
Geometry in Lean: a Report for

Mathematicians

Nicolò Cavalleri

Joint work with Anthony Bordg

31 July 2021

CICM 2021 - FMM

Overview

Geometry with proof assistants

Geometry with proof assistants might feel harder than other areas

of mathematics because:

• In proofs many details are skipped

• Sometimes proofs in books rely too much on intuition and are

not formal enough

• Geometrical objects often carry with them a lot of data

1

Lean’s progress in geometry

Differential geometry is just at the beginning, but Lean is doing

considerable progress.

• Isabelle has smooth manifolds, smooth maps, tangent and

cotangent spaces, spheres and projective spaces, but does not

have the tangent bundle.

• Coq does not appear to have any formalization of standard

differential geometry, although it has a stub of synthetic

differential geometry.

2

Lean’s progress in geometry

Lean at the moment has:

• Smooth manifolds with corners over arbitrary nondiscrete

normed fields

• Tangent spaces and tangent bundles

• Smooth maps and diffeomorphisms

• Partitions of unity

• Lie groups and an implementation of their Lie algebras (at

least in the real case)

• The sphere

• A primitive version of the Whitney embedding theorem

3

Lean’s future in geometry

In the next month or so Lean should have:

• Smooth fiber and vector bundles and their operations

• Cotangent bundle

• Vector fields and differential forms

• A newer definition of the Lie algebra of a Lie group

• Hopefully the definition of Riemannian manifolds

4

Smooth manifolds with corners

Smooth manifolds with corners

Manifolds in Lean have been formalized by Sébastien Gouëzel.

They are defined very generally: we have smooth manifolds with

corners over an arbitrary nondiscrete normed field.

5

Smooth manifolds with corners

Given a field k, a norm is a real valued map | · | : k→ R, that

respects the following conditions:

∀x y ∈ k, |xy | = |x ||y |

∀x y ∈ k, |x + y | ≤ |x |+ |y |

In the literature usually, such a map is called a valuation, but in

Lean this naming convention was used.

A normed field is nondiscrete if there exists a x ∈ k such that

|x | < 1

6

Smooth manifolds with corners

A model with corners is a map I : H → E where

• H is a topological space

• E is a normed vector space over k
• I is an embedding

• the image of I is nice, i.e. at each point of its image the

tangent cone spans a dense subset of the whole space

structure model_with_corners (k : Type*) [nondiscrete_normed_field k]
(E : Type*) [normed_group E] [normed_space k E]

(H : Type*) [topological_space H]

extends local_equiv H E :=

(source_eq : source = univ)

(unique_diff’ : unique_diff_on k to_local_equiv.target)

(continuous_to_fun : continuous to_fun . tactic.interactive.continuity’)

(continuous_inv_fun : continuous inv_fun . tactic.interactive.continuity’)

7

Smooth manifolds with corners

A charted space is a topological space M endowed with an atlas,

i.e. a set of local homeomorphisms taking values in a model space

H, called charts, such that the domains of the charts cover the

whole space M.

class charted_space (H : Type*) [topological_space H]

(M : Type*) [topological_space M] :=

(atlas [] : set (local_homeomorph M H))

(chart_at [] : M → local_homeomorph M H)

(mem_chart_source [] : ∀x, x ∈ (chart_at x).source)

(chart_mem_atlas [] : ∀x, chart_at x ∈ atlas)

8

Smooth manifolds with corners

A smooth manifold with corners is a charted space over H with a

model with corners I : H → E for some vector space E such that

the change of coordinates are smooth when read through I .

class smooth_manifold_with_corners {k : Type*} [nondiscrete_normed_field k]
{E : Type*} [normed_group E] [normed_space k E]

{H : Type*} [topological_space H] (I : model_with_corners k E H)

(M : Type*) [topological_space M] [charted_space H M] extends

has_groupoid M (times_cont_diff_groupoid ∞ I) : Prop

9

Lie groups

We can go on and get smooth monoids and Lie groups:

class lie_group {k : Type*} [nondiscrete_normed_field k]
{H : Type*} [topological_space H]

{E : Type*} [normed_group E] [normed_space k E]

(I : model_with_corners k E H)

(G : Type*) [group G] [topological_space G] [charted_space H G]

extends has_smooth_mul I G : Prop :=

(smooth_inv : smooth I I (λ a:G, a−1))

10

Lie groups

One problem we met in the formalization of Lie groups comes from

the fact that the maps

(id : V → V)× (id : W →W)

and

id : V ×W → V ×W

are not definitionally equal. This puts a constraint on the

definition of Lie groups in order to make them stable under

product: we have to allow them to have borders.

11

Lie groups

Two types that are equal by definition are said to be definitionally

equal. If you need a proper proof to see that they are equal, then

they are not definitionally equal, and Lean will not know they are

equal unless you tell it where to find the proof.

12

Vector bundles

Vector bundle

In standard mathematics, a vector bundle is given by

• two topological spaces Z and B

• a continuous surjection π : Z → B

• a structure of vector space on each fiber of the projection π

• a model vector space V

that satisfy

• for any p in B, there exists a neighborhood U of p such that

U × V and π−1(U) are homeomorphic through a map φ

• φ is such that π ◦ φ is the projection onto the first factor

• φ is a linear isomorphism fiberwise

13

Vector bundle

The first thing that comes to mind when reproducing this in Lean

is to have indeed two topological spaces Z and B:

variables {B : Type*} [topological_space B]

{Z : Type*} [topological_space Z]

and a projection proj : Z → B. How do we now put a vector space

structure on the fibers ({y // proj y = x})? We just quantify

instances:

variables [normed_field k] [∀ (x : B), add_comm_group {y // proj y = x}]
[∀ (x : B), module k {y // proj y = x}]

and hence, given a model fiber F , we can define trivializations

structure vector_bundle_trivialization

extends fiber_bundle_trivialization F proj :=

(linear : ∀ x ∈ base_set, is_linear_map k (λ y : proj −1’ {x}, (to_fun y).2))

14

Vector bundle

There is a big problem with this naif implementation: in the case

of the tangent bundle, the total space was defined as the product

B × E of the base space and of the model vector space for the

manifold.

In a case like this, the tangent space at a point and the fiber of the

projection at the same point

E ←→ proj
−1’ {x}

are not definitionally equal.

15

Vector bundle

The solution to this problem that we adopted was to force vector

bundles to be implemented with Σ types. Σ types are dependent

types that are analogous to products but where the second factor

can take values in different types depending on the value of the

first factor.

Virtually all vector bundles can be implemented through a Σ type.

16

Vector bundle

A product can be seen as a constant sigma type and indeed the

type underlying the tangent bundle was changed from B × E to

Σx : B,E .

The key idea is to have this type E : B → Type* that given a point

x : B gives us the fiber at that point E x.

So we start with the following data:

variables (R : Type*) {B : Type*} (F : Type*) (E : B → Type*)

[semiring R] [∀ x, add_comm_monoid (E x)] [∀ x, module R (E x)]

[topological_space F] [add_comm_monoid F] [module R F]

[topological_space (total_space E)] [topological_space B]

17

Vector bundle

The projection is defined automatically as sigma.fst, which is

another way to write λ x, x.1.

Note that it is still the case that proj −1’ {x} is not definitionally

equal to the fiber E x, but now that we have this strong constraint

on the form of a vector bundle we do not care anymore, because

we have a convenient way to talk about fibers that works well.

18

The end

Announcements

The paper Elements of Differential Geometry in Lean, a

Report for Mathematicians will soon be available on arXiv and

in the conference proceedings.

The paper contains more material and details, taking equality as a

leitmotiv to describe the difficulties met during the formalization

and how we overcame them.

19

	Overview
	Smooth manifolds with corners
	Vector bundles
	The end

