Formalizing David Hilbert's Foundations of Geometry

Jürgen Uhl

September 10, 2023

Contents

1 Introduction 1
2 Group I: Axioms of connection 1
2.1 Axioms 1
3 Group II: Axioms of order 4
3.1 Axioms 4theory HilbertGeometryimports Main
begin

1 Introduction

This theory formalizes David Hilbert's Geometry Axioms and Theorems using the Proof System Isabelle. Chapters correspond to the axiom groups

- Group I: Axioms of Connection
- Group II: Axioms of Order
- Group III: Axioms of Parallels (Euclids axiom)
- Group IV: Axioms of Congruence
- Group V: Axioms of Continuity (Archimedess axiom)

Each chapter starts out with the formalization of the axioms followed by the proofs of the given theorems.
end
theory Connection
imports Main
begin

2 Group I: Axioms of connection

2.1 Axioms

Axioms of connection formalize the relationship between points, (straight) lines and planes. We model points by using a type variable 'point and lines and planes as sets of points. The axioms then characterize the predicates Line and Plane.

Shorthand for two distinct points lying in the same line or plane
abbreviation in2 a $A B A \neq B \wedge A \in a \wedge B \in a$
Shorthand for three (not necessarily distinct) points lying in the same line or plane
abbreviation in3 a $A B C \equiv A \in a \wedge B \in a \wedge C \in a$
abbreviation in4 a $A B C D \equiv A \in a \wedge B \in a \wedge C \in a \wedge D \in a$
locale Connection $=$
fixes Line :: 'point set \Rightarrow bool and Plane :: 'point set \Rightarrow bool
assumes $I-1-2: A \neq B \Longrightarrow \exists!a$. Line $a \wedge A \in a \wedge B \in a$

- I. 1 For any two points there exists a straight line passing through them.
- I. 2 There exists only one straight line passing through any two distinct points. and I-3a: Line $a \Longrightarrow \exists A B$. in2 $a A B$
- I.3a At least two points lie on any straight line. ... and $I-3 b: \exists A B C$. $\exists a$. Line $a \wedge$ in3 $a A B C$
- I.3b ... There exist at least three points not lying on the same straight line. and I-4a-5: \ddagger a. Line $a \wedge$ in3 a $A B C \Longrightarrow \exists!\alpha$. Plane $\alpha \wedge$ in3 $\alpha A B C$
- I.4a There exists a plane passing through any three points not lying on the same straight line. ...
- I. 5 There exists only one plane passing through any three points not lying on the same straight line. and I - $4 b$: Plane $\alpha \Longrightarrow \alpha \neq\{ \}$
- I.4b ... At least one point lies on any given plane. and I-6: \llbracket Line a; Plane α; in2 a $A B$; in2 $\alpha A B \rrbracket \Longrightarrow a \subseteq \alpha$
- I. 6 If two points A and B of a straight line a lie in a plane α, then all points of a lie in α.
and I-7: \llbracket Plane $\alpha ;$ Plane $\beta ; A \in \alpha ; A \in \beta \rrbracket \Longrightarrow$
$\exists B . B \neq A \wedge B \in \alpha \wedge B \in \beta$
- I. 7 If two planes have one point in common, then they have at least one more point in common. and I-8: $\exists A B C D$. $\exists \alpha$. Plane $\alpha \wedge A \in \alpha \wedge B \in \alpha \wedge C \in \alpha \wedge D \in \alpha$
- I. 8 There exist at least four points not lying in the same plane.

context Connection
 begin

- Note that in-line A B C does not require A B C to be distinct
abbreviation in-line $A B C \equiv \exists a$. Line $a \wedge$ in3 a $A B C$
abbreviation in-line4 $A B C D \equiv \exists$. Line $a \wedge \operatorname{in4}$ a $A B C D$
abbreviation distinct3 $A B C \equiv A \neq B \wedge A \neq C \wedge B \neq C$
abbreviation distinct $4 A B C D A \neq B \wedge A \neq C \wedge A \neq D \wedge B \neq C \wedge B \neq D \wedge C \neq D$
lemma lemma-I-1: card $a \geq 2 \Longrightarrow \exists A B$. in2 $a A B$
by (metis Suc-diff-le Suc-eq-plus1 Zero-not-Suc cancel-comm-monoid-add-class.diff-cancel card.empty is-singletonI' is-singleton-altdef not-numeral-le-zero one-add-one)
lemma lemma-I-2: 【Line $a ;$ in2 a $A B ; C \notin a \rrbracket \Longrightarrow \neg$ in-line $A B C$ using $I-1-2$ by auto
lemma lemma-I-3: \llbracket Plane $\alpha ;$ Plane β; Line a; in2 a $A B ; C \notin a$; in3 $\alpha A B C$; in3 $\beta A B C \rrbracket \Longrightarrow \alpha=\beta$
using lemma-I-2 I-4a-5 by blast
lemma lemma-I-4: 【Plane $\alpha ; A \neq B$; \neg in-line $A B C$;in3 $\alpha A B C$; in-line $A B D \rrbracket \Longrightarrow D \in \alpha$ using $I-6$ by fastforce
lemma lemma-I-5: \neg in-line $A B C$ distinct3 $A B C$
using I-1-2 I-4a-5 I-8 by (metis (full-types))
theorem theorem-I-1a:
fixes $a b$
assumes Line a Line $b a \neq b$
shows card $(a \cap b)<2$
- Two straight lines of a plane have either one point or no point in common; ... We have generalized the theorem to two arbitrary lines, whether they lie in the same plane or not.
proof (rule ccontr)
assume $\neg \operatorname{card}(a \cap b)<2$
hence card $(a \cap b) \geq 2$ by auto
hence $\exists A B$. in2 $(a \cap b) A B$ using lemma-I-1 by blast
hence $a=b$ using $I-1-2\langle$ Line $a\rangle\langle$ Line $b\rangle$ by blast
thus False using $\langle a \neq b\rangle$ by simp
qed
theorem theorem-I-1b:
fixes $\alpha \beta$
assumes Plane α Plane $\beta \alpha \neq \beta$
shows $(\alpha \cap \beta=\{ \}) \vee(\exists$. Line $a \wedge \alpha \cap \beta=a)$
- ... two planes have no point in common or a straight line in common; ...
proof (rule ccontr)
assume a1: $\neg(\alpha \cap \beta=\{ \} \vee(\exists$ a. Line $a \wedge \alpha \cap \beta=a))$
hence $\alpha \cap \beta \neq\{ \} \wedge(\nexists a$. Line $a \wedge \alpha \cap \beta=a)$ by simp
thus False
proof
assume $\alpha \cap \beta \neq\{ \}$
then obtain A where $o A: A \in \alpha \wedge A \in \beta$ by blast
then obtain B where $o B: A \neq B \wedge B \in \alpha \wedge B \in \beta$
using $I-7$ by (metis assms(1-2))
then obtain a where ex: Line $a \wedge A \in a \wedge B \in a$ using I-1-2 by blast
hence l-ss-a12: $a \subseteq \alpha \cap \beta$ using I - 6 assms(1-2) oA oB by blast
from ex have $\alpha \cap \beta \subseteq a$ using lemma-I-3 assms oA oB by blast
from this l-ss-a12 have $\alpha \cap \beta=a$ by auto
thus False using a1 ex by auto
qed
qed
theorem theorem-I-1c:
fixes αa
assumes Line a Plane $\alpha \neg a \subseteq \alpha$
shows card $(\alpha \cap a)<2$
- ... a plane and a straight line not lying in it have no point or one point in common.
proof (rule ccontr)
assume $\neg \operatorname{card}(\alpha \cap a)<2$
hence card $(\alpha \cap a) \geq 2$ by auto
hence $\exists A B$. in2 $(\alpha \cap a) A B$ using lemma-I-1 by blast
hence $a \subseteq \alpha$ using $I-6 \operatorname{assms}(1) \operatorname{assms}(2)$ by blast
thus False using assms(3) by simp
qed
theorem theorem-I-2a:
fixes $a A$
assumes Line a $A \notin a$
shows \exists ! α. Plane $\alpha \wedge a \subseteq \alpha \wedge A \in \alpha$
- Through a straight line and a point not lying in it, ..., one and only one plane may be made to pass.
proof -
obtain $B C$ where oBC: in2 a $B C$ using I-3a assms(1) by blast
have i1: \neg in-line $A B C$
using oBC lemma-I-2 assms by (smt (verit, best) insert-commute)
hence \exists ! α. Plane $\alpha \wedge$ in3 $\alpha A B C$ using I-4a-5 i1 by simp
thus ?thesis using $I-6$ oBC assms(1)
by (smt (verit) empty-iff in-mono insert-iff subsetI)
qed
theorem theorem-I-2b:
fixes $a b A$
assumes Line a Line $b a \neq b A \in a A \in b$
shows \exists ! α. Plane $\alpha \wedge a \subseteq \alpha \wedge b \subseteq \alpha$
- ..., or through two distinct straight lines having a common point, one and only one plane may be made to pass.
proof -
obtain B where ob: in2 a $A B$ using $I-3 a \operatorname{assms}(1) \operatorname{assms}(4)$ by metis
hence $i: B \notin b$ using I-1-2 assms by auto
obtain C where oC: in2 b A C using I-3a assms(2) assms(5) by metis
hence $a C$: $C \notin a$ using I-1-2 assms by auto
hence \neg in-line $A B C$ using lemma-I-2 assms $o B$ by blast
hence $\exists!\alpha$. Plane $\alpha \wedge$ in3 $\alpha A B C$ using $I-4 a-5 i$ assms by simp
thus ?thesis using $I-6$ oB oC assms(1-2) aC theorem-I-2a
by (smt (verit, ccfv-threshold) in-mono)
qed
end
end
theory Order
imports Connection
begin

3 Group II: Axioms of order

3.1 Axioms

locale Order $=$ Connection Line for Line : : 'point set \Rightarrow bool +
fixes btw :: 'point \Rightarrow 'point \Rightarrow 'point \Rightarrow bool
assumes $I I-1 a: b t w A B C \Longrightarrow$ distinct3 $A B C \wedge$ in-line $A B C$

- If a point B lies between a point A and a point C , then A, B, and C are distinct points on the same straight line ... and II-1b: btw $A B C \Longrightarrow b t w C B A$
- ... and B also lies between C and A .
and $I I-2: A \neq B \Longrightarrow \exists C$. btw $A B C$
- For any two points A and B on the straight line $A B$, there exists at least one point C such that the point B lies between A and C. and II-3: \llbracket Line a; in3 a $A B C \rrbracket \Longrightarrow \neg(b t w A B C \wedge b t w B A C) \wedge$
$\neg(b t w A B C \wedge b t w A C B) \wedge \neg(b t w B A C \wedge b t w B C A)$
- Out of any three points on the same straight line there exists not more than one point lying between the other two. and II-4: 【Plane α; \neg in-line $A B C$;in3 $\alpha A B C$;

Line $a ; a \subseteq \alpha \wedge A \notin a \wedge B \notin a \wedge C \notin a ;$
btw $A D B \wedge D \in a \rrbracket \Longrightarrow(\exists E . E \in a \wedge(b t w A E C \vee b t w B E C))$

- Let A, B, and C be three points not lying on the same straight line, and let a be a straight line in the plane ABC not passing through any of the points A, B, or C . Then, if the straight line a passes through an interior point of the segment AB , it also passes through an interior point of the segment AC or through an interior point of the segment BC.

context Order

begin
lemma lemma-II-1: $\llbracket \neg$ in-line $A B C$;btw $A D B \rrbracket \Longrightarrow C \neq D$ using $I I-1 a$ by blast
lemma lemma-II-2: 【distinct3 $A B C$; \neg in-line $A B C ;$ btw $A D B \rrbracket$

$$
\Longrightarrow \text { ᄀin-line A D C }
$$

using II-1a lemma-I-2 by blast
The following scenarios (lemma II-3a and b) are used multiple times in the subsequent theorems: a) Have a line $A B C$ such that A is not between B and C. Have D not on $A C$ and E such that D is between C and E . Then the line AD intersects EB in a point F which is between E and B . Note that CDE and BFE can be interchanged.

lemma lemma-II-3a:
fixes $A B C D E$
assumes distinct3 $A B C$ in-line $A B C \neg b t w B A C$ \neg in-line $A D B$ distinct3 $C D E$ btw $C D E$
shows $\exists F$. in-line $A F D \wedge b t w E F B$
proof -
have $B E C$: \neg in-line $B E C$
using assms(1,2,4-6) II-1a lemma-I-2 lemma-I-5 by meson
obtain α where o人: Plane $\alpha \wedge$ in3 $\alpha A D B$ using I-4a-5 assms(4) by meson
obtain a where oa: Line $a \wedge A \in a \wedge D \in a$
using II-1a I-1-2 assms(6) by metis
then have $a \alpha: a \subseteq \alpha$ using oo assms $(2,4)$ I- 6 by metis
have $C a$: $C \notin a$ using $\operatorname{assms}(1,2,4)$ oa lemma-I-2 by blast
then have $E a: E \notin a$ using assms(6) oa II-1a II-1b lemma-I-2 by meson
have $B a: B \notin a$ using $\operatorname{assms}(1,2,4)$ oa lemma-I-2 by blast
have bec α : in3 $\alpha C E B$ using oo II-1a I-6 assms $(1,2,5,6)$ by blast
obtain F where $o F: F \in a \wedge(b t w B F C \vee b t w E F B)$
using BEC a o o oa Ba Ea Ca beco assms(6) II-1b II-4[of α C E B a D] by blast
then have \neg in-line $B F C$ using $B E C B a I I-1 a \operatorname{assms}(2,3)$ lemma-I-2 oa by (smt(verit, ccfv-threshold))
then have ex: $\exists F$. in-line $A D F \wedge$ btw EFB using II-1a oF oa by blast
then show ?thesis by blast
qed
abbreviation lemma-II-3a-assms $A B C D E \equiv \operatorname{distinct3} A B C \wedge$ in-line $A B C \wedge$
$\neg b t w B A C \wedge$ in-line $A D B \wedge$ distinct3 $C D E \wedge b t w C D E$
b) Have two lines A B C and C D E such that A is not between B and C and E is not between C and D . Then the line AD intersects BE in a point F which is between A and D and between E and B .


```
lemma lemma-II-3b:
    fixes ABCDE
    assumes btw A B C ᄀin-line A D C btw C D E
    shows }\exists\mathrm{ F. btw A F D ^ btw E F B
proof -
    have assmsABCDE: lemma-II-3a-assms A B C DE
        using assms II-1a II-3 lemma-I-2 by (smt(verit))
    then obtain F where oF: in-line A FD\wedge btw E FB
        using lemma-II-3a[of A B CDE] by auto
    have assmsEDCBA: lemma-II-3a-assms E D C B A
        using assms II-1a II-1b II-3 lemma-I-2 by (smt(verit))
    then obtain G where oG: in-line E GB^btw AGD
        using lemma-II-3a[of E D CBA] by auto
    have F=G using assms(1,2) oF oG II-1a lemma-I-2 by (smt(verit, best))
    then show ?thesis using oF oG by auto
qed
```

abbreviation lemma-II-3b-assms $A B C D E \equiv$
btw $A B C \wedge \neg$ in-line $A D C \wedge b t w C D E$
Choose E not on the line AC, have F such that btw A E F, then G such that btw F C G and then apply lemma II-3 to obtain a D where btw A D C.

theorem theorem-II-1:
fixes $A C$
assumes $A \neq C$
shows $\exists D$. btw $A D C$

- Between any two points A and C of a straight line, there always exists at least one point D on the line AC which is between A and C .
proof -
obtain E where $o E$: \neg in-line $A E C$ using assms I-1-2 I-3b by metis
then obtain F where $o F$: btw A E F using assms I-1-2 II-2 by metis
then obtain G where $o G$: btw $F C G$
using oE I-1-2 II-1a II-2 by (metis (full-types))
then obtain D where btw $A D C$
using oE oF oG II-1a II-1b II-3 lemma-I-2 lemma-II-3a[of G C F E A]
by $(s m t(v e r i t))$
then show?thesis by auto
qed
Assuming that neither btw A B C nor btw A C B we prove that btw B A C. Choose D not on the line BC, have G such that btw A D G, then show that btw C E G and btw B F G, then btw B D E and finally btw B A C.

theorem theorem-II-2:
fixes $A B C$
assumes distinct3 $A B C$ in-line $A B C$
shows btw $B A C \vee b t w A B C \vee b t w A C B$
- Among three points A, B and C on a straight line there is one lying between the two others.
proof (rule disjCI)
assume $\neg(b t w A B C \vee t w A C B)$
then have i : $\neg b t w A B C \wedge \neg b t w B C A$ using $I I-1 b$ by blast
then obtain D where oD: \neg in-line $B D C$ using $\operatorname{assms}(1)$ I-1-2 $I-3 b$ by metis
then obtain G where $o G$: btw $A D G$ using assms I-1-2 II-2 by metis
obtain E where $o E$: in-line $B D E \wedge b t w C E G$
using assms i oD oG II-1a II-1b lemma-II-3a[of B C A D G] by blast
obtain F where oF: in-line $C D F \wedge b t w B F G$
using assms i oD oG II-1a II-1b lemma-II-3a[of C B A D G] by blast
then have $b B D E$: btw $B D E$
using oD oG oE of II-1a II-1b II-3 lemma-I-2 lemma-II-3a[of C E G F B]
by $(\operatorname{smt}(v e r i t))$
have in-line $G D A \wedge$ in-line $B A C$ using assms(2) lemma-II-1 o G by blast
then show btw B A C using assms(2) oD oE II-1a bBDE II-1b II-3 lemma-I-2 lemma-II-3a[of G C E D B] by (smt(verit))
qed
lemma lemma-II-4:
fixes $A B C$
assumes distinct3 A B C in-line A B C
shows $\exists D E F .\{D, E, F\}=\{A, B, C\} \wedge b t w D E F$
proof -
consider $(B A C)$ btw $B A C \mid(A B C)$ btw $A B C \mid(A C B) b t w A C B$
using assms theorem-II-2 by auto
then show ?thesis
proof cases
case $B A C$
obtain $D E F$ where $D=B \wedge E=A \wedge F=C$ by simp
then have $\{D, E, F\}=\{A, B, C\} \wedge b t w D E F$ using $B A C$ by auto
then show ?thesis by auto
next
case $A B C$
obtain $D E F$ where $D=A \wedge E=B \wedge F=C$ by simp
then have $\{D, E, F\}=\{A, B, C\} \wedge b t w D E F$ using $A B C$ by auto
then show ?thesis by auto
next
case $A C B$
obtain $D E F$ where $D=A \wedge E=C \wedge F=B$ by simp
then have $\{D, E, F\}=\{A, B, C\} \wedge b t w D E F$ using $A C B$ by auto
then show ?thesis by auto
qed
qed
Find E not on AD and F with btw C E F, then apply lemma II-3b to find G with btw A G E and btw F G B. With lemma II-3a, first have H with btw G H D and, finally, find $\mathrm{I}=\mathrm{C}$ with btw A I D.

lemma lemma-II-5a:
fixes $A B C D$
assumes btw $A B C$ btw $B C D$
shows btw $A C D$
— If btw A B C and btw B C D then btw A C D. By symmetry, lemma II- 5 below also shows btw A B D.
proof -
have $A B C D$: in-line4 $A B C D$
using assms II-1a lemma-I-2 by (smt(verit, best))
obtain E where $o E$: \neg in-line $A E B$
using assms I-1-2 I-3b II-1a by metis
then obtain F where oF: btw C E F using assms ABCD I-1-2 II-2 by metis
have lemma-II-3b-assms A B C E F using assms(1) oE oF II-1a lemma-I-2 by meson
then obtain G where $o G$: btw $A G E \wedge b t w F G B$ using lemma-II-3b[of A B CE F] by auto
have assmsFBGCD: lemma-II-3a-assms $F G B C D$ using $\operatorname{assms}(2)$ oE oF oG II-1a II-1b II-3 lemma-I-2 by (smt(verit))
then obtain H where $o H$:in-line $F C H \wedge b t w D H G$ using lemma-II-3a[of FGBCD] by auto
have assmsEAGHD: lemma-II-3a-assms E A G D using $A B C D$ oE oF oG oH II-1a II-1b II-3 lemma-I-2 by (smt(verit, best))
then obtain J where oJ: in-line E $H J \wedge b t w D J A$ using lemma-II-3a[of EAGHD] by auto
then have $J=C$
using assms(1) of oH II-1a assmsFBGCD assmsEAGHD lemma-I-2 by (smt(verit))
then show ?thesis using $o J$ using $I I-1 b$ by blast
qed
lemma lemma-II-5:
fixes $A B C D$
assumes btw $A B C$ btw $B C D$
shows btw $A B D \wedge b t w A C D$
using assms II-1b lemma-II-5a by blast
As for lemma II-5, find E not on AD and F with btw C E F, and G with btw A G E and btw F G B. With lemma II-3a, first have H with btw G H D and, finally, find $\mathrm{I}=\mathrm{C}$ with btw B I D. Then use lemma II-5 to show the second part of the conjunction.

lemma lemma-II-6:
fixes $A B C D$
assumes btw $A B C$ btw $A C D$
shows $b t w B C D \wedge b t w A B D$
- If btw A B C and btw A C D then btw B C D.
proof -
have $A B C D$: in-line4 $A B C D$
using assms II-1a lemma-I-2 by (smt(verit, best))
obtain E where $o E$: \neg in-line $A E B$ using assms I-1-2 I-3b II-1a by metis
then obtain F where $o F$: btw $C E F$ using $A B C D I I-2$ by metis
have lemma-II-3b-assms A B C E F using assms(1) oE oF II-1a lemma-I-2 by meson
then obtain G where $o G$: btw $A G E \wedge$ btw $F G B$ using lemma-II-3b[of A B CE F] by auto
have assmsEAGCD: lemma-II-3a-assms E G A C D using assms oE oF oG II-1a II-1b II-3 lemma-I-2 by (smt (verit))
then obtain H where $o H$: in-line $E C H \wedge b t w D H G$ using lemma-II-3a[of E G A C D] by auto
have assmsFBGHD: lemma-II-3a-assms FBGH using assms oE oF oG oH II-1a II-1b II-3 lemma-I-2 by (smt(verit))
then obtain I where $o I$: in-line F H I \wedge btw D I B using lemma-II-3a[of FBGHD by auto
then have $I=C$
using assms oF oH assmsFBGHD II-1a lemma-I-2 by (smt(verit))
then show ?thesis using assms oI II-1b lemma-II-5 by blast
qed
abbreviation $b t w_{4} A B C D \equiv b t w A B C \wedge b t w A B D \wedge b t w A C D \wedge b t w B C D$
theorem theorem-II-3:
fixes $A B C D$
assumes distinct4 $A B C D$ in-line $4 A B C D$
shows $\exists E F G H .\{E, F, G, H\}=\{A, B, C, D\} \wedge b t w 4 E F G H$
- For four points A B C D on a straight line can be arranged such that btw4 holds for this arrangement
proof -
obtain $K L M$ where $K L M:\{K, L, M\}=\{A, B, C\} \wedge b t w K L M$
using assms lemma-II-4 by metis
have $K \neq L$ using assms(1) KLM by (metis insert-iff singletonD)
then have distinct3 $K L D \wedge$ in-line $K L D$ using assms $K L M$ by auto
then consider ($D K L$) btw $D K L \mid(K D L)$ btw $K D L \mid(K L D)$ btw $K L D$ using assms theorem-II-2 by auto
then show ?thesis

```
    proof cases
    case DKL
    then have {D,K,L,M}={A,B,C,D}^btw{ D KLM
            using KLM lemma-II-5[of D KL M] lemma-II-6[of D KL M] by auto
    then show ?thesis by auto
    next
    case KDL
    then have {K,D,L,M}={A,B,C,D}^btw4 K DL M
        using KLM lemma-II-5[of K D L M] lemma-II-6[of K D L M] by auto
    then show ?thesis by auto
    next
    case KLD
    have K\not=M using assms(1) KLM by (metis insert-iff singletonD)
    then have distinct3 K M D ^ in-line K M D using assms KLM by auto
    then consider (DKM) btw D KM| (KDM) btw K D M| (KMD) btw K M D
        using assms KLM theorem-II-2 by auto
    then show ?thesis
    proof cases
        case DKM
        then have False using KLD KLM II-1a II-1b lemma-II-6 by metis
        then show ?thesis by auto
    next
        case KDM
        then have {K,L,D,M}={A,B,C,D}\wedgebtw{ KLD M
            using KLM KLD lemma-II-5[of KL D M] lemma-II-6[of KLD M] by auto
            then show ?thesis by auto
    next
        case KMD
        then have {K,L,M,D} ={A,B,C,D}^btw4 KL M D
            using KLM KLD lemma-II-5[of K L M D] lemma-II-6[of K L M D] by auto
            then show ?thesis by auto
    qed
    qed
qed
end
end
```

