Topological properties of \mathbb{Z}_p and \mathbb{Q}_p and Euclidean models

Samuel Trautwein, Esther Röder, Giorgio Barozzi

November 13, 2011

$\ \ \, {\bf 1} \quad {\bf Topology \ of \ } {\mathbb Q}_p \ {\bf vs \ Topology \ of \ } {\mathbb R}$

Both \mathbb{R} and \mathbb{Q}_p are normed fields and complete metric spaces, both are completions of \mathbb{Q} . Since \mathbb{Q} is dense in both of them, they are separable. An open ball in \mathbb{Q}_p with center *a* and radius *r* is denoted by

 $B_{(a,r)} := \{ x \in \mathbb{Q}_p \mid ||a - x||_p < r \}$

since

$$\{\|x - y\|_p \mid x, y \in \mathbb{Q}_p\} = \{p^n \mid n \in \mathbb{Z}\} \cup \{0\}$$

we only need to consider the balls of radi $r = p^n$, where $n \in \mathbb{Z}$. The sphere with center a and radius r is denoted by

$$S_{(a,r)} = \{ x \in \mathbb{Q}_p \mid ||x - a||_p = r \}$$

Proposition 1.1. The Sphere $S_{(a,r)}$ is an open set in \mathbb{Q}_p .

Proof. Let $x \in S_{(a,r)}$, choose $\varepsilon < r$. We now show that $B_{(x,\varepsilon)} \subset S_{(a,r)}$. Let $y \in B_{(x,\varepsilon)} \Rightarrow ||x - y||_p < ||x - a||_p = r$ and by Proposition 1.15 (Katok) follows $||y - a||_p = ||x - a||_p = r$ which means that $y \in S_{(a,r)}$. Since x and y were arbitrary it follows that

$$S_{(a,r)} = \bigcup_{x \in S_{(a,r)}} B_{(x,\varepsilon)}$$

Therefore the sphere $S_{(a,r)}$ is a union of open sets, so it is open itself.

Proposition 1.2. Open balls in \mathbb{Q}_p are open and closed.

Proof. $B_{(a,r)}$ is closed $\Leftrightarrow B_{(a,r)}{}^c = \{x \in \mathbb{Q}_p \mid ||x-a||_p \ge r\}$ is open. We know

$$B_{(a,r)}{}^c = S_{(a,r)} \cup D$$

where $D := \{x \in \mathbb{Q}_p \mid ||x - a||_p > r\}$

Because of the last Proposition it sufficies to show that D is open. So, let $y \in D$, $||y - a||_p =: r_1 > r$ We claim: $B_{(y,r_1-r)} \subset D$. Otherwise there exists an $x \in B_{(y,r_1-r)}$ such that $||x - a||_p \leq r$ but using the triangle inequality, leads to

$$r_1 = \|y - a\|_p = \|y - x + x - a\|_p \le \|y - x\|_p + \|x - a\|_p < r + (r_1 - r) = r$$

which is a contradiction to our assumption $r_1 < r$. Therefore, $B_{(y,r_1-r)} \subset D$, so $D = \bigcup_{y \in D} B_{(y,r_1-r)}$ which means that D is open.

Hence, since $B_{(a,r)}$ is closed, the open balls in \mathbb{Q}_p have no boundary and in particular $S_{(a,r)}$ is not the boundary of $B_{(a,r)}$. In addition we get that

$$\overline{B}_{(a,p^n)} \neq \overline{B_{(a,p^n)}} = B_{(a,p^n)}$$

in fact we have

$$\overline{B}_{(a,p^n)} = \{ x \in \mathbb{Q}_p \mid ||x - a||_p \le p^n \} = \{ x \in \mathbb{Q}_p \mid ||x - a||_p < p^{n+1} \} = B_{(a,p^{n+1})}$$

Proposition 1.3. Every point of a ball is its center, i.e.

$$\forall b \in B_{(a,r)}$$
 we have $B_{(a,r)} = B_{(b,r)}$

Proposition 1.4. Two balls in \mathbb{Q}_p have a non empty intersection if and only if one is contained in the other, i.e.

$$B_{(a,r)} \cap B_{(b,s)} \neq \emptyset \Leftrightarrow B_{(a,r)} \subset B_{(b,s)} \text{ or } B_{(b,s)} \subset B_{(a,r)}$$

Proof. \Leftarrow is clear

 \Rightarrow let $y \in B_{(a,r)} \cap B_{(b,s)}$ w.l.o.g assume $r \leq s$, by the Proposition before we have

$$B_{(a,r)} = B_{(y,r)} \subset B_{(y,s)} = B_{(b,s)}$$

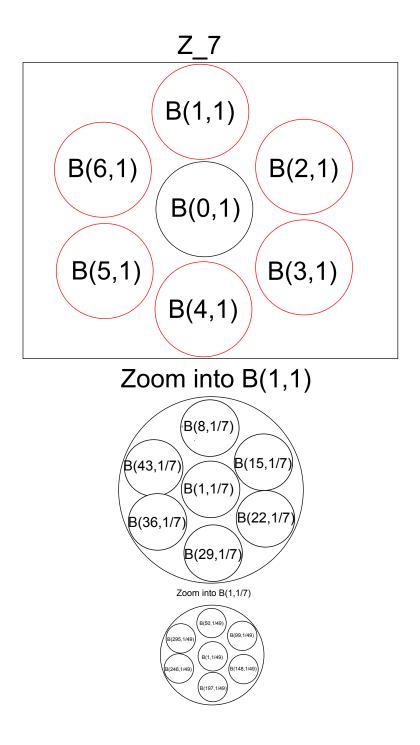


Figure 1: Z_7

Taking Z_7 as example we see that $S_{(0,1)}=\bigcup_{x\in\{1,\dots,6\}}B_{(x,1)}$ in addition it holds that

$$\forall x, y \in \mathbb{Z}_7 \text{ s.t. } x \in y + 7^k \mathbb{Z}_7 \text{ we have } B(x, 7^{-(k-1)}) = B(y, 7^{-(k-1)})$$

let $x \in \mathbb{Z}_7$ be arbitrary, $k \in \mathbb{N}$ then we can observe that

$$B_{(x,7^{-k})} = \bigcup_{j \in \{0,\dots,6\}} B(x+j*7^{k+1},7^{-(k+1)})$$

We can generalize this :

Let p be a prime number, then we have that $S_{(0,1)} = \bigcup_{x \in \{1,\dots,p-1\}} B_{(x,1)}$ in addition we have that

$$\forall x, y \in Z_p \text{ s.t. } x \in y + 7^k Z_p \text{ we have } B(x, p^{-(k-1)}) = B(y, p^{-(k-1)})$$

and for an arbitrary element $x \in Z_p$, for all $k \in \mathbb{N}$ it holds that

$$B_{(x,p^{-k})} = \bigcup_{j \in \{0,\dots,p-1\}} B(x+j*p^{k+1},p^{-(k+1)})$$

Proposition 1.5. The sphere $S_{(a,r)}$ is open and closed

Proof. We have already shown that every sphere is open. We observe that $S_{(a,r)} = \overline{B}_{(a,r)} \cap B_{(a,r)}{}^c$ which is closed because it is a finite intersection of closed subsets.

Proposition 1.6. The set of all balls in \mathbb{Q}_p is countable.

Proof. Let $B_{(a,r)}$ be an arbitrary ball in \mathbb{Q}_p . We know that $r = p^{-s}$ for some $s \in \mathbb{Z}$. Since $a \in \mathbb{Q}_p$ there exist $m \in (\mathbb{Z})$ s.t. $a_m \neq 0$ and $a = \sum_{n=m}^{\infty} a_n p^n$. Let $a_0 := \sum_{n=m}^{s} a_n p^n$, obviously $a_0 \in \mathbb{Q}$ and we have $||a - a_0||_p < p^{-s}$ which means that $a_0 \in B_{(a,p^{-s})}$. As before, we have $B_{(a,r)} = B_{(a_0,p^{-s})}$.

Therefore both, the set of radii and the set of centers of balls in \mathbb{Q}_p , are countable which leads to the fact that the set of balls in \mathbb{Q}_p is countable. \Box

Theorem 1.7. The set \mathbb{Z}_p is compact and the space \mathbb{Q}_p is locally compact.

Proof. We know that \mathbb{Z}_p is sequentially compact, since it is a metric space it is therefore compact. Because $\mathbb{Z}_p = \overline{B}_{(0,1)} = B_{(0,p)}$ it follows that every ball in \mathbb{Q}_p is compact. So \mathbb{Q}_p is a locally compact space.

Theorem 1.8. \mathbb{N} is dense in \mathbb{Z}_p .

Proof. let $x = \ldots a_2 a_1 a_0 \in \mathbb{Z}_p$ for all $n \in \mathbb{N}$ define

$$x_n := \dots 00a_n a_{n-1} \dots a_0 = \sum_{i=0}^n a_i p^i \in \mathbb{N}$$

we obtain $||x - x_n||_p < p^{-n}$

Theorem 1.9. The space \mathbb{Q}_p is totally disconnected.

Proof. We show that for an arbitrary element $a \in \mathbb{Q}_p$ the connected component C_a of a is equal to $\{a\}$. Let a be arbitrary and suppose $C_a \supseteq \{a\}$ therefore there exist $n \in \mathbb{N}$ such that $B_{(a,p^{-n})} \cap C_a \neq C_a$. But then we have

$$C_a = (B_{(a,p^{-n})} \cap C_a) \cup ((\mathbb{Q}_p \setminus B_{(a,p^{-n})}) \cap C_a)$$

which is the disjoint union of two open subsets. Therefore C_a is not connected, which is a contradiction.

2 Cantor Set Models of \mathbb{Z}_p

We start with a repetition of the classical Cantor set $C \subset [0, 1]$ and explain its basic properties. We will observe that \mathbb{Z}_p is homeomorphic to C for every prime number p. In the case p = 2 there is a natural homeomorphism $\mathbb{Z}_2 \cong C$ using the triadic expansion of real numbers. In the case p > 2 there is a natural homeomorphism $C^{(p)} \cong \mathbb{Z}_p$, where $C^{(p)} \subset [0, 1]$ is obtained by a similar construction as the one of the classical Cantor set C.

This allows us to reduce the initial claim that every \mathbb{Z}_p is homeomorphic to C to the statement that $C^{(p)}$ and C are homeomorphic.

Definition 2.1 (Cantor Set). Let $A = \bigcup_{k \in \mathbb{Z}} [2k, 2k+1]$ and $C_0 := [0, 1]$. We define by induction

$$C_n := C_{n-1} \cap \left(3^{-n}A\right).$$

Then the **Cantor set** \mathbf{C} is given by

$$C := \bigcap_{n \ge 0} C_n$$

Each set C_n consists of 2^n closed intervals of length 3^{-n} and C_{n+1} is obtained from C_n by removing the middle third in of each of these intervals.

Lemma 2.1 (Properties of the Cantor Set C). The Cantor set $C \subset [0, 1]$ satisfies the following:

- 1. C is compact.
- 2. The Cantor set has vanishing Lebesgue measure, i.e. |C| = 0 where $|\cdot|$ denotes the Lebesgue measure.
- 3. The Cantor set is perfect (see definition below).
- 4. The Cantor set is uncountable.

Definition 2.2 (Perfect Set). A closed set *E* is called **perfect**, if for every $x \in E$ there exists a sequence $(x_n) \subset E - \{x\}$ converging to *x*.

Proof. C is clearly bounded and closed, since each C_n is closed, and therefore C is compact.

Since C_n is the union of 2^n intervals of length 3^{-n} we have $|C_n| = (2/3)^n$ and since $C_n \supset C_{n+1}$ for all n we conclude

$$|C| = \lim_{n \to \infty} |C_n| = \lim_{n \to \infty} \left(\frac{2}{3}\right)^n = 0$$

For the third statement note that $\partial C_n \subset C$. Now pick $x \in C$ arbitrary. We can choose $x_n \in \partial C_n - \{x\}$ such that $|x_n - x| \leq 3^{-n}$ and therefore $x_n \to x$.

We show that the third statement implies the last one. So let $E \subset \mathbb{R}$ be any nonempty perfect subset and assume $E = \{e_i\}_{i=1}^{\infty}$ is countable. Define $E_n := E - \{e_n\}$. Choose $x_1 \in E_1$ and let I_1 be a finite open interval such that $x_1 \in I_1$ and $e_1 \notin \overline{I}_1$. Since E is perfect we have $I_1 \cap E_2 \neq \emptyset$. Then pick $x_2 \in I_2 \cap E_2$ and let I_2 be an open interval such that $x_2 \in I_2 \subset I_1$ and $e_2 \notin \overline{I}_2$. Continuing in this way we obtain a decreasing sequence (I_n) of intervals such that $e_n \notin \overline{I}_n$. On the other hand we observe

$$\bigcap_{n\geq 1} E \cap \overline{I}_n \neq \emptyset$$

since all sets $E \cap I_n$ are compact and nonempty. This contradicts our assumption that E is countable.

Definition 2.3 (*d*-Adic Expansion). Let $d \in \mathbb{Z}^+$ and $x \in [0, 1]$. A *d*-adic expansion of x is given by

$$x = \sum_{n=1}^{\infty} x_n d^{-n}$$

where $x_n \in \{0, 1, \ldots, d-1\}$. It is easy to check that every $x \in [0, 1]$ admits a unique *d*-adic expansion, when we enforce the digit sequence $\{x_k\}$ to have not finite support. We denote the *d*-adic expansion by $[x]_d = 0, x_1 x_2 \dots$

For d = 10 this leads to the usual decimal expansion of real numbers and we have for example $0.1 = 0.0999999 \dots$ By definition $[1/10]_{10}$ is the second variant.

Lemma 2.2 (Characterization of C via triadic expansion). Let $x \in [0, 1]$ and $[x]_3 = 0, x_1x_2...$ be the triadic expansion of x. Then it holds $x \in C$ if and only if $x_n \in \{0, 2\}$ for every n.

Proof. By induction on n, it follows immediately from the definitions that $x \in C_n$ if and only if $x_1, \ldots, x_n \in \{0, 2\}$.

Theorem 2.3 (Homeomorphism of \mathbb{Z}_2 and C). \mathbb{Z}_2 equipped with the 2-adic norm $|\cdot|_2$ is homeomorphic to C equipped with the absolute value as norm. An explicit homeomorphism is given by

$$\Phi: \mathbb{Z}_2 \longrightarrow C, \qquad \sum_{n=0}^{\infty} a_n 2^n \mapsto \sum_{n=0}^{\infty} (2a_n) 3^{-(n+1)}.$$

Proof. Clearly, Φ is bijective. Let $x = \sum x_n 2^n$, $y = \sum y_n 2^n \in \mathbb{Z}_2$. Then it holds

$$|x - y|_2 \le 2^{-k} \Leftrightarrow x_n = y_n \text{ for } n \le k$$

 $\Leftrightarrow \text{ The first } k \text{ digits in } [\Phi(x)]_3 \text{ and } [\Phi(y)]_3 \text{ are equal}$
 $\Leftrightarrow |\Phi(x) - \Phi(y)| \le 3^{-k}$

This shows that Φ is a homeomorphism.

Now we will extend our discussion to the case of \mathbb{Z}_p for a prime number p > 2. The results will follow completely analog to the case p = 2 and therefore our presentation will be briefer.

Definition 2.4 (Cantor Set $C^{(p)}$). We define a variant of the classical Cantor set. Let p be a prime number, $A = \bigcup_{k \in \mathbb{Z}} [2k, 2k + 1]$ and $C_0^{(p)} := [0, 1]$. We define inductively

$$C_n^{(p)} := C_{n-1}^{(p)} \cap \left((2p-1)^{-n} A \right)$$

and

$$C^{(p)} := \bigcap_{n \ge 0} C_n^{(p)}.$$

The set $C_n^{(p)}$ consists of $[(2p-1)/2]^n$ disjoint open intervals of length $(2p-1)^{-n}$ and $C_{n+1}^{(p)}$ is obtained by subdividing each of these intervals into 2p-1 equal subintervals and then deleting every second open interval.

Lemma 2.4 (Properties of $C^{(p)}$). The Cantor set $C^{(p)}$ satisfies the following properties:

- 1. $C^{(p)}$ is a compact and perfect subset of the real line with vanishing Lebesgue measure. In particular $C^{(p)}$ is uncountable.
- 2. $C^{(p)}$ contains all $x \in [0,1]$ whose (2p-1)-adic expansion $[x]_{2p-1} = 0, x_1 x_2 x_3 \dots$ contains only even digits $\{x_n\}$.

Proof. The proof is completely analogue to the case p = 2.

Theorem 2.5 (Homeomorphism of \mathbb{Z}_p and $C^{(p)}$). \mathbb{Z}_p equipped with the p-adic norm $|\cdot|_p$ is homeomorphic to $C^{(p)}$ equipped with the absolute value as norm. An explicit homeomorphism is given by

$$\Phi_p : \mathbb{Z}_p \longrightarrow C, \qquad \sum_{n=0}^{\infty} a_n p^n \mapsto \sum_{n=0}^{\infty} (2a_n)(2p-1)^{-(n+1)}.$$

Proof. The proof is the same as for p = 2. It is clear that Φ_p is bijective. Let $x = \sum x_n p^n, y = \sum y_n p^n \in \mathbb{Z}_p$. Then it holds

$$|x - y|_2 \le p^{-k} \Leftrightarrow x_n = y_n \text{ for } n \le k$$

$$\Leftrightarrow \text{ The first } k \text{ digits in } [\Phi(x)]_{2p-1} \text{ and } [\Phi(y)]_{2p-1} \text{ are equal}$$

$$\Leftrightarrow |\Phi(x) - \Phi(y)| \le (2p-1)^{-k}$$

This shows that Φ_p is a homeomorphism.

Theorem 2.6 (Topological equivalence of the spaces \mathbb{Z}_p). The spaces \mathbb{Z}_2 and \mathbb{Z}_p are homeomorphic

Recall that all spaces \mathbb{Z}_p are totally disconnected. Consequently, the classical Cantor set C and its variants $C^{(p)}$ are totally disconnected and therefore the theorem follows from the following Lemma.

Lemma 2.7. Any compact perfect totally disconnected subset E of the real line is homeomorphic to the Cantor set C

Proof. Let $m := \inf E$ and $M := \sup E$. We are going to define a function $F : [m, M] \to [0, 1]$ such that F maps E homeomorphic on C. We will construct this function on the complements $[m, M] \setminus E \to [0, 1] \setminus C$ first, since the complements are both countable unions of open intervals and therefore much less complicated then the sets E and C themselves. Since both complements are dense we can extend this map by continuity to a map $F : [m, M] \to [0, 1]$.

The connected subsets of the real line are precisely the intervals. Therefore $[m, M] \setminus E$ is the disjoint union of infinite but countably many open intervals (they are the connected components of $[m, M] \setminus E$) and the same is true for $[0, 1] \setminus C$. Let \mathcal{I} be the collection of the intervals whose union is $[m, M] \setminus E$ and \mathcal{J} be the collection whose union is $[0, 1] \setminus C$. We start with the construction of an appropriate bijection

$$\Theta:\mathcal{I}\to\mathcal{J}.$$

Let $I_1 \in \mathcal{I}$ be an interval of maximal length and define $\Theta(I_1) = (1/3, 2/3)$. Next choose intervals I_{21} and I_{22} to the left and right of I_1 such that they have maximal length and define $\Theta(I_{21}) = (1/9, 2/9)$ and $\Theta(I_{22}) = (7/9, 8/9)$. Continuing this process defines Θ on the whole set \mathcal{I} , since \mathcal{I} contains only finitely many sets of length greater then some fixed $\epsilon > 0$ and since any two intervals in \mathcal{I} or in \mathcal{J} have different endpoints (as E and C are perfect). It is clear from the construction that Θ is bijective and order preserving in the sense that if I is to the left of I', then $\Theta(I)$ is to the left of $\Theta(I')$.

Now define F as follows: For $I \in \mathcal{I}$ let $F|_I : I \to \Theta(I)$ be the unique linear increasing map, which maps I bijectively onto $\Theta(I)$. Since E and C are totally disconnected, they are nowhere dense and thus there exists at most one continuation $F : [m, M] \to [0, 1]$. Now it follows from our construction of Θ that a well-defined continuation $F : [m, M] \to [0, 1]$ is given by

$$F(x) = \sup\{ F(y) : y \notin E, y \le x \}$$

Let $f := F|_E$. Then $f : E \to C$ is a monotone increasing, continuous bijection and we need to show that $g := f^{-1}$ is continuous. Note that g is again monotone increasing. Let $x \in C$ and $x_n \to x$ converge to x. This sequence contains a monotone subsequence and thus we may assume wlog that the sequence x_n itself is monotone increasing. Clearly,

$$y := \lim_{n \to \infty} g(x_n) = \sup_{n \ge 1} g(x_n) \le g(x)$$

Now assume y < g(x). Since E is closed, we have $y \in E$ and $g^{-1}(y) < x$. This implies that $y < x_n$ for large n and by monotonicity $y < g(x_n)$. This contradicts the definition of y and shows continuity of g.

3 Euclidean models of \mathbb{Z}_p

3.1 Linear models of \mathbb{Z}_p

Let us choose $b \in (1, \infty)$ and and use it as numeration base in [0, 1], i.e. we write

$$[0,1] \ni a = \frac{a_0}{b} + \frac{a_1}{b^2} + \ldots = \sum_{i=0}^{\infty} \frac{a_i}{b^{i+1}}$$

with $0 \le a_i < b, a_i \in \mathbb{N}$. We consider

$$\psi := \psi_{b,p} : \mathbb{Z}_p \to [0,1] \qquad \sum_{i=0}^{\infty} a_i p^i \mapsto \alpha \sum_{i=0}^{\infty} \frac{a_i}{b^{i+1}} \tag{1}$$

with $\alpha \in \mathbb{R}^+$ chosen such that $\max_{\zeta \in \mathbb{Z}_p} \psi(\zeta) = 1$.

Proposition 3.1. Let $\psi : \mathbb{Z}_p \to [0,1]$ be defined as in (1) with b > 1 and let p be a prime number. Then

1.

$$\alpha = \frac{b-1}{p-1}$$

2. ψ and its inverse are always continuous;

- 3. ψ is injective if b > p (and in this case it is a homeomorphism onto its image $\psi(\mathbb{Z}_p)$).
- *Proof.* 1. Since the a_i 's are all positive numbers, $\max_{\zeta \in \mathbb{Z}_p} \psi(\zeta)$ is attained when these are maximal (thus $a_i = p - 1$ for all $i \in \mathbb{N}$). So take $\zeta = \sum_{i=0}^{\infty} (p-1)p^i = -1$. Then

$$1 = \alpha(p-1)\sum_{i=0}^{\infty} \frac{1}{b^{i+1}} = \alpha(p-1)\left(\frac{1}{1-\frac{1}{b}} - 1\right) = \alpha\frac{p-1}{b-1}$$

and thus the claim follows.

2. This is analogous to the proof of Theorem 2.6. Let $x = \sum_{n=0}^{\infty} x_n p^i$ and $y = \sum_{n=0}^{\infty} y_n p^i \in \mathbb{Z}_p$. Then

$$|x - y|_p \le p^{-k} \Leftrightarrow x_n = y_n \text{ for } n \le k$$

$$\Leftrightarrow \text{ The first } k \text{ digits in } [\psi(x)]_b \text{ and } [\psi(y)]_b \text{ are equal}$$

$$\Leftrightarrow |\psi(x) - \psi(y)| \le b^{-k}$$

and since both $b, p \ge 1$ we have always continuity for both maps.

3. We will have injectivity if $\sum_{i>k} (p-1)p^i$, $p^k \in \mathbb{Z}_p$ have distinct images in [0,1] with $\psi(\sum_{i>k} (p-1)p^i) < \psi(p^k)$.

$$\begin{split} \psi(\sum_{i>k}(p-1)p^i) &= \frac{b-1}{p-1}\sum_{i=k+1}^{\infty}\frac{p-1}{b^{i+1}} = (b-1)(\sum_{i=0}^{\infty}\frac{1}{b^i} - \sum_{i=0}^{k+2}\frac{1}{b^i}) = \\ &= (b-1)\left(\frac{1}{1-\frac{1}{b}} - \frac{1-\frac{1}{b^{k+2}}}{1-\frac{1}{b}}\right) = \\ &= (b-1)\frac{b}{b-1}(1-\frac{b^{k+2}-1}{b^{k+2}}) = \frac{b}{b^{k+2}} = b^{-k-1} \\ \psi(p^k) &= \frac{b-1}{p-1}\frac{1}{b^{k+1}} = \frac{b-1}{p-1}b^{-k-1} \end{split}$$

Thus we must have $\frac{b-1}{p-1} > 1$, i.e. b > p.

Remark. As seen in the previous section, the Cantor set C^p corresponds to $\psi_{2p-1,p}$.

When b > p, ψ is thus an homeomorphism and we get a subset of [0, 1] homeomorphic to \mathbb{Z}_p .

Definition 3.1. A subset A of \mathbb{R}^n homeomorphic to \mathbb{Z}_p is called **Euclidean** model of \mathbb{Z}_p . In the special case n = 1, we call such subsets linear models of \mathbb{Z}_p .

Definition 3.2. A **fractal** is a self-similar geometric object. In other words, it can be split into parts, each of which is a reduced-size copy of the whole.

Definition 3.3. Informally speaking, the self-similarity dimension of a fractal is the statistical quantity that indicates how it appears to fill the space. More explicitly, if we take an object with euclidean dimension d and reduce its linear size by $\frac{1}{l}$ in each spacial dimension, then it takes $N = l^d$ self-similar objects to cover the original one. Thus

$$d = \log_l(N) = \frac{\ln(N)}{\ln(l)}.$$

Remark. Let us obtain this definition a little bit more formally: Let A be a d-dimensional fractal and let E(A) denote its extent in the space (which is intuitively clear). Then E(A) is a homogeneous function of degree d and A is the union of N translates of $\frac{1}{l}A$. Thus we get

$$E(A) = N \cdot E(\frac{1}{l}A) = \frac{N}{l^d}E(A).$$

- *Remark.* 1. In the case of a linear model of \mathbb{Z}_p (i.e. when b > p), we have defacto a fractal with l = b and N = p. As one can imagine, $0 < d = \frac{\ln(p)}{\ln(b)} < 1$.
 - 2. Note that

$$b \searrow p \quad \Rightarrow \quad d \nearrow 1.$$

Example 3.1. 1. The self-similarity dimension is a generalization of the usual dimension! Let A for example be a cube. If we reduce its linear size by $\frac{1}{l}$ in each spacial dimension then we obviously need l^3 little cubes to cover the original one. Thus

$$d = \frac{\ln(l^3)}{\ln(l)} = 3$$

2. Let us take the Cantor set $C^{(p)}$ as in the previous section. Then

$$d = \frac{\ln(p)}{\ln(2p-1)}.$$

Note in particular that the usual Cantor set $C = C^{(2)}$ has dimension

$$d = \frac{\ln(2)}{\ln(3)} = 0.63.$$

3.2 Higher-dimensional Euclidean models of \mathbb{Z}_p

We want to generalize the map ψ as follows: in order to obtain an image in a general space V, we first need to map the digits of a p-adic number to some points in the space. Now the generalization becomes quite clear, since we will map this points in V under the map ψ .

In this subsection we will see how α and b has to be chosen to get a good generalization Ψ of the map ψ . But first let us define rigorously the map Ψ :

Definition 3.4. 1. A finitely dimensional inner product space V over \mathbb{R} is called **Euclidean space**.

2. Let V be an Euclidean space and let $\nu : S := \{0, 1, \dots, p-1\} \hookrightarrow V$ be an injective map. Then define $V \supset \Sigma := \nu(S)$ and

$$\Psi := \Psi_{\nu,b,p} : \mathbb{Z}_p \to V \qquad \sum_{i=0}^{\infty} a_i p^i \mapsto \alpha \sum_{i=0}^{\infty} \frac{\nu(a_i)}{b^{i+1}} \tag{2}$$

We already know we can express \mathbb{Z}_p in a disjoint union as following:

$$\mathbb{Z}_p = \biguplus_{a \in S} a + p\mathbb{Z}_p.$$

Let us see what is the image of \mathbb{Z}_p under Ψ :

$$\Psi(\mathbb{Z}_p) = \Psi(\biguplus_{a \in S} a + p\mathbb{Z}_p) = \bigcup_{a \in S} \Psi(a) + \Psi(p\mathbb{Z}_p) = \bigcup_{v \in \Sigma} \frac{\alpha v}{b} + \frac{1}{b} \Psi(\mathbb{Z}_p)$$
(3)

since multiply by p corresponds (under Ψ) to move the dot on the right in the numeration base b. Note the union is no more necessarily disjoint, but for benough large it will be. In this case $\Psi(\mathbb{Z}_p)$ is injective and hence a homeomorphism (since continuity of Ψ and its inverse are obvious). Furthermore it is the union of disjoint self-similar images (i.e. a fractal) and hence we have an iterative construction of the spatial model. *Remark.* As in the case for linear models, we need a good choice for α , in the sense that we want the smallest α such that all elements in Σ are reached by $\Psi(\mathbb{Z}_p)$.

Lemma 3.2. Choosing $\alpha = b - 1$, $\Psi(\mathbb{Z}_p)$ remains in the convex hull $\overline{\Sigma}$ of Σ and hence it is the desired α .

Proof. Let $\lambda: V \to \mathbb{R}$ be an affine linear functional such that

$$\lambda \leq 1$$
 on Σ and $\lambda(v) = 1$ for some $v \in \Sigma$.

Then

$$\lambda(\alpha \sum_{i=0}^{\infty} \frac{\nu(a_i)}{b^{i+1}}) \le \alpha \sum_{i=0}^{\infty} \frac{1}{b^{i+1}} = 1$$

and thus $F := \Psi(\mathbb{Z}_p) \subset \overline{\Sigma}$.

To sum up, we obtain a good generalization Ψ of the homeomorphic map ψ if we choose $\alpha = b - 1$ and b large enough in order to get a disjoint union in (3).

Before going to some clarifying examples let us see how we can obtain an iterative construction of a fractal through removing pieces:

Remark. The fractal $F := \Psi(\mathbb{Z}_p)$ is the intersection of a decreasing sequence of compact subsets K_n :

Let $K_0 := \overline{\Sigma}$. Then

$$F = \bigcup_{v \in \Sigma} \alpha \frac{v}{b} + \frac{F}{b} \subset \bigcup_{v \in \Sigma} \alpha \frac{v}{b} + \frac{K_0}{b} =: K_1$$

and inductively we have

$$F \subset K_n := \bigcup_{v \in \Sigma} \alpha \frac{v}{b} + \frac{K_{n-1}}{b}$$
 for all n

This leads to the representation

$$F = \bigcap_{n=1}^{\infty} K_n$$

which is a lot useful for constructing inductively a fractal such as the Sierpinski gasket or for us an Euclidean model:

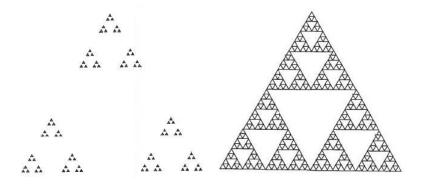


Figure 2: Model of \mathbb{Z}_3 and Sierpinski gasket

Example 3.2 (Sierpinski gasket). Let p = 3, $E = \mathbb{R}^2$ with basis $e_1 = (1, 0)$, $e_2 = (\frac{1}{2}, \frac{\sqrt{3}}{2}), b > 1, \alpha = b - 1$ (by the previous remark) and define

$$\nu(k) = \begin{cases} 0 & \text{if } k = 0\\ e_1 & \text{if } k = 1\\ e_2 & \text{if } k = 2 \end{cases}$$

Then

$$\Psi = \Psi_{3,b,\nu} : \mathbb{Z}_3 \to V \qquad \sum_{i=0}^{\infty} a_i 3^i \mapsto (b-1) \sum_{i=0}^{\infty} \frac{\nu(a_i)}{b^{i+1}}$$

We observe that the self-similar images are disjoint when b > 2. Thus in that case we get homeomorphic models of \mathbb{Z}_3 inside the triangle.

If b = 2 the image is the well-known Sierpinski gasket which is a connected figure (synonym of not injectivity of Ψ). For example we see that $-\frac{3}{2}$ and 1 have the same image under Ψ : first note $-\frac{3}{2} = \frac{1}{1-3} - 1 = \sum_{i=1}^{\infty} 3^i$. Hence

$$\Psi(-\frac{3}{2}) = \sum_{i=2}^{\infty} \frac{e_1}{2^i} = e_1\left(\frac{1}{1-\frac{1}{2}} - 1 - \frac{1}{2}\right) = \frac{e_1}{2} = \Psi(1)$$

In general, taking the enumeration base at the 'limit' of injectivity gives connected fractals which are the well-know ones!

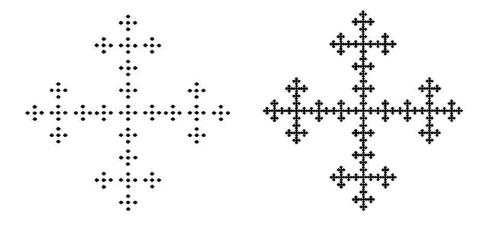


Figure 3: Model of \mathbb{Z}_5 and limiting fractal

Example 3.3. Let p = 5, $E = \mathbb{R}^2$ and define

$$\nu(k) = \begin{cases} (0,0) & \text{if } k = 0\\ (1,0) & \text{if } k = 1\\ (0,1) & \text{if } k = 2\\ (-1,0) & \text{if } k = 3\\ (0,-1) & \text{if } k = 4 \end{cases}$$

We want to discuss injectivity: because of the symmetry it is enough to check it for the points lying between (0,0) and (1,0). We want to avoid that the two p-adic integers $\sum_{i=1}^{\infty} 5^i$ and $1 + \sum_{i=1}^{\infty} 3 \cdot 5^i$ have the same image. It is easy to see this happens when b = 3 since the two vertices of the squares meet if $\Psi(1) = \frac{b-1}{b} = \frac{2}{3}$. As above the limit case b = 3 gives a connected fractal but not a homeomorphic model of \mathbb{Z}_5 .

Example 3.4 (Generalization of Example 3.3). Let p > 3, $E = \mathbb{R}^2$ and $\alpha = b - 1$. We can generate a regular (p - 1)-gon centered in 0 with vertices e_1, \ldots, e_{p-1} . Let us choose them with norm equal 1 and define $\nu(k) = e_k$ for $k \neq 0$ and $\nu(0) = 0$. Then the injectivity of the map Ψ is obtained by b large enough: more precisely, for $p \geq 7$ the minimal distance between points in $(\Psi(k))_{k \in S}$ is between $\Psi(k)$ and $\Psi(k+1)$, $k \notin 0, p-1$, and it is given by

 $\frac{2(b-1)}{b}\sin(\frac{\pi}{p-1}).$ Then b has to satisfy

$$(b-1)\sum_{i=2}^{\infty} \frac{1}{b^i} = \frac{1}{b} < \frac{b-1}{b}\sin(\frac{\pi}{p-1})$$

and this gives the criterium $b > \frac{1}{\sin(\frac{\pi}{p-1})} + 1$ for injectivity. Note that p = 5 has the same b of p = 7, since the minimal distance between points in Σ is between the center 0 and a vertice e_k and for p = 7 we get an exagon where the minimal distance between points in Σ is both the distance between the center 0 and a vertice e_k and the one between two vertices next to each other. Remark. Let us now calculate the dimension of the fractals obtained by letting b to the limit of injectivity of the map Ψ we have seen in this subsection. The dimension of the Sierpinski gasket is

$$d = \frac{\ln(3)}{\ln(2)} = 1.58,$$

the one of the limiting quadratic fractal in Example 3.3 is

$$d = \frac{\ln(5)}{\ln(3)} = 1.46$$

and the dimension of the fractal in the (p-1)-gon is

$$d = \begin{cases} \frac{\ln(7)}{\ln(3)} = 1.77 & \text{if } p = 5\\ \frac{\ln(p)}{\ln\left(\frac{1}{\sin\left(\frac{\pi}{p-1}\right)} + 1\right)} & \text{if } p \ge 7 \end{cases}$$

e.g. for $p = 83 \ d = 1.339$.

3.3 Euclidean models of \mathbb{Q}_p

We know that we can express \mathbb{Q}_p as

$$\mathbb{Q}_p = \bigcup_{m \ge 0} p^{-m} \mathbb{Z}_p.$$
(4)

But in the previous section we saw that a model of $p\mathbb{Z}_p$ is a contraction of ratio $\frac{1}{b}$ of the model \mathbb{Z}_p . So conversely a dilatation of ratio b of the model \mathbb{Z}_p

gives us a model of $\frac{1}{p}\mathbb{Z}_p$. Thus inductively by (4) an euclidean model of \mathbb{Q}_p is nothing else but an extension of the model of \mathbb{Z}_p to the whole Euclidean space V. As one can imagine, the homeomorphism giving the Euclidean model is

$$\Psi := \Psi_{\nu,b,p} : \mathbb{Q}_p \to V \qquad \sum_{i=-\infty}^{\infty} a_i p^i \mapsto \alpha \sum_{i=-\infty}^{\infty} \frac{\nu(a_i)}{b^{i+1}} \tag{5}$$

with the same assumptions as for equation (2).

Let us explain this more carefully for the model constructed in Example 3.4: take the (p-1)-gon which contains the fractal of \mathbb{Z}_p and copy it to its (p-1) vertices such that the two opposite vertices touch each other; we thus obtain a new much bigger (p-1)-gon containing p fractals and this will be the model of $\frac{1}{p}\mathbb{Z}_p = \{\zeta \in \mathbb{Q}_p \mid a_{-k} = 0 \text{ for } k \geq 2\}$. Inductively, take the (p-1)-gon containing the model of $\frac{1}{p^{n-1}}\mathbb{Z}_p$, copy it to its (p-1) vertices and obtain a model of $\frac{1}{p^n}\mathbb{Z}_p$.

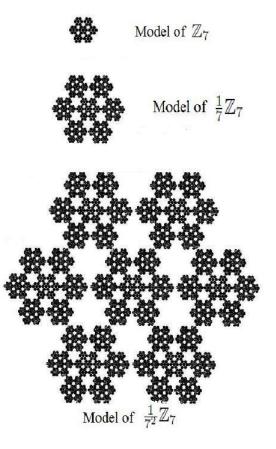


Figure 4: Iterative construction of the model of \mathbb{Q}_7 given the one of \mathbb{Z}_7