Local cohomology, Macaulay2, and formalization in commutative algebra

Emily Witt

May 22, 2023

Univeristy of Kansas

Table of contents

- 1. Local cohomology modules
- 2. Macaulay2 computer algebra system
- 3. Definitions and steps to formalization

Local cohomology modules

Cohomology theory introduced by Grothendieck in the 1960s

"Algebraic child of geometric parents"

Algebraic variety

Given polynomials $f_1,\ldots,f_m\in\mathbb{C}[x_1,\ldots,x_n]$,

$$\mathbb{V}(f_1, \dots, f_n) = \{ a \in \mathbb{C}^n \mid f_1(a) = f_2(a) = \dots = f_m(a) = 0 \}$$

3

Example

$$\mathbb{V}(x^2, xy) = \mathbb{V}(x^2) = \mathbb{V}(x)$$

Question

Can $V=\mathbb{V}(xz,yw,xw,yz)\subseteq\mathbb{C}^4$ be defined by three equations?

Observe

$$(0,1,1,0) \in \mathbb{V}(xz,yw,xw) \setminus V$$

5

Question

Can $V = \mathbb{V}(xz, yw, xw, yz) \subseteq \mathbb{C}^4$ be defined by three equations?

Observe

$$(\underline{xz+yw})xz-(\underline{xw})(yz)=(xz)^2$$

Hence if xz + yw = xw = 0, then $xz = 0 \implies yw = 0$

$$\implies V = \mathbb{V}(xz + yw, xw, yz)$$

6

$$V = \mathbb{V}(xz + yw, xw, yz)$$

Question

What about two equations?

Given polynomials $f_1, \ldots, f_m \in \mathbb{C}[x_1, \ldots, x_n] =: R$, the local cohomology modules with support in $I = \langle f_1, \ldots, f_m \rangle$ are R-modules

$$H_I^0(R), \ H_I^1(R), \ldots, \ H_I^i(R), \ \ldots$$

Given

- A Noetherian ring R,
- An ideal I of R, and
- An R-module M,

the local cohomology modules of M with support in I are R-modules

$$H_I^0(M), H_I^1(M), \ldots, H_I^i(M), \ldots$$

Theorem

$$H_I^m(R) \neq 0 \implies \mathbb{V}(I)$$
 cannot be defined by fewer than m equations

Proof IOU

Fact

$$H^3_{\langle xz,yw,xw,yz\rangle}(\mathbb{C}[x,y,z,w])\neq 0$$

Proof IOU

Question

Why "local"?

Rough motivation

Relative singular cohomology $H^{\bullet}(\mathcal{X},\mathcal{X}\setminus\mathcal{Z},\mathbb{Z})$ can be realized as local cohomology

Fact

$$H^3_{\langle xz,yw,xw,yz\rangle}(\mathbb{C}[x,y,z,w])\neq 0$$

Proof IOU

Second vanishing theorem

$$H_I^{\dim R-1}(R) \neq 0$$
 if and only if $\mathbb{V}(I) \setminus \underline{0}$ connected

Macaulay2 computer algebra system

Macaulay2

- Created by Dan Grayson and Mike Stillman
- Open source computer algebra system
- Commutative algebra and algebraic geometry
- Research tool
- Modern results implemented
- Frequent development workshops
- Packages published with documentation
- Journal of Software for Algebra and Geometry

- Noetherian ring R
- $I \subseteq R$ ideal
- R-module M

$$I \supseteq I^2 \supseteq I^3 \supseteq \cdots$$
 induces $R/I \twoheadleftarrow R/I^2 \twoheadleftarrow R/I^3 \twoheadleftarrow \cdots$

which induces direct limit system

$$\cdots \to \operatorname{Ext}_R^i(R/I^t, M) \to \operatorname{Ext}_R^i(R/I^{t+1}, M) \to \cdots$$

$$H_I^i(M) := \lim_{\longrightarrow} \operatorname{Ext}_R^i(R/I^t, M)$$

Definition 1

$$H_I^i(M) := \lim_{\longrightarrow} \operatorname{Ext}_R^i(R/I^t, M)$$

- Projective(/injective) resolutions
- Hom functor
- Ext functor
- Direct limits

Given $f \in R$,

$$K^{\bullet}(f;R): 0 \to R \stackrel{\cdot f}{\to} R \to 0$$

- Natural maps $K^{\bullet}(f^t; M) \to K^{\bullet}(f^{t+1}; M)$
- $K^{\bullet}(f; M) := K^{\bullet}(f; R) \otimes_R M$
- $K^{\bullet}(f_1,\ldots,f_m;M) := K^{\bullet}(f_1;M) \otimes_R \cdots \otimes_r K^{\bullet}(f_m;M)$

Definition 2

If
$$I = \langle f_1, \dots, f_m \rangle$$
, let $\underline{f}^t = f_1^t, \dots, f_m^t$
$$H_I^i(R) := H^i(\varinjlim K^{\bullet}(\underline{f}^t; M))$$

Tensor products of complexes

Definition 2

If
$$I = \langle f_1, \dots, f_m \rangle$$
, let $\underline{f}^t = f_1^t, \dots, f_m^t$

$$H_I^i(R) := H^i(\varinjlim_{\longrightarrow} K^{\bullet}(\underline{f}^t; M))$$

$$= \varinjlim_{\longrightarrow} H^i(K^{\bullet}(\underline{f}^t; M))$$

Definition 3

 $H_I^i(M)$ is *i*-th cohomology of

$$0 \to M \to \oplus M_{f_i} \to \oplus M_{f_i f_i} \to \cdots \to M_{f_1 \cdots f_n} \to 0$$

- Cohomology commutes with direct limits
- Direct limit of $M \stackrel{\cdot f}{\rightarrow} M \stackrel{\cdot f}{\rightarrow} M \rightarrow \cdots$ is M_f

Definition 3

 $H_I^i(M)$ is *i*-th cohomology of

$$0 \to M \to \oplus M_{f_i} \to \oplus M_{f_i f_i} \to \cdots \to M_{f_1 \cdots f_n} \to 0$$

$$\implies$$
 IOU

$$\Gamma_I(M) := \{ x \in M \mid I^N \cdot x = 0 \text{ for some } N > 0 \}$$

Definition 0

$$H_I^i(M)$$
 is the right derived functor of Γ_I

Injective resolutions