for all vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^{n}$ and some real-valued function σ on U. In particular, the characteristic function e^{σ} is related to f by $e^{\sigma(\mathbf{x})}=$ $\left|d f_{\mathbf{x}} \mathbf{v}\right| /|\mathbf{v}|$ for all $\mathbf{v} \neq 0$. We begin with a difficult lemma giving a strong implication of the conformality of f on the function σ. Throughout the remainder of this chapter we will assume that f is of class C^{4} and that the dimension $n \geq 3$.

Lemma 5.1. Let f be a conformal map with characteristic function $e^{\sigma(\mathbf{x})}$. If σ is not a constant, then $d^{2}\left(e^{-\sigma}\right)_{\mathbf{x}}(\mathbf{v}, \mathbf{w})=\alpha\langle\mathbf{v}, \mathbf{w}\rangle$ for some constant α.

three

Proof. Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{x_{3}}$ be \mathscr{A} mutually orthogonal unit vectors in \mathbb{R}^{n}. Then $\left\langle d f_{\mathbf{x}} \mathbf{v}_{i}, d f_{\mathbf{x}} \mathbf{v}_{j}\right\rangle=e^{2 \sigma}\left\langle\mathbf{v}_{i}, \mathbf{v}_{j}\right\rangle$. Differentiating this, we have (see, e.g., Section 3.2)

$$
\begin{gathered}
\left\langle d^{2} f_{\mathbf{x}}\left(\mathbf{v}_{i}, \mathbf{v}_{k}\right), d f_{\mathbf{x}}\left(\mathbf{v}_{j}\right)\right\rangle+\left\langle d f_{\mathbf{x}}\left(\mathbf{v}_{i}\right), d^{2} f_{\mathbf{x}}\left(\mathbf{v}_{j}, \mathbf{v}_{k}\right)\right\rangle \\
=2 e^{2 \sigma}\left\langle\mathbf{v}_{i}, \mathbf{v}_{j}\right\rangle d \sigma_{\mathbf{x}}\left(\mathbf{v}_{k}\right)
\end{gathered}
$$

Cyclicly permuting the indices i, j, k, we also have

$$
\begin{aligned}
& \left\langle d^{2} f_{\mathbf{x}}\left(\mathbf{v}_{k}, \mathbf{v}_{j}\right), d f_{\mathbf{x}}\left(\mathbf{v}_{i}\right)\right\rangle+\left\langle d f_{\mathbf{x}}\left(\mathbf{v}_{k}\right), d^{2} f_{\mathbf{x}}\left(\mathbf{v}_{i}, \mathbf{v}_{j}\right)\right\rangle \\
& =2 e^{2 \sigma}\left\langle\mathbf{v}_{k}, \mathbf{v}_{i}\right\rangle d \sigma_{\mathbf{x}}\left(\mathbf{v}_{j}\right) \\
& \left\langle d^{2} f_{\mathbf{x}}\left(\mathbf{v}_{j}, \mathbf{v}_{i}\right), d f_{\mathbf{x}}\left(\mathbf{v}_{k}\right)\right\rangle+\left\langle d f_{\mathbf{x}}\left(\mathbf{v}_{j}\right), d^{2} f_{\mathbf{x}}\left(\mathbf{v}_{k}, \mathbf{v}_{i}\right)\right\rangle \\
& \quad=2 e^{2 \sigma}\left\langle\mathbf{v}_{j}, \mathbf{v}_{k}\right\rangle d \sigma_{\mathbf{x}}\left(\mathbf{v}_{i}\right)
\end{aligned}
$$

Adding the last two equations and subtracting the first gives

$$
\begin{aligned}
& \left\langle d^{2} f_{\mathbf{x}}\left(\mathbf{v}_{j}, \mathbf{v}_{i}\right), d f_{\mathbf{x}}\left(\mathbf{v}_{k}\right)\right\rangle \\
& \quad=e^{2 \sigma}\left(\left\langle\mathbf{v}_{k}, \mathbf{v}_{i}\right\rangle d \sigma_{\mathbf{x}}\left(\mathbf{v}_{j}\right)+\left\langle\mathbf{v}_{j}, \mathbf{v}_{k}\right\rangle d \sigma_{\mathbf{x}}\left(\mathbf{v}_{i}\right)-\left\langle\mathbf{v}_{i}, \mathbf{v}_{j}\right\rangle d \sigma_{\mathbf{x}}\left(\mathbf{v}_{k}\right)\right)
\end{aligned}
$$

Therefore, since $\left\{d f_{\mathbf{x}}\left(\nabla_{\mathrm{A}}\right)\right\}$ is anforthegonal basis of \mathbb{R}^{n}, it follows that $\left.\left\{e^{-\sigma d f} d v_{k}\right)\right\}$ is an orthonormal bacic, and for $\frac{i}{v} \frac{j}{i}$ we have

$$
\begin{equation*}
d^{2} f_{\mathbf{x}}\left(\mathbf{v}_{\dot{2}}, \mathbf{v}_{\mathbf{i}}\right)=d \sigma_{\mathbf{x}}\left(\mathbf{v}_{\dot{2}}\right) d f_{\mathbf{x}}\left(\mathbf{v}_{\boldsymbol{i}}\right)+d \sigma_{\mathbf{x}}\left(\mathbf{v}_{\mathbf{i}}\right) d f_{\mathbf{x}}\left(\mathbf{v}_{\mathbf{2}}\right) \tag{5.1}
\end{equation*}
$$

$$
\begin{aligned}
& \text { and for } i=j \text { hence for } u \perp v_{1} s \quad d^{2} f_{x}\left(u, v_{1}\right)=d \sigma_{k}(u) d f_{x}\left(v_{1}\right)+d \theta_{2} \\
& (5.2) \quad d^{2} f_{\mathbf{x}}\left(v_{i}, v_{i}\right)=d \sigma_{\mathbf{x}}\left(v_{i}\right) d f_{\mathbf{x}}\left(v_{i}\right)-\sum_{k \neq i} d \sigma_{x}\left(v_{k}\right) d f_{x}\left(v_{k}\right)
\end{aligned}
$$

Note that so far we have not required that σ be non-constant.

$u \perp \forall$

Suppose now that $\underset{\sim}{\boldsymbol{T}}$. Then, multiplying equation (5.1) by $e^{-\sigma}$, we have

$$
e^{-\sigma} d^{2} f_{\mathbf{x}}\left(\mathbf{u}_{\boldsymbol{u}}, \mathbf{v}_{\mathfrak{k}}\right)+d\left(e^{-\sigma}\right)_{\mathbf{x}}\left(\mathbf{v}_{\boldsymbol{k}}\right) d f_{\mathbf{x}}\left(\mathbf{v}_{\boldsymbol{i}}\right)+d\left(e^{-\sigma}\right)_{\mathbf{x}}\left(\mathbf{v}_{\boldsymbol{i}}\right) d f_{\mathbf{x}}\left(\mathbf{v}_{\boldsymbol{i}}\right)=0
$$

Differentiating again gives

$$
\begin{aligned}
& d\left(e^{-\sigma}\right)_{\mathbf{x}}\left(\mathbf{v}_{\mathbf{2}}\right) d^{2} f_{\mathbf{x}}\left(\mathbf{U}_{1} \mathbf{v}_{\mathbf{t}}\right)+e^{-\sigma} d^{3} f_{\mathbf{x}}\left(\mathbf{t}, \mathbf{v}_{\boldsymbol{i}}, \mathbf{v}_{\mathbf{i}}\right) \\
& +d^{2}\left(e^{-\sigma}\right)_{\mathbf{x}}\left(\mathbf{t}_{\boldsymbol{h}}, \mathbf{v}_{\mathbf{2}}\right) d f_{\mathbf{x}}\left(\mathbf{v}_{\boldsymbol{i}}\right)+d\left(e^{-\sigma}\right)_{\mathbf{x}}\left(\mathbf{v}_{\boldsymbol{i}}\right) d^{2} f_{\mathbf{x}}\left(\mathbf{v}_{i}, \mathbf{v}_{\mathbf{Q}}\right) \\
& +d^{2}\left(e^{-\sigma}\right)_{\mathbf{x}}\left(\mathbf{v}_{\boldsymbol{i}}, \mathbf{v}_{\mathbf{2}}\right) d f_{\mathbf{x}}\left(\boldsymbol{v}_{\boldsymbol{i}}\right)+d\left(e^{-\sigma}\right)_{\mathbf{x}}\left(\mathbf{v}_{\boldsymbol{i}}\right) d^{2} f_{\mathbf{x}}\left(\boldsymbol{v}_{i}, \mathbf{v}_{\mathbf{z}}\right)=0 .
\end{aligned}
$$

Now the second, fourth, fifth and the sum of the first and sixth terms are symmetric in V / \sqrt{V}. therefore, since the right hand side (trivially) is symmetric in V_{4} and v_{2} the third term must also be symmetric in v_{1} and v_{2} Thus, for dintinet:, i, fixed u, for any v_{1}, v_{2} both $\perp u$,

$$
d^{2}\left(e^{-\sigma}\right)_{\mathbf{x}}\left(\boldsymbol{v}_{\boldsymbol{j}}, \mathbf{v}_{\mathbf{2}}\right) d f_{\mathbf{x}}\left(\mathbf{v}_{\mathbf{k}}\right)=d^{2}\left(e^{-\sigma}\right)_{\mathbf{x}}\left(\boldsymbol{v}_{\mathbf{k}}, \mathbf{v}_{\mathbf{i}}\right) d f_{\mathbf{x}}\left(\mathbf{v}_{\mathbf{2}}\right) .
$$

Sise $h^{\mathbf{z}}$, it follows that $d f_{\mathbf{x}}\left(\mathbf{v}_{\mathbf{i}}\right)$ and $d f_{\mathbf{x}}\left(\mathbf{v}_{\mathbf{2}}\right)$ are linearly independent, and hence

$$
d^{2}\left(e^{-\sigma}\right)_{\mathbf{x}}(\mathbf{u}, \mathbf{v})=0
$$

for all orthogonal vectors \mathbf{u} and \mathbf{v}. Note that we have used $n \geq 3$ in our argument. Now, by Theorem 3.7,

$$
d^{2}\left(e^{-\sigma}\right)_{\mathbf{x}}(\mathbf{u}, \mathbf{v})=\alpha\langle\mathbf{u}, \mathbf{v}\rangle
$$

Thus it remains only to show that α is a constant; but this is relatively easy. First, by differentiation,

$$
d^{3}\left(e^{-\sigma}\right)_{\mathbf{x}}(\mathbf{u}, \mathbf{v}, \mathbf{w})=d \alpha_{\mathbf{x}}(\mathbf{w})\langle\mathbf{u}, \mathbf{v}\rangle ;
$$

notice that f must have derivatives of order 4. Interchanging \mathbf{u} and \mathbf{w}, we have

$$
\left\langle d \alpha_{\mathbf{x}}(\mathbf{w}) \mathbf{u}-d \alpha_{\mathbf{x}}(\mathbf{u}) \mathbf{w}, \mathbf{v}\right\rangle=0
$$

for any \mathbf{v}. Therefore $d \alpha_{\mathbf{x}}(\mathbf{w}) \mathbf{u}-d \alpha_{\mathbf{x}}(\mathbf{u}) \mathbf{w}=0$, but choosing \mathbf{u} and \mathbf{w} independent we see that $d \alpha_{\mathbf{x}}(\mathbf{w})=0$ for any \mathbf{w}, and hence that α is a constant.

We now state and prove our main theorem.
Theorem 5.5. Let f be a one-to-one C^{4} conformal map of an open set $U \subset \mathbb{R}^{n}$ onto $f(U)$, and suppose that $n \geq 3$. Then f is a composition of similarities and inversions.

