SeparatesPoints, which works on any set of functions.
For the first result, we already need that (E, r) has a metric structure. There is a formalization
of this result in https://github.com/pfaffelh/some_probability/tree/master.

l:unique Lemma 1.2. M := Cb(E,k) is separating.

Proof. We restrict ourselves to k = R, since the result for k = C follows by only using functions
with vanishing imaginary part. Let P,Q ∈ P(E). We will prove that P(A) = Q(A) for all A
closed. Since the set of closed sets is a π-system generating the Borel-σ-algebra, this suffices for
P = Q. So, let A be closed and g = 1A be the indicator function. Let gn(x) := (1 − nr(A, x))+

(where r(A, y) := infy∈A r(y, x)) and note that gn(x)
n→∞−−−−→ 1A(x). Then, we have by dominated

convergence

P(A) = lim
n→∞

P[gn] = lim
n→∞

Q[gn] = Q(A),

and we are done.

We will use the Stone-Weierstrass Theorem below. Here is its version in mathlib. Note that
this requires E to be compact.

theorem ContinuousMap.starSubalgebra_topologicalClosure_eq_top_of_separatesPoints

{𝕜 : Type u_2} {X : Type u_1} [IsROrC 𝕜] [TopologicalSpace X] [CompactSpace X]

(A : StarSubalgebra 𝕜 C(X, 𝕜)) (hA : Subalgebra.SeparatesPoints A.toSubalgebra) :

StarSubalgebra.topologicalClosure A = ⊤

We also need (as proved in the last project):

theorem innerRegular_isCompact_isClosed_measurableSet_of_complete_countable

[PseudoEMetricSpace α] [CompleteSpace α] [SecondCountableTopology α] [BorelSpace α]

(P : Measure α) [IsFiniteMeasure P] :

P.InnerRegular (fun s => IsCompact s ∧ IsClosed s) MeasurableSet

The proof of the following result follows [?, Theorem 3.4.5].
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T:wc3 Theorem 1 (Algebras separating points and separating algebras).
Let (E, r) be a complete and separable extended pseudo-metric space, and M ⊆ Cb(E,k) be a
star-sub-algebra that separates points. Then, M is separating.
Proof. Let P,Q ∈ P(E), ε > 0 and K compact, such that P(K) > 1 − ε, Q(K) > 1 − ε, and
g ∈ Cb(E,k). According to the Stone-Weierstrass Theorem, there is (gn)n=1,2,... in M with

sup
x∈K

|gn(x)− g(x)| n→∞−−−−→ 0. (1) eq:wc9

So, (note that C := supx≥0 xe
−x2

<∞)∣∣P[ge−εg2

]− Q[ge−εg2

]
∣∣ ≤ ∣∣P[ge−εg2

]− P[ge−εg2

;K]
∣∣

+
∣∣P[ge−εg2

;K]− P[gne−εg2
n ;K]

∣∣
+
∣∣P[gne−εg2

n ;K]− P[gne−εg2
n ]
∣∣

+ |P[gne−εg2
n ]− Q[gne

−εg2
n ]
∣∣

+
∣∣Q[gne

−εg2
n ]− Q[gne

−εg2
n ;K]

∣∣
+
∣∣Q[gne

−εg2
n ]− Q[ge−εg2

;K]
∣∣

+
∣∣Q[ge−εg2

;K]− Q[ge−εg2

]
∣∣

We bound the first term by∣∣P[ge−εg2

]− P[ge−εg2

;K]
∣∣ ≤ C√

ε
P(Kc) ≤ C

√
ε,

and analogously for the third, fifth and last. The second and second to last vanish for n→ ∞ due
to (??). Since M is an algebra, we can approximate, using dominated convergence,

P[gne−εg2
n ] = lim

m→∞
P[gn

(
1− εg2n

m

)m

︸ ︷︷ ︸
∈M

]
= lim

m→∞
Q[gn

(
1− εg2n

m

)m

︸ ︷︷ ︸
∈M

]
= Q[gne

−εg2
n ],

so the fourth term vanishes for n→ ∞ as well. Concluding,∣∣P[g]− Q[g]
∣∣ = lim

ε→0

∣∣P[ge−εg2

]− Q[ge−εg2

]
∣∣ ≤ 4C lim

ε→0

√
ε = 0.

Since g was arbitrary and Cb(E,k) is separating by Lemma ??, we find P = Q.

We now come to characteristic functions and Laplace transforms.
Pr:char1 Proposition 1.3 (Charakteristic functions determine distributions uniquely).

A probability measure P ∈ P(Rd) is uniquely given by its characteristic function.
In other words, if P,Q ∈ P(Rd) are such that

∫
eitxP(dx) =

∫
eitxQ(dx) for all t ∈ Rd. Then,

P = Q.
Proof. The set

M :=
{
x 7→

n∑
k=1

ake
itkx;n ∈ N, a1, ..., an ∈ C, t1, ..., 1n ∈ Rd

}
separates points in Rd. Since M ⊆ Cb(Rd,k) contains 1, is closed under sums and products, and
closed under complex conjugation, it is a star-subalgebra of Cb(E,C). So, the assertion directly
follows from Theorem ??.

rem:proj Remark 1.4. We also need to show the following: For J ⊆ I, where I is finite, let ψ be the
characteristic function for some distribution on RI . Then, for the projection πJ , the characteristic
function of the image measure under πJ is given by ψ ◦ gJ , where (gJ(t)j) = tj for j ∈ J and
(g(t)j) = 0 otherwise. In other words, when computing the characteristic function of a projection,
just set the coordinates in t 7→ ψ(t) which need to be projected out to 0.
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2 Gaussian random variables
Define an arbitrary family of Gaussian rvs with values in Rd by (i) defining a standard normal
distribution on R with the correct density, (ii) show that its characteristic function is given by
ψ(t) = e−t2/2, (iii) define an independent finite family of standard normal Gaussians using finite
product measures and (iv) define a general independent family by taking some symmetric, positive
definite C ∈ Rd×d, some1 A ∈ Rd×d with C = A>A, and define the Gaussian measure as the image
measure of the independent family Y under the map X = AY + µ. Show that

E[eitX ] = E[eit(µ+AY )] = eitµE[eitAY ] = eitµE
[

exp
(
i
∑
kl

tkAklYl

)]
= eitµ

∏
l

E
[

exp
(
i
(∑

k

tkAkl

)
Yl

)]
= eitµ

∏
l

E[ei(tA.l)Yl ]

= eitµ
∏
l

e−(tA.l)
2/2 = eitµe−

∑
l(tA.l)(A

>
l. t

>)/2 = eitµ−tCt>/2.

In particular, this shows that the distribution does not depend on the choice of A as long as
A>A = C. Together with Proposition ??, this shows that there is a unique probability measure
on Rd with characteristic function t 7→ eitµ−tCt>/2 for any vector µ and symmetric and positive
definite matrix C.

3 Projectivity
S:proj

For projectivity of finite-dimensional distributions of the BM, proceed as follows: (i) For I =
{s1, ..., sn} ⊆ Rd (with s1 < ... < sd), define PJ as the unique probability measure with character-
istic function ψI(t) = e−tCIt

>/2 with Cij = si∧sj . For J ⊆ I, we then have that the characteristic
function of the projection to coordinates in J is (see Remark ??) ψI ◦ gJ = e−gJ (.)CIgJ (.)

>
=

e−.CJ−/2 = ψJ . In other words, this is the required projectivity of (PI)I⊆f [0,∞).

4 The Kolmogorov-Chentsov criterion
In this section, let (D, rD), (E, rE) be extended pseudo-metric spaces. In addition, we will only
have a single probability measure in this section, so we write P(.) for probabilities and E[.] for its
expectations.

Definition 4.1 (Local Hölder). Let f : D → E and s ∈ D. If there is τ > 0 and some C < ∞
with rE(f(s), f(t)) ≤ CrD(s, t)γ for all t with rD(s, t) < τ , we call f locally Höl̈der of order γ at
s.

Hölder is implemented as HolderOnWith (on a set) and HolderWith. Moreover, locally Hölder at
a point is used for γ = 1 (i.e. Lipschitz continuity) e.g. in continuousAt_of_locally_lipschitz (Every
function, which is locally Lipschitz at a point, is continuous.)

l:holderext Lemma 4.2. Let D,E be extended pseudo-metric spaces and f : D → E and s ∈ D.

1. If f is locally Hölder at x, it is continuous at x.

2. If E is complete, A ⊆ D is dense, and g : A → E is Hölder, it can be extended to a
Hölder-γ-function on D.

1In order to see that such an A exists, consider some orthogonal O and a diagonal matrix D with C = O>DO
and set A :=

√
DO, where

√
D is the diagonal matrix with entries

√
λi for all eigenvalues λi of C. Then, A>A =

O>√
D
√
DO = O>DO = C.
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Proof. 1. Since f is locally Hölder at s, choose τ > 0 and C < ∞ such that rE(f(s), f(t)) ≤
Cr(s, t)γ for all t with rD(s, t) < τ . For ε > 0, there is δ′ > 0 such rD(s, t)γ < ε/C for all
t ∈ Bδ′(s). Choose δ := τ ∧ δ′ in order to see, for t ∈ Bδ(s)

rE(f(s), f(t)) ≤ Cr(s, t)γ < ε.

2. For s ∈ D, choose s1, s2, ... ∈ A with sn
n→∞−−−−→ s. Then, note that rE(f(sn), f(sM )) ≤

CrD(sn, sm)
m,n→∞−−−−−→ 0, so (f(sn))n=1,2,... is a Cauchy-sequence in E. We define f(s) to be its

limit. Then, for s, t ∈ D and the sequences s1, s2, ... ∈ D, t1, t2, ... ∈ D with sn
n→∞−−−−→ s, tn

n→∞−−−−→ t,

rE(f(s), f(t)) = lim
n→∞

rE(f(sn), f(tn)) ≤ lim
n→∞

CrD(sn, tn) = CrD(s, t).

For 1., continuousAt_of_locally_lipschitz must be adapted for Hölder instead of Lipschitz, i.e.
for γ < 1.

For 2., there is LipschitzOnWith.extend_real, which does not require the set A to be dense, but
γ = 1 and E = R. Also, there is DenseInducing.continuous_extend which gives a condition when
a function can continuously be extended. (It needs a DenseInducing function, which in our case
is i : A→ D,x 7→ x.)

l:gauss Lemma 4.3. For x ∈ R,let
bxc := max{n ∈ N : n ≤ x}.

The following holds:

1. 0 ≤ x− bxc < 1;

2. If |x− y| ≤ 1, then |bxc − byc| ≤ 1.

3. |2bxc − b2xc| ≤ 1.

Proof. 1. The first inequality is clear that bxc is defined as a maximum over a set of numbers
bounded above by x. The second inequality holds since otherwise we would have bxc+ 1 ≤ x, in
contradiction to the definition of bxc.
2. Without loss of generality, assume that y ≤ x (which implies that byc ≤ bxc). The proof is by
contradition, so assume that bxc−byc > 1. So, we find n := bxc ∈ N such that y < n−1 < n ≤ x.
This means that x− y > n− (n− 1) = 1, in contradiction to |x− y| ≤ 1.
3. If x−bxc < 1/2, then 2x−2bxc < 1, which implies that b2xc = 2bxc. Last, if 1/2 ≤ x−bxc < 1,
then 1 ≤ 2x− 2bxc < 2, so b2xc = 2bxc+ 1 and the result follows.

Lemma 4.4. Let I = [0, 1]d and |s− t| := maxi=1,...,d |si − ti| for s, t ∈ I. Let

• Dn := {0, 1, ..., 2n}n · 2−n ⊆ I for n = 0, 1, ..., and D =
⋃∞

n=0Dn;

• m ∈ N and s, t ∈ D with |t− s| ≤ 2−m.

Then, there is n ≥ m and sm, ..., sn, tm, ..., tn such that

1. sk, tk ∈ Dk with |s− sk|, |t− tk| ≤ 2−k for all k = m, ..., n

2. |sk − sk−1|, |tk − tk−1| ≤ 2−k,

3. |tm − sm| ≤ 2−m,

4. sn = s, tn = t.
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Proof. Since s, t ∈ D =
⋃

nDn, and Dn ⊆ Dm for n ≥ m, there is some n ≥ m with s, t ∈ Dn.
For k ∈ m, ..., n, we set

sk := bs2kc2−k, tk := bt2kc2−k ∈ Dk.

1. Since |x− bxc| ≤ 1 for all x ∈ Rd by Lemma ??.1, we have that

|s− sk| = 2−k|s2k − bs2kc| ≤ 2−k, k = m, ..., n.

2. Using Lemma ??.3, write

|sk − sk−1| = 2−k|b2s2k−1c − 2bs2k−1c| ≤ 2−k.

3. Since |t− s| ≤ 2−m, we have |2mt− sms| ≤ 1, so by Lemma ??.2

|tm − sm| = 2−m|bt2mc − bs2mc| ≤ 2−m.

4. We have s2n, t2n ∈ Zd since s, t ∈ Dn, so sn = 2−nbs2nc = 2−ns2n = s and tn = t.

rem1 Remark 4.5. Assume that r(xs, xt) ≤ 2−γk for all s, t with |t − s| = 2−k for k ≥ m. Then, for
some s, t ∈ D with |t− s| ≤ 2−m, with sk, tk as in the above result and the triangle inequality,

t = tn = sn +
( n∑

k=m+1

tk − tk−1 − (sk − sk−1)
)
+ tm − sm,

r(xt, xs) ≤
( n∑

k=m+1

r(xtk , xtk−1
) + r(xsk , xsk−1

)
+ r(xtm , xsm)

≤ 2

n∑
k=m

2−γk ≤ 1
1−2−γ 2

−γm.

The proof of the continuity theorem follows the version in [?].

T:kolchen Theorem 2 (Continuous version; Kolmogorov, Chentsov). For some d ∈ N and σ1, τ1, ..., σd, τd >
0, let I =

∏d
i=1[σi, τi], and X = (Xt)t∈I an E-valued stochastic process. Assume that there are

α, β,C > 0 with
E[r(Xs, Xt)

α] ≤ C|t− s|d+β , 0 ≤ s, t ≤ τ.

There there exists a version Y = (Yt)t∈I of X such that, for some random variables H > 0 and
K <∞,

P
(

sup
s6=t,|t−s|≤H

r(Ys, Yt)/|t− s|γ ≤ K
)
= 1,

for every γ ∈ (0, β/α). In particular, Y almost surely is locally Hölder of all orders γ ∈ (0, β/α),
and has continuous paths.

Proof. It suffices to show the assertion for I = [0, 1]d. The general case then follows by some
scaling of I. We consider the set of times

Dn := {0, 1, ..., 2n}n · 2−n

for n = 0, 1, ..., D =
⋃∞

n=0Dn. Using the Markov inequality, we write for any n ∈ N (note that
|{s, t ∈ Dn, |t− s| = 2−n}| ≤ d2nd), using Lemma ??,

P
(

sup
s,t∈Dn,|t−s|=2−n

r(Xs, Xt) ≥ 2−γn
)
≤ 2γαnE

[
sup

s,t∈Dn,|t−s|=2−n

r(Xs, Xt)
α
]

≤
∑

s,t∈Dn,|t−s|=2−n

2γαnE[r(Xt, Xs)
α] ≤ Cd2nd2γαn2−(d+β)n = Cd2(γα−β)n,
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and we see that the right hand side is summable. By the Borel-Cantelli Lemma,

N := max
{
n : sup

s,t∈Dn,|t−s|=2−n

r(Xs, Xt) ≥ 2−γn
}
+ 1

is finite, almost surely. From this and Remark ??, we conclude with C ′ = 1
1−2−γ ,

sup
s,t∈D,s 6=t,|t−s|≤2−N

r(Xs, Xt) ≤ sup
m≥N

(
sup

s,t∈D,|t−s|≤2−m

r(Xs, Xt)
)
≤ C ′ sup

m≥N
2−γm = C ′2−γN .

In other words, we see with H = 2−N and K = C2−γN ,

P
[

sup
s,t∈D,s 6=t,|t−s|≤H

r(Xs, Xt)/|t− s|γ ≤ K
]
= 1,

i.e. X is locally Hölder-γ on D.
With this and Lemma ??.2, we can extend X Hölder-continuously on I, and call this extension

Y = (Yt)t∈I . In order to show that Y is a modification of X, fix t ∈ I and consider a sequence
t1, t2, ... ∈ D with tn → t as n→ ∞. Then, for all ε > 0,

P(r(Xtn , Xt) > ε) ≤ E[r(Xtn , Xt)
α]/εα

n→∞−−−−→ 0,

i.e. Xtn
n→∞−−−−→p Xt. Moreover, due to continuity of Y , we have Ytn

n→∞−−−−→fs Yt. In particular,
since Xtn = Ytn for all n, we have P(Xt = Yt) = 1 by Lemma ?? , which concludes the proof.

l:chain Lemma 4.6. Let (I, q) and (E, r) be metric spaces, and f : I → E. Moreover, let J ⊆ I be finite,
a, b, c ∈ R+ with a ≥ 1 and n ∈ {1, 2, ...} such that |J | ≤ ban. Then, there is K ⊆ J2 such that

|K| ≤ a|J |, (2) eq:chain1

(s, t) ∈ K ⇒ q(s, t) ≤ cn, (3) eq:chain2

sup
s,t∈J,q(s,t)≤c

|f(t)− f(s)| ≤ 2 sup
(s,t)∈K

|f(s)− f(t)|. (4) eq:chain3

Proof. Start with V1 = J and some t1 ∈ V1. We iteratively construct tuples (V`, t` ∈ I, r` ∈
{1, ..., d}, B` ⊆ V`, C` ⊆ V`,K` ⊆ V 2

` ) such that V`+1 = V` \ B` (hence, ` 7→ V` is decreasing),
t` ∈ V` is some arbitrary element, and (r`, B`, C`,K`) are given by first finding r` ∈ {1, 2, ...}
minimal with

|C`| ≤ bar` for C` := {s ∈ V` : q(s, t`) ≤ r`c}

(since |V`| ≤ bad, this r` exists uniquely) and

B` := {s ∈ V` : r(s, t`) ≤ (r` − 1)c} ⊆ C`, K` := {t`} × C`.

Note that this implies
|B`| ≥ bar`−1, |K`| = |C`| ≤ bar`

by definition of r`, and since t` ∈ B` in all cases. We continue this construction until Vm = ∅.
We claim that

K :=

m⋃
`=1

K` = {(t`, s) : s ∈ V`, q(t`, s) ≤ cr` for some ` = 1, 2, ...}

satisfies (??), (??) and (??). In order to show (??), we have, since B1, B2, ... are disjoint,∑
`

bar`−1 ≤
∑
`

|B`| ≤ |J |.
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Hence, (??) follows from

|K| ≤
∑
`

|K`| =
∑
`

|C`| ≤
∑
`

bar` ≤ a|J |.

For (??), we have for (t`, s) ∈ K` ⊆ K,

q(t`, s) ≤ cr` ≤ cd.

Last, for (??), consider (s, t) ∈ J with q(s, t) ≤ c. (Recall that ` 7→ V` is decreasing with
V1 = J and Vm = ∅.) Find ` maximal with s, t ∈ V`. Assume wlog that s /∈ V`+1, which
implies s ∈ B` (since V`+1 = V` \ B`), which further implies q(s, t`) ≤ (r` − 1)c. (This implies
(t`, s) ∈ K`.) Since q(s, t) ≤ c, this gives q(t, t`) ≤ q(t, s) + q(s, t`) ≤ r`c, so s, t ∈ C`. From here,
(t`, s), (t`, t) ∈ K` ⊆ K, hence

q(f(s), f(t)) ≤ q(f(s), f(t`)) + q(f(t`), f(t)) ≤ 2 sup
s′,t′∈K

q(f(s′), f(t′))

and we are done by taking sups,t∈J.q(s,t)≤c on the left hand side.

Definition 4.7 (ε-cover). Let ε > 0 and (D, r) be some pseudometric space.
A set D′ ⊆ D is said to be an ε-cover of D if D =

⋃
x∈D′ Bε(x). It is called minimal, if D′ \ {x}

is no ε-cover for all x ∈ D′.

Lemma 4.8. Let ε > 0, (D, r) be some pseudometric space and Dε ⊆ D a minimal ε-cover of D.
In addition, for n = 1, 2, ..., set Dn := D2−n .

1. For any x ∈ D there is x′ ∈ Dε such that r(x, x′) < ε.

2. If x ∈ Dε is not isolated in D, there is ε > 0 and x′ 6= x with x′ ∈ Dε and r(x, x′) < 3ε.

3. Let m ≤ k and x ∈ Dk. Then, there is a sequence xk := x ∈ Dk, xk−1 ∈ Dk−1, ..., xm+1 ∈
Dm+1 with r(x`, x`+1) < 2−`−1 for ` = k, ...,m.

4. Let m ≤ k, `, x ∈ Dk, y ∈ D` with r(x, y) < 2−m. Then, there are sequences xk := x, xk−1 ∈
Dk−1, ..., xm ∈ Dm and y` := y, y`−1 ∈ D`−1, ..., ym ∈ Dm as in 2. with r(xm, ym) < 3 · 2−m.

Proof. 1. This follows from the definition of a ε-cover.
2. Since x is not isolated, there is y ∈ D with r(x, y) ∈ (ε, 2ε) for some ε > 0. Let x′ ∈ Dε with
r(x′, y) < ε, which exists by 1. Then, r(x, x′) ≤ r(x, y) + r(y, x′) < 3ε.
3. As 1. shows, there is xk+1 ∈ Dk+1 with r(x, xk+1) < 2−k−1. The assertion follows inductively.
4. Using the triangle inequality,

r(xm, ym) ≤ r(x, y) +

k−1∑
i=m

r(xi, xi+1) +

`−1∑
i=m

r(yi, yi+1)

< 2−m +

∞∑
i=m

2−i−1 +

∞∑
i=m

2−i−1 = 3 · 2−m

Remark 4.9. Ok, this is simple, but, for d > 0

n∑
j=0

2dj =
2d(n+1) − 1

2d − 1
≤ 2d

2d − 1
2dn.
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T:kolchen_general Theorem 3 (Continuous version; Kolmogorov, Chentsov). Let (I, q) be a compact metric space
and for ε > 0, let Iε be a finite ε-cover of I. Assume that, for some d ∈ {1, 2, ...}, we have c1 > 0
with

|Iε| ≤ c1ε
−d

for ε small enough. Assume that X = (Xt)t∈I is an E-valued stochastic process and there are
α, β, c2 > 0 with

E[r(Xs, Xt)
α] ≤ c2q(s, t)

d+β , s, t ∈ I.

Then, there exists a version Y = (Yt)t∈I of X such that, for some random variables H > 0 and
K <∞,

P
(

sup
s6=t,q(s,t)≤H

r(Ys, Yt)/q(s, t)
γ ≤ K

)
= 1,

for every γ ∈ (0, β/α). In particular, Y almost surely is locally Hölder of all orders γ ∈ (0, β/α),
and has continuous paths.

Proof. With a slight abuse of notation, we set In := I2−n . (So, |In| ≤ c12
dn.) In addition,

Jn :=
⋃n

j=0 Ij , hence |Jn| ≤ c1
∑n

i=0 2
di ≤ c32

dn with c3 = 2d

2d−1
c1. We use Lemma ?? with

J = Jn, a = 2d, b = c3, c = 2−n and n = n. This gives some Kn ⊆ J2
n with |Kn| ≤ c32

d2dn such
that (s, t) ∈ Kn ⇒ q(s, t) ≤ n · 2−n and

sup
s,t∈Jn,q(s,t)≤2−n

r(Xs, Xt) ≤ 2 sup
(s,t)∈Kn

r(Xs, Xt).

Using the Markov inequality, we write for any n ∈ N, using Lemma ??,

P
(

sup
s,t∈Jn,q(s,t)<2−n

r(Xs, Xt) ≥ 2−γn
)
≤ P

(
2 sup
(s,t)∈Kn

r(Xs, Xt) ≥ 2−γn
)

= P
(

sup
(s,t)∈Kn

r(Xs, Xt)
α ≥ 2−α2−γαn

)
≤ 2α2γαnE

[
sup

(s,t)∈Kn

r(Xs, Xt)
α
]

≤
∑

(s,t)∈Kn

2α2γαnE[r(Xs, Xt)
α] ≤ c32

d2nd2α2γαnc2(3n · 2−n)d+β = cnd+β2(γα−β)n

with c = c32
dc2. So, we see that the right hand side is summable. By the Borel-Cantelli Lemma,

N := max
{
n : sup

s,t∈Jn,q(s,t)<2−n

r(Xs, Xt) ≥ 2−γn
}
+ 1

is finite, almost surely. We set J :=
⋃

n Jn and Hm := 2−(N+m) (with Hm > 0, almost surely).
For s ∈ Jk and k > N +m, let sk := s, sk−1, ..., sN+m be as in Lemma xxx, and analogously for
t ∈ K` with ` > N +m. From this and Remark ??, we conclude with c′ = 1 + 2

1−2−γ and

sup
s,t∈J,q(s,t)≤Hm

r(Xs, Xt)

≤ sup
k,`≥N+m

sup
s∈Kk,t∈K`,q(s,t)≤Hm

r(xsN+m
, ytN+m

) +

k−1∑
i=N+m

r(Xsi , Xsi+1) +

`−1∑
i=N+m

r(Xti , Xti+1)

≤ sup
s,t∈JN+m,q(s,t)≤3·Hm

r(Xs, Xt) + 2−γN +

∞∑
i=N

2−γi +

∞∑
i=N

2−γi = c′2−γN .

In other words, we see with H = 3 · 2−N and K = c′2−γN ,

P
[

sup
s,t∈J,s6=t,q(s,t)≤H

r(Xs, Xt)/q(s, t)
γ ≤ K

]
= 1,

i.e. X is locally Hölder-γ on K.
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Then,

sup
{r(Xs, Xt)

q(s, t)γ
: s, t ∈ J, q(s, t) ≤ 3 · 2−N

}
= sup

m=0,1,2,...
sup

{r(Xs, Xt)

q(s, t)γ
: s, t ∈ J,Hm+1 < q(s, t) ≤ Hm

}
≤ sup

m=0,1,...
2(N+m+1)γ sup

{
r(Xs, Xt) : s, t ∈ J, q(s, t) ≤ Hm

}
≤ sup

m=0,1,...
2(N+m+1)γc′2−γ(N+m)

= 2γc′.

With this and Lemma ??.2, we can extend X Hölder-continuously on I, and call this extension
Y = (Yt)t∈I . In order to show that Y is a modification of X, fix t ∈ I and consider a sequence
t1, t2, ... ∈ D with tn → t as n→ ∞. Then, for all ε > 0,

P(r(Xtn , Xt) > ε) ≤ E[r(Xtn , Xt)
α]/εα

n→∞−−−−→ 0,

i.e. Xtn
n→∞−−−−→p Xt. Moreover, due to continuity of Y , we have Ytn

n→∞−−−−→fs Yt. In particular,
since Xtn = Ytn for all n, we have P(Xt = Yt) = 1 by Lemma ?? , which concludes the proof.
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