for all vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ and some real-valued function σ on U. In particular, the characteristic function e^{σ} is related to f by $e^{\sigma(\mathbf{x})} =$ $|df_{\mathbf{x}}\mathbf{v}|/|\mathbf{v}|$ for all $\mathbf{v} \neq 0$. We begin with a difficult lemma giving a strong implication of the conformality of f on the function σ . Throughout the remainder of this chapter we will assume that f is of class C^4 and that the dimension $n \geq 3$.

Lemma 5.1. Let f be a conformal map with characteristic function $e^{\sigma(\mathbf{x})}$. If σ is not a constant, then $d^2(e^{-\sigma})_{\mathbf{x}}(\mathbf{v},\mathbf{w}) = \alpha \langle \mathbf{v},\mathbf{w} \rangle$ for some constant α .

Proof. Let $\mathbf{v}_1, \ldots, \mathbf{v}_{n_3}$ be \mathcal{H} mutually orthogonal unit vectors in \mathbb{R}^n . Then $\langle df_{\mathbf{x}} \mathbf{v}_i, df_{\mathbf{x}} \mathbf{v}_j \rangle = e^{2\sigma} \langle \mathbf{v}_i, \mathbf{v}_j \rangle$. Differentiating this, we have (see, e.g., Section 3.2)

$$egin{aligned} &\langle d^2 f_{\mathbf{x}}(\mathbf{v}_i,\mathbf{v}_k), df_{\mathbf{x}}(\mathbf{v}_j)
angle + \langle df_{\mathbf{x}}(\mathbf{v}_i), d^2 f_{\mathbf{x}}(\mathbf{v}_j,\mathbf{v}_k)
angle \ &= 2e^{2\sigma} \langle \mathbf{v}_i, \mathbf{v}_j
angle d\sigma_{\mathbf{x}}(\mathbf{v}_k). \end{aligned}$$

Cyclicly permuting the indices i, j, k, we also have

$$\begin{split} \langle d^2 f_{\mathbf{x}}(\mathbf{v}_k, \mathbf{v}_j), df_{\mathbf{x}}(\mathbf{v}_i) \rangle &+ \langle df_{\mathbf{x}}(\mathbf{v}_k), d^2 f_{\mathbf{x}}(\mathbf{v}_i, \mathbf{v}_j) \rangle \\ &= 2e^{2\sigma} \langle \mathbf{v}_k, \mathbf{v}_i \rangle d\sigma_{\mathbf{x}}(\mathbf{v}_j), \\ \langle d^2 f_{\mathbf{x}}(\mathbf{v}_j, \mathbf{v}_i), df_{\mathbf{x}}(\mathbf{v}_k) \rangle &+ \langle df_{\mathbf{x}}(\mathbf{v}_j), d^2 f_{\mathbf{x}}(\mathbf{v}_k, \mathbf{v}_i) \rangle \\ &= 2e^{2\sigma} \langle \mathbf{v}_j, \mathbf{v}_k \rangle d\sigma_{\mathbf{x}}(\mathbf{v}_i). \end{split}$$

Adding the last two equations and subtracting the first gives

$$\langle d^{2} f_{\mathbf{x}}(\mathbf{v}_{j}, \mathbf{v}_{i}), df_{\mathbf{x}}(\mathbf{v}_{k}) \rangle$$

$$= e^{2\sigma} (\langle \mathbf{v}_{k}, \mathbf{v}_{i} \rangle d\sigma_{\mathbf{x}}(\mathbf{v}_{j}) + \langle \mathbf{v}_{j}, \mathbf{v}_{k} \rangle d\sigma_{\mathbf{x}}(\mathbf{v}_{i}) - \langle \mathbf{v}_{i}, \mathbf{v}_{j} \rangle d\sigma_{\mathbf{x}}(\mathbf{v}_{k})).$$
Therefore, since $\{df_{\mathbf{x}}(\mathbf{v}_{k})\}$ is an orthogonal basis of \mathbb{R}^{n} , it follows that $\{e^{-\sigma} df_{\mathbf{x}}(\mathbf{v}_{k})\}$ is an orthonormal basis, and for $i \neq j$ we have (5.1) $d^{2} f_{\mathbf{x}}(\mathbf{v}_{i}, \mathbf{v}_{i}) = d\sigma_{\mathbf{x}}(\mathbf{v}_{j}) df_{\mathbf{x}}(\mathbf{v}_{i}) + d\sigma_{\mathbf{x}}(\mathbf{v}_{i}) df_{\mathbf{x}}(\mathbf{v}_{j}),$
and for $i = j$ hence for \mathbf{u} is $d^{2} f_{\mathbf{x}}(\mathbf{v}_{i}, \mathbf{v}_{i}) = d\sigma_{\mathbf{x}}(\mathbf{v}_{i}) df_{\mathbf{x}}(\mathbf{v}_{i}) - \sum_{k \neq i} d\sigma_{\mathbf{x}}(\mathbf{v}_{k}) df_{\mathbf{x}}(\mathbf{v}_{k}) df_{\mathbf{x}}(\mathbf{v}_{k}) - \sum_{k \neq i} d\sigma_{\mathbf{x}}(\mathbf{v}_{k}) df_{\mathbf{x}}(\mathbf{v}_{k}) df_{\mathbf{x}}(\mathbf{v}_{k}) - \sum_{k \neq i} d\sigma_{\mathbf{x}}(\mathbf{v}_{k}) df_{\mathbf{x}}(\mathbf{v}_{k}) df_{\mathbf{x}}(\mathbf{v}_{k}) df_{\mathbf{x}}(\mathbf{v}_{k}) df_{\mathbf{x}}(\mathbf{v}_{k}) df_{\mathbf{x}}(\mathbf{v}_{k}) df_{\mathbf{x}}(\mathbf{v}_{k}) df_{\mathbf{x}}(\mathbf{v}_{k}) df_{\mathbf{$

Note that so far we have not required that σ be non-constant.

Suppose now that $i \neq j$. Then, multiplying equation (5.1) by $e^{-\sigma}$, we have

$$e^{-\sigma}d^2f_{\mathbf{x}}(\mathbf{v},\mathbf{v}) + d(e^{-\sigma})_{\mathbf{x}}(\mathbf{v}) df_{\mathbf{x}}(\mathbf{v}) + d(e^{-\sigma})_{\mathbf{x}}(\mathbf{v}) df_{\mathbf{x}}(\mathbf{v}) = 0.$$

Differentiating again gives

$$\begin{aligned} d(e^{-\sigma})_{\mathbf{x}}(\mathbf{v}_{\mathbf{z}})d^{2}f_{\mathbf{x}}(\mathbf{v}_{\mathbf{t}},\mathbf{v}_{\mathbf{t}}) + e^{-\sigma}d^{3}f_{\mathbf{x}}(\mathbf{v}_{\mathbf{t}},\mathbf{v}_{\mathbf{t}},\mathbf{v}_{\mathbf{z}}) \\ + d^{2}(e^{-\sigma})_{\mathbf{x}}(\mathbf{v}_{\mathbf{t}},\mathbf{v}_{\mathbf{z}})df_{\mathbf{x}}(\mathbf{v}_{\mathbf{t}}) + d(e^{-\sigma})_{\mathbf{x}}(\mathbf{v}_{\mathbf{t}})d^{2}f_{\mathbf{x}}(\mathbf{v}_{\mathbf{t}},\mathbf{v}_{\mathbf{z}}) \\ + d^{2}(e^{-\sigma})_{\mathbf{x}}(\mathbf{v}_{\mathbf{t}},\mathbf{v}_{\mathbf{z}})df_{\mathbf{x}}(\mathbf{v}_{\mathbf{t}}) + d(e^{-\sigma})_{\mathbf{x}}(\mathbf{v}_{\mathbf{t}})d^{2}f_{\mathbf{x}}(\mathbf{v}_{\mathbf{t}},\mathbf{v}_{\mathbf{z}}) = 0. \end{aligned}$$

Now the second, fourth, fifth and the sum of the first and sixth terms are symmetric in $\sqrt{4}$ and $\sqrt{2}$; therefore, since the right hand side (trivially) is symmetric in $\sqrt{4}$ and $\sqrt{2}$, the third term must also be symmetric in $\sqrt{4}$ and $\sqrt{2}$. Thus, for distinct *i*, *j*, *k*, fixed **u**, for any $\sqrt{3}$, $\sqrt{5}$ both \perp **u**,

$$d^{2}(e^{-\sigma})_{\mathbf{x}}(\mathbf{v}, \mathbf{v}) df_{\mathbf{x}}(\mathbf{v}) = d^{2}(e^{-\sigma})_{\mathbf{x}}(\mathbf{v}, \mathbf{v}) df_{\mathbf{x}}(\mathbf{v}).$$

Since $k \neq i$, it follows that $df_{\mathbf{x}}(\mathbf{v}_i)$ and $df_{\mathbf{x}}(\mathbf{v}_i)$ are linearly independent, and hence

$$d^2(e^{-\sigma})_{\mathbf{x}}(\mathbf{u},\mathbf{v})=0$$

for all orthogonal vectors **u** and **v**. Note that we have used $n \ge 3$ in our argument. Now, by Theorem 3.7,

$$d^{2}(e^{-\sigma})_{\mathbf{x}}(\mathbf{u},\mathbf{v}) = \alpha \langle \mathbf{u},\mathbf{v} \rangle.$$

Thus it remains only to show that α is a constant; but this is relatively easy. First, by differentiation,

$$d^{3}(e^{-\sigma})_{\mathbf{x}}(\mathbf{u},\mathbf{v},\mathbf{w}) = dlpha_{\mathbf{x}}(\mathbf{w})\langle \mathbf{u},\mathbf{v}
angle;$$

notice that f must have derivatives of order 4. Interchanging **u** and **w**, we have

$$\langle dlpha_{\mathbf{x}}(\mathbf{w})\mathbf{u} - dlpha_{\mathbf{x}}(\mathbf{u})\mathbf{w}, \mathbf{v}
angle = 0$$

for any **v**. Therefore $d\alpha_{\mathbf{x}}(\mathbf{w})\mathbf{u} - d\alpha_{\mathbf{x}}(\mathbf{u})\mathbf{w} = 0$, but choosing **u** and **w** independent we see that $d\alpha_{\mathbf{x}}(\mathbf{w}) = 0$ for any **w**, and hence that α is a constant.

We now state and prove our main theorem.

Theorem 5.5. Let f be a one-to-one C^4 conformal map of an open set $U \subset \mathbb{R}^n$ onto f(U), and suppose that $n \ge 3$. Then f is a composition of similarities and inversions.