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Local cohomology modules



Local cohomology

Cohomology theory introduced by Grothendieck in the 1960s

“Algebraic child of geometric parents”



Algebraic variety

Given polynomials f, ..., € Clxq, ..., x4,

V(h,....f,) ={acC"| f(a) = Ha) = = fm(a) = 0}



Example
V(x?,xy) = V(x?) = V()



Question

Can V = V(xz, yw, xw, yz) C C* be defined by three equations?

Observe

(0,1,1,0) € V(xz, yw, xw) \ V



Question

Can V = V(xz, yw, xw, yz) C C* be defined by three equations?

Observe

(xz + yw)xz — (xw)(yz) = (x2)?

Hence if xz 4+ yw =xw =0, then x2=0 = yw =0

= V =V(xz + yw, xw, yz)



V =V(xz + yw, xw, yz)

Question

What about two equations?



Local cohomology

Given polynomials fi,...,f, € Clxy,...,x] = R,

the local cohomology modules with support in I = (f1, ..., frn) are
R-modules

H(R), H}(R),..., HI(R), ...



Local cohomology

Given

o A Noetherian ring R,
e An ideal | of R, and
e An R-module M,
the local cohomology modules of M with support in [ are

R-modules
HO(M), HE(M), ..., Hi(M), ...



Local cohomology

Theorem

H"(R) #0 = V(/) cannot be defined by fewer than
m equations

Proof 10U

Fact

H<3xz,yw,xw,yz>((c[xa Yz, W]) 7é 0

Proof 10U
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Local cohomology

Question

Why “local”?

Rough motivation

Relative singular cohomology H®(X, X \ Z,7Z) can be realized as
local cohomology
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Local cohomology

Fact
H3 >((C[X,y,Z, W])#O

(xz,yw,xw,yz

Proof 10U

Second vanishing theorem

HAmR=1(RY =£ 0 if and only if V(/)\ O connected
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Macaulay2 computer algebra system




Macaulay2

e Created by Dan Grayson and Mike Stillman
e Open source computer algebra system

e Commutative algebra and algebraic geometry
e Research tool

e Modern results implemented

e Frequent development workshops

e Packages published with documentation

e Journal of Software for Algebra and Geometry
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Definitions and steps to
formalization




Definitions and steps to formalization

e Noetherian ring R
e /| C R ideal
e R-module M

212D 2. induces R/l « R/I? « R/I3 « --.

which induces direct limit system

oo = Exth(R/IT, M) — Extip(R/I™™ M) — - -

i [ H i t
Hi(M) = lim Extg(R/I", M)
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Definitions and steps to formalization

Definition 1
i BT i t
Hi(M) = lim Extg(R/I", M)
e Projective(/injective) resolutions
e Hom functor
e Ext functor
e Direct limits

ii5)



Definitions and steps to formalization

Given f € R,
K(f;R): 0>R5R=0

e Natural maps K*(ft; M) — K*(ft+1; M)
° K'(f; M) — K‘(f; R) ®r M
O K.(fla-- ) fm; M) = K.(fl; M) QR D, KO(fm; M)
Definition 2
IF 1= (i, f), let £E = £, £

m

Hi(R) = H'(lim K*(£*; M)

e Tensor products of complexes
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Definitions and steps to formalization

Definition 2
If I =(f,...,fm), Ietf:ff,...,ft

m

Hi(R) = Hi(lim K*(£%; M))

= lim H'(K*(ft; M))

—
Definition 3
Hi(M) is i-th cohomology of

0—>M—@&Mg — OMeg — - = Mg..,, = 0

e Cohomology commutes with direct limits

e Direct limit of M -5 M5 M = . is My o



Definitions and steps to formalization

Definition 3
Hi(M) is i-th cohomology of

0—>M—&Mg — OMeg — - = Mg, = 0

— |0U
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Definitions and steps to formalization

M(M):={xe M]|IV. x=0 for some N > 0}

Definition 0

Hj(M) is the right derived functor of I,

e Injective resolutions
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