1. Another combinatorial nonimplication

We will prove that Equation 1076, which is $x = y \diamond ((x \diamond (x \diamond y)) \diamond y)$, does not generally imply Equation 3, which is $x = x \diamond x$. It was more convenient for me to work with a linearization of the form $x \diamond y = x + f(h)$ where h = y - x.

Working out the linearization of Equation 1076, we find

$$\begin{aligned} x &= y \diamond ((x \diamond [x + f(h)]) \diamond y) \\ &= y \diamond ([x + f^2(h)] \diamond y) \\ &= y \diamond [x + f^2(h) + f(h - f^2(h))] \\ &= x + h + f(f(h - f^2(h)) - (h - f^2(h))), \end{aligned}$$

and so we want to choose f satisfying the functional equation

$$f[f(h - f2(h)) - (h - f2(h))] = -h.$$

On the other hand, the linearization of Equation 3 leads us to want $f(0) \neq 0$.

We take our carrier set to be a free abelian group A on \aleph_0 generators. (Note: One could just as well take \aleph_1 generators, if the initial seed needed to be infinite.)

Let \mathscr{E} be the collection of sets $E \subseteq A^2$ where the following properties holds.

- (1) E is finite.
- (2) E is a function (i.e., no element of A occurs as the first coordinate of two different ordered pairs in E).
- (3) There are enough pairs in E so that treating E as a partial definition of f, the functional equation holds when h = 0.
- (4) If $(a, b), (b, c) \in E$, then $(a c, d), (-a + c + d, -a) \in E$ for some $d \in A$. (Thus, once we know that E defines both f(a) and $f^2(a)$, the functional equation holds when h = a.)

We partially order \mathscr{E} under set inclusion. The set \mathscr{E} is nonempty, by noting $\{(0,0)\} \in \mathscr{E}$. Alternatively, taking $p, q, r, s \in A$ to be independent generators, one can quickly check that

$$E_0 := \{(0, p), (p, q), (-q, r), (q + r, 0), (-p + q + r, s), (p - q - r + s, -q - r)\}$$

also belongs to \mathscr{E} . We will primarily work with extensions of E_0 in \mathscr{E} , in order to guarantee that $f(0) \neq 0$.

Lemma 1.1. For each $E \in \mathscr{E}$ and for each $z \in A$, there is an extension $E \subseteq E' \in \mathscr{E}$ where E' satisfies the functional equation when h = z.

Proof. Case 1: Assume that z is the first coordinate of some pair in E.

Fix b to be the (unique, by condition (2)) second coordinate. If b is the first coordinate of some pair in E, then by condition (4), the functional equation already holds for z by taking E' = E. So, for the rest of this case, assume that b is not a first coordinate of any pair.

Since E is finite by (1), b appears as the second coordinate of only finitely many pairs. Fix a_1, \ldots, a_n to be the list of the distinct first coordinates for such pairs. (So one of the a_i is z.) Note that none of these a_i is zero, by condition (3), since $f^2(a_i)$ is not defined.

For each integer $i \in [1, n]$, the element $-a_i \in A$ can appear as the first coordinate in at most one ordered pair in E. Let S be the set of indices where there is such a pair, and for each $i \in S$ fix b'_i to be the unique element where $(-a_i, b'_i) \in E$. Let $T = \{i \in S : b'_i = 0\}$.

Now, let $c, d_i \ (i \in [1, n])$, and $e_j \ (j \in S - T)$ be a set of independent generators of A that do not appear anywhere in the support of E. We take

$$E' := E \cup \{(b,c)\} \cup \{(a_i - c, d_i), (-a_i + c + d_i, -a_i)\}_{i \in [1,n]} \\ \cup \{(-a_j - b'_j + c + d_j, e_j), (a_j + b'_j - c - d_j + e_j, a_j - c - d_j)\}_{j \in S - T} \\ \cup \{(-c - d_k, a_k - c - d_k)\}_{k \in T}.$$

A finite check verifies each of the conditions, showing that $E' \in \mathscr{E}$ and that E' satisfies the functional for each a_i (hence for z).

Case 2: Assume that z is not the first coordinate of some pair in E.

If z appears as the second coordinate of some pair in E, say (z', z), by applying Case 1 to z', we can extend E to a new set F so that the functional equation holds for z'. Now, z appears as a first coordinate of a pair in F, so using Case 1 again we can extend F so that the functional equation holds for z.

If z doesn't appear as either a first or a second coordinate, then by adding a new pair (z, z'), where z' is any element of A not appearing in the support of E, we again reduce to Case 1.

We are now essentially done. Well-ordering A, with order type ω , we may recursively guarantee that there is an ω chain in \mathscr{E} , with E_0 at the bottom, where each element of A becomes a first coordinate somewhere in the chain. The union of such a chain is the needed complete f.