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Formalizing Brownian motion

April 27, 2024

Our goal is to write down the steps necessary in order to formalize Brownian motions (or
Re-valued Gaussian processes) in some generality using mathlib.

Remark 0.1 (Notation). We will write (E,r) for some extended pseudo-metric space, P(FE) for
the set of probability measures on the Borel o-algebra on E, k € {R,C}, and Cp(E, k) the set
of k-valued bounded continuous functions on E. For some P € P(E) and f € Cp(E, k), we let
P[f] := [ f(z)P(dx) € k be the expectation.

0 Some simple probability results

The following is a simple consequence of dominated convergence, and often needed in probability
theory.

Definition 0.1. Let E be some set and f, f1, fa,... : E — k. We say that f1, fo,.. : converges to
f boundedly pointwise if f, ———» f pointwise and sup,, ||fn|| < co. We write f,, “——p, f

Lemma 0.2. Let (2, A, P) be a probability (or finite) measure space, and X, X1, Xs,... : @ = k
such that X,, ==, X. Then, E[X,] === B[X].

Proof. Note that the constant function x — sup,, || f»|| is integrable (since P is finite), so the result
follows from dominated convergence. O

Definition 0.3. Let X, X1, Xo, ..., all E-valued random variables.
1. We say that X, 27 X almost everywhere if P(lim, o X,, = X) = 1. We also write

n—oo

X, —ae X.

n—oo

2. We say that X,, —— X in probability (or in measure) if, for all € > 0,
lim P(r(X,,X)>¢)=0.
n—oo

The two notions here are denoted V™ (x : a) aP, Filter.Tendsto (fun n => X n x) Filter.atTop (nhds
(X x)) and MeasureTheory.TendstolnMeasure, respectively.

n— oo n—oo

Lemma 0.4. Let X, X1, Xo, ... be E-valued random variables with X,, —— 4. X. Then, X,, ——,,
X.

This result is called MeasureTheory.tendstolnMeasure_of tendsto_ae in mathlib. We also need
the (almost sure) uniquess of the limit in measure, which is not formalized in mathlib yet:

Lemma 0.5 (Uniqueness of a limit in probability). Let X,Y, X1, Xo, ... be E-valued random vari-

n— 00 n—oo

ables with X;, ——, X and X,, ——=, Y. Then, X =Y, almost surely.
Proof. We write, using monotone convergence and Lemma 77

PIX#£Y)= liilgP(r(X, Y)>e) < hﬁ} lim P(r(X,X,) >¢/2) +P(r(Y,X,) >¢/2) =0.
€. 13 n—oo
O

Lemma 0.6. Let I be some (finite or infinite) set and (X¢)ier be a family of random variables
with values in [0,00). Then, sup;e; Xy < >, X
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1 Separating algebras and characteristic functions

Definition 1.1 (Separating class of functions). Let M C Cy(E, k).

1. If, for all x,y € E with x # y, there is [ € M with f(x) # f(y), we say that M separates
points.

2. If, for allP,Q € P(E),

P=Q iff P[f]=Qlf] forall f €M,
we say that M is separating in P(E).

3. If (i) 1 € M and (i) if M is closed under sums and products, then we call M a (sub-)algebra.
Ifk = C, and (iii) if M is closed under complex conjugation, we call M a star-(sub-)algebra.

In mathlib, 1. and 3. of the above definition are already implemented:

structure Subalgebra (R : Type u) (A : Type v) [CommSemiring R] [Semiring A]
[Algebra R A] extends Subsemiring :
Type v

abbrev Subalgebra.SeparatesPoints {a : Type u_1} [TopologicalSpace a]
{R : Type u_2} [CommSemiring R] {A : Type u_3} [TopologicalSpace A]
[Semiring A] [Algebra R A] [TopologicalSemiring A] (s : Subalgebra R C(a, A))
: Prop

The latter is an extension of Set.SeparatesPoints, which works on any set of functions.
For the first result, we already need that (F,r) has a metric structure. There is a formalization
of this result in https://github.com/pfaffelh/some_probability/tree/master.

Lemma 1.2. M :=Cy(E, k) is separating.

Proof. We restrict ourselves to k = R, since the result for k = C follows by only using functions
with vanishing imaginary part. Let P,Q € P(E). We will prove that P(A) = Q(A) for all A
closed. Since the set of closed sets is a m-system generating the Borel-o-algebra, this suffices for
P = Q. So, let A be closed and g = 14 be the indicator function. Let g,(z) := (1 — nr(A,z))*"
(where 7(A,y) := infye 4 7(y, z)) and note that g,(z) “— 14(z). Then, we have by dominated
convergence

P(A) = lim Plg,] = lim Q[gn] = Q(A),
and we are done. O

We will use the Stone-Weierstrass Theorem below. Here is its version in mathlib. Note that
this requires F to be compact.

theorem ContinuousMap.starSubalgebra_topologicalClosure_eq_top_of separatesPoints
{k : Type u_2} {X: Type u_1} [IsROrC k] [TopologicalSpace X] [CompactSpace X]

(A : StarSubalgebra k C(X, k)) (hA : Subalgebra.SeparatesPoints A.toSubalgebra) :
StarSubalgebra.topologicalClosure A = T

We also need (as proved in the last project):

theorem innerRegular_isCompact_isClosed_measurableSet_of complete_countable
[PseudoEMetricSpace a] [CompleteSpace a] [SecondCountableTopology al [BorelSpace a]
(P : Measure a) [IsFiniteMeasure P] :

P.InnerRegular (fun s => IsCompact s A IsClosed s) MeasurableSet

The proof of the following result follows [?, Theorem 3.4.5].


https://github.com/pfaffelh/some_probability/tree/master

Theorem 1 (Algebras separating points and separating algebras).
Let (E,r) be a complete and separable extended pseudo-metric space, and M C Cp(E,k) be a
star-sub-algebra that separates points. Then, M is separating.

Proof. Let P,Q € P(E), ¢ > 0 and K compact, such that P(K) > 1 —¢, Q(K) > 1 — ¢, and
g € Cp(E, k). According to the Stone-Weierstrass Theorem, there is (gp)n=12,... in M with

sup |9 (¢) — g(2)| 2= 0. (1)
So, (note that C':= sup, > ze™™ < o0)
| — Qlge™*5")| < |P[ge™*"] — Pge™*"; K|
+ [Plge™*9"; K| — Pgne 9 K|
+ [Plgne%; K| — Plgne=94]
+ [Plgne™%"] — Q[gne ]|
+|Qlgne ] — Q[gne ™ K]|
+|Qlgne™""] — Qge~*"; K|
+|Qlge*"; K] — Qlge=9"]|

|P[gei€9

We bound the first term by
C

3

2

|Plge==9"] — Plge™=7"; K| < —=P(K°) < CVE,

and analogously for the third, fifth and last. The second and second to last vanish for n — oo due
to (?7?). Since M is an algebra, we can approximate, using dominated convergence,

20 m 2 m
P[gne_sgi] = lim P[gn(l - %) } = lim Q[gn(l - %) } = Q[gne—fgiL
m— o0 m m— 00 m
emM emM
so the fourth term vanishes for n — oo as well. Concluding,
[P[g] — Qlg]| = lim [Plge "] - Qlge~*"]| < 4C lim V= = 0.
€

e—0

Since g was arbitrary and C,(E, k) is separating by Lemma ??, we find P = Q. O

We now come to characteristic functions and Laplace transforms.

Proposition 1.3 (Charakteristic functions determine distributions uniquely).
A probability measure P € P(RY) is uniquely given by its characteristic function.
In other words, if P,Q € P(RY) are such that [e"**P(dz) = [e"*Q(dx) for all t € R?. Then,
P=Q.
Proof. The set

n
M = {ac — Zake“’“z;n eN,aq,...,a, €C,t1,...,1, € Rd}
k=1
separates points in R%. Since M C Cp(R? k) contains 1, is closed under sums and products, and
closed under complex conjugation, it is a star-subalgebra of Cp(E,C). So, the assertion directly
follows from Theorem ?7. O

Remark 1.4. We also need to show the following: For J C I, where [ is finite, let ¥ be the
characteristic function for some distribution on R?. Then, for the projection w7, the characteristic
function of the image measure under 7 is given by ¢ o g7, where (gs(t);) = t; for j € J and
(9(t);) = 0 otherwise. In other words, when computing the characteristic function of a projection,
just set the coordinates in ¢ — () which need to be projected out to 0.
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2 Gaussian random variables

Define an arbitrary family of Gaussian rvs with values in R? by (i) defining a standard normal
distribution on R with the correct density, (ii) show that its characteristic function is given by
Y(t) = e~t’/2, (iii) define an independent finite family of standard normal Gaussians using finite
product measures and (iv) define a general independent family by taking some symmetric, positive
definite C' € R9*4, somA € R¥¥4 with C = AT A, and define the Gaussian measure as the image
measure of the independent family Y under the map X = AY + u. Show that

E[eitX] = E[eit(quAY)] = R[] = e““E[exp (z Z tkAlel)]
kl

= ¢ltH HE{exp (i(ztkAkl)Yi)} = ¢ltn HE[ei(tA'l)Yl]
l k l

_ citn He—(tAI)z/z — oithe SIEAN AT /2 eit,uftCtT/Z'
!

In particular, this shows that the distribution does not depend on the choice of A as long as
ATA = C. Together with Proposition 7?7, this shows that there is a unique probability measure
on R? with characteristic function ¢ — e#—tCt"/2 for any vector p and symmetric and positive
definite matrix C.

3 Projectivity

For projectivity of finite-dimensional distributions of the BM, proceed as follows: (i) For I =
{81,y 8} C R¢ (with s1 < ... < s4), define Py as the unique probability measure with character-

istic function vy (t) = e—tC1t" /2 with Cij = siAs;. For J C I, we then have that the characteristic

function of the projection to coordinates in J is (see Remark ??) ¢; o0 g; = e=97()Cras ()7 =
e—¢7=/2 = 4);. In other words, this is the required projectivity of (Pr)ic;10,00)-

4 The Kolmogorov-Chentsov criterion

In this section, let (D,rp), (E,rg) be extended pseudo-metric spaces. In addition, we will only
have a single probability measure in this section, so we write P(.) for probabilities and E[.] for its
expectations.

Definition 4.1 (Local Holder). Let f : D — E and s € D. If there is 7 > 0 and some C' < 00
with re(f(s), f(t)) < Crp(s,t)Y for all t with rp(s,t) < T, we call f locally Holder of order v at
s.

Holder is implemented as HolderOnWith (on a set) and Holderwith. Moreover, locally Holder at
a point is used for v =1 (i.e. Lipschitz continuity) e.g. in continuousAt_of_locally_lipschitz (Every
function, which is locally Lipschitz at a point, is continuous.)

Lemma 4.2. Let D, E be extended pseudo-metric spaces and f: D — E and s € D.
1. If f is locally Holder at x, it is continuous at x.

2. If E is complete, A C D is dense, and g : A — FE is Holder, it can be extended to a
Hélder-y-function on D.

n order to see that such an A exists, consider some orthogonal O and a diagonal matrix D with C = OT DO
and set A := v/ DO, where /D is the diagonal matrix with entries v/X; for all eigenvalues A\; of C. Then, ATA =
O0Tv/DvVDO =0TDO =C.
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Proof. 1. Since f is locally Holder at s, choose 7 > 0 and C' < oo such that rg(f(s), f(t)) <
Cr(s,t)Y for all t with rp(s,t) < 7. For € > 0, there is §' > 0 such rp(s,t)? < ¢/C for all
t € Bs:(s). Choose 6 := 7 A ¢ in order to see, for ¢ € B;(s)

re(f(s), f(t)) < Cr(s,t)”

2. For s € D, choose si,s2,... € A with s, ——» 5. Then, note that rg(f(s,), f(sa)) <
Crp(Sn, Sm) m 0, so (f(sn))n=12,.. is a Cauchy-sequence in E. We define f(s) to be its

n—00 n—oo

limit. Then, for s,¢ € D and the sequences s1, Sa, ... € D,t1,ta,... € D with s, S, ty t,

rp(f(s), £(8) = Tim rp(f(sa), f(tn) < lim Crp(su,ta) = Crp(s,1),

n—oo

O

For 1., continuousAt_of_locally_lipschitz must be adapted for Holder instead of Lipschitz, i.e.
for v < 1.

For 2., there is LipschitzOnWith.extend real, which does not require the set A to be dense, but
v=1and E = R. Also, there is Denselnducing.continuous_extend which gives a condition when
a function can continuously be extended. (It needs a Denselnducing function, which in our case
isi:A— D,z x.)

Lemma 4.3. For xz € R,let
|z] :=max{n € N:n < z}.

The following holds:
1.0<z—|z| <1
2. If |x —y| < 1, then ||z — [y]| < 1.
3. |2|z] — [22]| < 1.

Proof. 1. The first inequality is clear that |z] is defined as a maximum over a set of numbers
bounded above by x. The second inequality holds since otherwise we would have |z] + 1 < z, in
contradiction to the definition of |z].

2. Without loss of generality, assume that y < 2 (which implies that |y| < |z]). The proof is by
contradition, so assume that |z| —|y] > 1. So, we find n := |z] € Nsuchthat y <n—1<n < z.
This means that z —y > n — (n — 1) = 1, in contradiction to |z —y| < 1.

3. Ilf x—|z] < 1/2, then 22 —2| x| < 1, which implies that |2z]| = 2|z]. Last, if 1/2 <z —|z] < 1,
then 1 < 2x —2|z| < 2, s0 [2z] = 2|z + 1 and the result follows. O

Lemma 4.4. Let I = [0,1]? and |s — t| := max;—1
e D,:={0,1,..,2"}"- 27" C I forn=0,1,..., and D = J,_ Dy;
e meN and s,t € D with |t —s| <27™.

Then, there is n > m and Sy, .., Spy by vy tn Such that
1. sg,tx € Dy with |s — si|, [t —ti| < 27% for allk =m,...,n
2. |sk — Sp—1l, |tk — te—1| < 27K,
3. Nt — sm| <27,

4. Sp = 8,t, =t.
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Proof. Since s,t € D = J,, Dy, and D,, C Dy, for n > m, there is some n > m with s,t € D,.
For k € m,...,n, we set
— k1o—k 4ok |0—k
Sk = |_82 J2 R t = LtQ J2 € Dy.

1. Since |z — |z]| < 1 for all z € R? by Lemma ?7.1, we have that

|s — sp| = 27%|s2F — [s2%]| < 27F, k=m,..,n.

2. Using Lemma ?7.3, write

lsp — sp_1| = 27F|[ 252771 — 252771 || <27,

3. Since |t — s| < 27™, we have |2t — s™s| < 1, so by Lemma ??.2

[t — $m| = 2™ [[£2™] — |s2™]| < 2™

4. We have 52", 2" € Z% since s,t € D,,, 50 8, = 277|527 | =27 "s2" = s and t,, = t. O

Remark 4.5. Assume that 7(z,,2;) < 277 for all s,¢ with [t — s| = 27F for k > m. Then, for
some s,t € D with |t — s| < 27™, with sg,t; as in the above result and the triangle inequality,

n
t:tnzsn+( Z tk—tk_l—(sk—sk_l))+tm—sm,
k=m+1
n

T(gjh IS) S ( Z T(I’f,k ) "Etk,l) + T(I’Sk 5 I’Sk,1) + T(Itm ) l'sm)
k=m+1

1-2—7

<2) ok < Lo
k=m

The proof of the continuity theorem follows the version in [?].

Theorem 2 (Continuous version; Kolmogorov, Chentsov). Forsomed € N andoy,11,...,04,Tq >
0, let I = Hle[ai,ri], and X = (Xt)ter an E-valued stochastic process. Assume that there are
a, B,C >0 with
E[r(X,, X;)% < Clt —s|™F,  0<st<T
There there exists a version Y = (Yi)ier of X such that, for some random variables H > 0 and
K < o0,
P( sup r(YS,Yt)/|t—s|'V§K) =1,
s#t,|t—s|<H
for every v € (0,8/a). In particular, Y almost surely is locally Holder of all orders v € (0,8/a),
and has continuous paths.

Proof. Tt suffices to show the assertion for I = [0,1]¢. The general case then follows by some
scaling of I. We consider the set of times

D, :={0,1,..,2"}". 27"
forn =0,1,..., D = J;—, Dy. Using the Markov inequality, we write for any n € N (note that
|{s,t € Dy, |t — s| = 27"}| < d2"?), using Lemma ??,

P s (X, X) 22 SOME[ s (X, X))
$,tED,,|[t—s|=2"" $,tED,,|t—s|=2""

< > 2NE[r( Xy, X,)*] < Cd2nd2reng=(@d+hn — ¢gatva=fn,

$,tEDy,,|[t—s|=2—""
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and we see that the right hand side is summable. By the Borel-Cantelli Lemma,
N := max {n : sup r(Xs, Xi) > 27771} +1
$,t€D,,,[t—s|=2""

1
1-2=77

is finite, almost surely. From this and Remark ??, we conclude with C’ =

sup r(Xs, X;) < sup ( sup T(XS,Xt)) < C' sup 277 = 27V,
s,teD,s#t,|t—s|<2—N m>N NsteD,|t—s|<2—™ m>N

In other words, we see with H = 27" and K = C277V,

P[ sup T(XS,Xt)/\t—ngK} =1,
s,teD,s#t,|t—s|<H

i.e. X is locally Holder-y on D.

With this and Lemma ?7.2, we can extend X Hélder-continuously on I, and call this extension
Y = (Yi)ies- In order to show that Y is a modification of X, fix ¢t € I and consider a sequence
t1,to,... € D with t,, — t as n — oo. Then, for all € > 0,

P(r(X,,X:) > ¢) <E[r(X,,, X;)]/e* 22250,

ie. X, TH—OO>p X:. Moreover, due to continuity of Y, we have Y; 7H—°O>fs Y;. In particular,

since X;, = Y;, for all n, we have P(X; = Y;) = 1 by Lemma ?? , which concludes the proof. [

Lemma 4.6. Let (I,q) and (E,r) be metric spaces, and f : I — E. Moreover, let J C I be finite,
a,byc € Ry witha > 1 and n € {1,2,...} such that |J| < ba™. Then, there is K C J? such that

K| < alJ], 2)

(5,0) € K = qs,1) < en, 3)

sup  |f(t) = f(s)| <2 sup [f(s) = f(D)]- (4)
s,teJq(s,t)<c (s,t)eK

Proof. Start with V4 = J and some t; € V3. We iteratively construct tuples (Vg,tp € I,ry €
{1,...,d}, By € V4, Cy C Vi, Ky C V2) such that Vg = Vi \ By (hence, ¢ — V, is decreasing),
te € Vy is some arbitrary element, and (r¢, Be, Cy, Ky) are given by first finding r, € {1,2,...}
minimal with

|Cy| < ba™ for Cp:={s € Vy:q(s,te) <rec}

(since |Vy| < ba, this 7y exists uniquely) and
By := {8 eVy: T(S,tg) < (T[ — ].)C} - Cg, K, := {tg} x Cy.

Note that this implies
‘Bg‘ > bawil, |Kg| = |Cg| < ba"*

by definition of r,, and since t, € By in all cases. We continue this construction until V,,, = ().

We claim that

K .= U Ko ={(te,8) : s € Vi, q(te,s) < cry for some £ =1,2,...}
=1

satisfies (?7), (??) and (??). In order to show (?7), we have, since By, Bs, ... are disjoint,

> ba™ Tt <> B < ).
0 4

eq:chainl
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Hence, (?7?) follows from
(K| <> K[ =) |C <Y ba™ < alJ].
¢ ¢ ¢

For (??), we have for (ty,s) € K; C K,
q(te,s) < cre < cd.

Last, for (??), consider (s,t) € J with ¢(s,t) < c¢. (Recall that £ — V, is decreasing with
Vi = Jand V,,, = 0.) Find ¢ maximal with s, € V,. Assume wlog that s ¢ V,.1, which
implies s € By (since Vpy1 = Vi \ By), which further implies ¢(s,t¢) < (1, — 1)e. (This implies
(te,s) € Ky.) Since q(s,t) < ¢, this gives q(t,ts) < q(t,s) + q(s,te) < rec, so s,t € Cp. From here,
(te,s), (te,t) € Ky C K, hence

a(f(s), £(£)) < a(f(s), f(te)) + a(f(te), f(1)) <2 sup q(f(s'), f(¥'))

s/ t'e K
and we are done by taking sup; ;¢ s q(s,¢)<c 00 the left hand side. O

Definition 4.7 (e-cover). Let e > 0 and (D,r) be some pseudometric space.
A set D' C D is said to be an e-cover of D if D =, p, Be(x). It is called minimal, if D"\ {z}
is no e-cover for all x € D'.

Lemma 4.8. Lete > 0, (D,r) be some pseudometric space and D, C D a minimal e-cover of D.
In addition, formn =1,2,..., set Dy, := Dy—n.

1. For any x € D there is ' € D, such that r(z,z’) < €.
2. If x € D, is not isolated in D, there is € > 0 and ' # x with ' € D, and r(z,z") < 3e.

3. Let m < k and © € Dy. Then, there is a sequence xy, = € D, 21 € Di_1,...,Tm4+1 €
Dpni1 with r(xg, xep1) <2757 for 0 =k, ...,m.

4. Let m < k£, x € D,y € Dy with r(x,y) < 2~™. Then, there are sequences Ty := T, Tp_1 €
Di_1,.cc,@m € Dy and yo == y,yo—1 € Do—1,...,ym € Dy as in 2. with r(Tp,, ym) < 3-27™.

Proof. 1. This follows from the definition of a e-cover.

2. Since x is not isolated, there is y € D with r(z,y) € (g,2¢) for some € > 0. Let ' € D, with
r(z',y) < e, which exists by 1. Then, r(z,z') < r(z,y) + r(y,z') < 3e.

3. As 1. shows, there is z11 € Dy with 7(z, 741) < 27%71. The assertion follows inductively.
4. Using the triangle inequality,

k—1 -1

T(@m, Ym) < r(@,y) + ) (@i, ziv1) + Z r(Yi, Yit+1)
i=m i=m

<274y 2Ty Yot

Remark 4.9. Ok, this is simple, but, for d > 0

n d(n+1 d
Zde:Q( )_1< 2% gan
= 24 — 1 —2d_1




T:kolchen_general‘ Theorem 3 (Continuous version; Kolmogorov, Chentsov). Let (I,q) be a compact metric space

and for e > 0, let I be a finite e-cover of I. Assume that, for some d € {1,2,...}, we have ¢; >0
with
|IE| S Cl€_d

for € small enough. Assume that X = (Xy)ier s an E-valued stochastic process and there are
a, B, co > 0 with

E[r(Xs, X1)®] < caq(s, )7, s, tel.
Then, there exists a version Y = (Yi)ier of X such that, for some random variables H > 0 and
K < oo,

P( sup  7(Ys, Y1) /q(s,t)7 < K) =1,

s#t,q(s,t)<H

for every v € (0,8/a). In particular, Y almost surely is locally Hélder of all orders v € (0,8/«),
and has continuous paths.

Proof. With a slight abuse of notation, we set I,, := Io-n. (So, |I,| < ¢;29".) In addition,
g, = U?:o I;, hence |J,| < ¢1 31 (2% < 329" with ¢35 = 57—c1. We use Lemma ?? with
J=Jn,a=2%b=c3, c=2""and n = n. This gives some K,, C J2 with |K,| < ¢32929" such
that (s,t) € K, = q(s,t) <n-27" and

sup r(Xs, Xt) <2 sup r(Xs, Xy).
$,t€EJn,q(s,t)<2— ™ (s,t)EK,,

Using the Markov inequality, we write for any n € N, using Lemma 7?7,

P( sup r(Xs, Xt) > 2‘”") < P(2 sup (X, Xt) > 2_7”)
s, t€Jpn,q(s,t)<2—™ (s,t)eEK,

= P( sup r(Xs, Xp)* > 2_0‘2_76“”) < 20‘270‘”E{ sup r(Xs,Xt)a}

(s:)€Kn (s.) €K,
< Y0 2027ME[(X,, X0)?) < 03292720270 ey (3n - 27 = endHiglie=in
(s;t)EK

with ¢ = ¢32%;,. So, we see that the right hand side is summable. By the Borel-Cantelli Lemma,

N := max {n : sup r(Xs, X¢) > 277”} 1
s,t€Jn,q(s,t)<2™ "

is finite, almost surely. We set J :=J,, J, and H,, := 2-(N+m) (with H,, > 0, almost surely).
For s € J, and k > N +m, let s := S, Sk—1, .-, SN+m be as in Lemma xxx, and analogously for
t € Ky with £ > N +m. From this and Remark ??, we conclude with ¢ =1+ ;—— and

sup r(Xs, Xt)
s,ted,q(s,t)<Hpm

k—1 —1
< sSup Sup r(xSNer ) ytN+m> + E T(XSN XSz'+1) + E T(th‘ ) Xti+1)
kA>N+m s€e Ky ,teKyp,q(s,t)<Hp, i=N+m i=N+m
(o] o0
< sup r(Xe, X)) +277V + E 277 4 E 277 = /27N,
$,t€EIN4+m,q(s,t)<3-Hp, i=N =N

In other words, we see with H =3-2" and K = /277N,

p sup r(Xs, Xi)/q(s, )7 < K] — 1,
s,t€J,s#t,q(s,t)<H

i.e. X is locally Holder-y on K.



Then,

Xs, X _
sup{u:s,te J,q(s,t) <32 N}

q(s,t)7
’I’(XS,Xt)
= su supy ————— :s,t € J, Hppy1 < q(s,t §Hm}
7rL:O,1I,)2,A.. p{ Q(S7t)’y +1 q( )
< sup 2(N+m+1)y sup {’F(XS,Xt) 28t € J,q(s,t) < Hm}
m=0,1,...

< sup 2(N+m+1)'ycl27'y(N+m)

m=0,1,...

=27¢.

With this and Lemma ?7.2, we can extend X Holder-continuously on I, and call this extension
Y = (Yi)ies. In order to show that Y is a modification of X, fix ¢ € I and consider a sequence
t1,t,... € D with t,, = t as n — oco. Then, for all € > 0,

P(r(Xy,, Xi) > €) < Elr(X,, Xo)] /e 272 0,

ie. Xy, H—Oo>p X:. Moreover, due to continuity of Y, we have Y3, TH—OO>fS Y;. In particular,

since X; =1Y;, for all n, we have P(X; =Y;) =1 by Lemma ?? , which concludes the proof. [
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