Are Translations between Proof Assistants Possible or Even Desirable at All?

Jasmin Christian Blanchette

Inria Nancy – Grand Est, France Max-Planck-Institut für Informatik, Saarbrücken, Germany

Scenario 1 Flyspeck in HOL Light, Isabelle/HOL, and Coq

"Larry": In the past, people have published a number of papers on the automatic translation of proofs from one system to another. As far as I know, this translated material is almost never used. Considering the proofs I have translated, the reason is obvious: the proofs really need to be made native to the new system. In the case of "John"'s material, everything he does is confined to the special case of R^n. He is forced to identify C with R^2 and he is frequently forced to translate explicitly between R^1 and R. Automatically-translated proofs would suffer all the same drawbacks. But instead, many of the translated results are applicable to general topological spaces, or to metric spaces, etc.

"Tobias": You are right: **automatic translation** between even slightly different logics **is hardly used**, mostly because the **resulting proofs are not optimal in the target system**, eg no structured proofs and no type classes.

"Larry": I have always maintained that one should never attempt to formalise proofs that one didn't understand, and yet here on many occasions I have done exactly that. I've ported many proofs without grasping the underlying concepts and reasoning. No doubt this made things much more difficult, especially as regards knowing what is likely to be true and what not, yet it was possible. The key was to look in the HOL Light proof for clues about the proof's milestones. Sometimes explicit subgoals were visible in the proof text and on other occasions they could be reconstructed, especially when named theorems were instantiated with specific expressions, when clearly the theorem's preconditions would need to be proved. Then one could create a proof structure, and in many cases, fill in the gaps using sledgehammer.

"Larry": It seems that I've ported approximately 17,000 lines of HOL Light proofs. I did this without ever launching HOL Light (in fact I don't know how to do this), almost never looking at a mathematical textbook or paper, and very often not understanding the result being proved or the properties involved. And indeed, often with a television on, sometimes with a glass of wine at my side.

It's kind of amusing, but **is it science**? What exactly are the conclusions?

I thought of focusing on the attached proof, which apparently is a very important result (honestly I have no idea) and at 688 lines, it is quite a monstrosity.

let OUTSIDE_COMPACT_IN_OPEN = prove (`!s t:real^N->bool. compact s \land open t \land s SUBSET t $\land \sim$ (t = {}) $=> \sim (outside s INTER t = {})`,$ REPEAT GEN TAC THEN STRIP TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP OUTSIDE_BOUNDED_NONEMPTY o MATCH MP COMPACT IMP BOUNDED) THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN REWRITE TAC[GSYM MEMBER NOT EMPTY; LEFT IMP EXISTS THM; IN INTER] THEN X_GEN_TAC `b:real^N` THEN DISCH_TAC THEN X GEN TAC `a:real^N` THEN DISCH TAC THEN ASM_CASES_TAC `(a:real^N) IN t` THENL [ASM_MESON_TAC[]; ALL_TAC] THEN MP_TAC(ISPECL [`linepath(a:real^N,b)`; `(:real^N) DIFF t`] EXISTS PATH SUBPATH TO FRONTIER) THEN REWRITE TAC[PATH LINEPATH; PATHSTART LINEPATH; PATHFINISH LINEPATH] THEN ASM_REWRITE_TAC[IN_DIFF; IN_UNIV; LEFT_IMP_EXISTS_THM] THEN X GEN TAC `g:real^1->real^N` THEN REWRITE TAC[FRONTIER COMPLEMENT] THEN REWRITE TAC[PATH IMAGE LINEPATH; INTERIOR DIFF; INTERIOR UNIV] THEN ABBREV_TAC `c:real^N = pathfinish g` THEN STRIP_TAC THEN SUBGOAL_THEN `frontier t SUBSET (:real^N) DIFF s` MP_TAC THENL [ONCE_REWRITE_TAC[GSYM FRONTIER_COMPLEMENT] THEN REWRITE_TAC[frontier] THEN ASM_SIMP_TAC[CLOSURE_CLOSED; GSYM OPEN_CLOSED] THEN ASM SET_TAC[]; REWRITE_TAC[SUBSET; IN_DIFF; IN_UNIV]] THEN DISCH_THEN(MP_TAC o SPEC `c:real^N`) THEN ASM_REWRITE_TAC[] THEN DISCH TAC THEN MP TAC(ISPEC `(:real^N) DIFF s` OPEN CONTAINS CBALL) THEN ASM SIMP TAC[GSYM closed; COMPACT IMP CLOSED; IN DIFF; IN UNIV] THEN DISCH THEN(MP TAC o SPEC `c:real^N`) THEN ASM REWRITE TACII THEN DISCH_THEN(X_CHOOSE_THEN `e:real` STRIP_ASSUME_TAC) THEN MP_TAC(ISPECL [`c:real^N`; `t:real^N->bool`] CLOSURE_APPROACHABLE) THEN RULE ASSUM TAC(REWRITE RULE[frontier; IN DIFF]) THEN ASM_REWRITE_TAC[] THEN DISCH THEN(MP TAC o SPEC `e:real`) THEN ASM REWRITE TACII THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `d:real^N` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC OUTSIDE_SAME_COMPONENT THEN EXISTS TAC `a:real^N` THEN ASM REWRITE TAC[] THEN REWRITE_TAC[connected_component] THEN EXISTS_TAC `path_image(g) UNION segment[c:real^N,d]` THEN REWRITE TAC[IN UNION; ENDS IN SEGMENT] THEN CONJ TAC THENL [MATCH_MP_TAC CONNECTED_UNION THEN ASM_SIMP_TAC[CONNECTED_SEGMENT; GSYM MEMBER_NOT_EMPTY; CONNECTED PATH IMAGE] THEN EXISTS_TAC `c:real^N` THEN REWRITE_TAC[ENDS_IN_SEGMENT; IN_INTER] THEN ASM_MESON_TAC[PATHFINISH_IN_PATH_IMAGE; SUBSET]; CONJ TAC THENL [ALL TAC: ASM MESON TAC[PATHSTART IN PATH IMAGE]] THEN REWRITE TAC[UNION SUBSET] THEN CONJ TAC THENL [FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE ~(c IN s) ==> (t DELETE c) SUBSET (UNIV DIFF s) ==> t SUBSET (UNIV DIFF s)`)) THEN FIRST X ASSUM(MATCH MP TAC o MATCH MP (REWRITE RULE[IMP CONJ] SUBSET_TRANS)) THEN SIMP TACISET RULE `UNIV DIFF & SUBSET UNIV DIFF t <=> t SUBSET s`1 THEN ASM_MESON_TAC[SUBSET_TRANS; CLOSURE_SUBSET]; FIRST X ASSUM(MATCH MP TAC o MATCH MP (REWRITE RULE[IMP CONJ ALT] SUBSET TRANS)) THEN REWRITE_TAC[SEGMENT_CONVEX_HULL] THEN MATCH_MP_TAC HULL_MINIMAL THEN ASM_SIMP_TAC/CONVEX_CBALL; INSERT_SUBSET; REAL_LT_IMP_LE; EMPTY SUBSET: CENTRE IN CBALLI THEN REWRITE TAC[IN CBALL] THEN ASM MESON_TAC[DIST_SYM; REAL_LT_IMP_LE]]]);;

lemma outside compact in open: fixes s :: "'a :: {real_normed_vector,perfect_space} set" assumes s: "compact s" and t: "open t" and "s \subseteq t" "t \neq {}" shows "outside $s \cap t \neq \{\}$ " proof have "outside $s \neq \{\}$ " by (simp add: compact_imp_bounded outside_bounded_nonempty s) with assms obtain a b where a: "a \in outside s" and b: "b \in t" by auto show ?thesis proof (cases " $a \in t$ ") case True with a show ?thesis by blast next case False have front: "frontier $t \subseteq -s$ " using $s \subseteq t$ frontier disjoint eq t by auto { fix y assume "path γ " and pimg_sbs: "path_image γ - {pathfinish γ } \subseteq interior (- t)" and pf: "pathfinish $y \in$ frontier t" and ps: "pathstart y = a" def c = "pathfinish y" have " $c \in -s$ " unfolding c_def using front pf by blast moreover have "open (-s)" using s compact imp_closed by blast ultimately obtain ε ::real where " $\varepsilon > 0$ " and ε : "cball $c \varepsilon \subseteq -s$ " using open contains cball[of "-s"] s by blast then obtain d where "d \in t" and d: "dist d c < ϵ " using closure_approachable [of c t] pf unfolding c_def by (metis Diff iff frontier def) then have "d \in -s" using ϵ using dist_commute by (metis contra_subsetD mem_cball not_le not_less_iff_gr_or_eq) have pimg sbs cos: "path image $\gamma \subseteq -s$ " using pimg_sbs apply (auto simp: path_image_def) apply (drule subsetD) using $c \in -s$ $s \subseteq t$ interior_subset apply (auto simp: c_def) done have "closed_segment c d \leq cball c ϵ " apply (simp add: segment_convex_hull) apply (rule hull minimal) using $\epsilon > 0$ d apply (auto simp: dist_commute) done with ε have "closed_segment c d \leq -s" by blast moreover have con_gcd: "connected (path_image y u closed_segment c d)" by (rule connected Un) (auto simp: c_def `path y` connected path_image) ultimately have "connected component (- s) a d" unfolding connected_component_def using pimg_sbs_cos ps by blast then have "outside $s \cap t \neq {}$ " using outside_same_component [OF _ a] by (metis Intl `d \in t` empty_iff) } note * = this have pal: "pathstart (linepath a b) \in closure (- t)" by (auto simp: False closure def) show ?thesis by (rule exists_path_subpath_to_frontier [OF path_linepath pal _ *]) (auto simp: b) qed aed

"Larry": In HOL Light, and I'm willing to bet in Coq, proofs are almost never modified. I have been working with a snapshot of HOL Light that is almost 2 years old. Yesterday I grabbed the latest snapshot. Although there are quite a few differences, virtually all of them consist of entire proofs added or deleted. Only a few proofs were modified, and only in trivial ways. Every formalisation decision is therefore a commitment. With us it is very different.

There were quite a few changes to HOL Light, my point is that these were all at the level of whole proofs. **Proofs were added and occasionally moved, but never modified**.

It's obvious that structured proofs should be easier to maintain, but we've never sought empirical justification.

Scenario 3 My KBO in Isabelle/HOL

"Heiko": As I have been accepted for the Graduate School of Computer Sciences Preparatory Phase, I would like to ask you whether you have topics for Research Immersion Labs to offer at the group for the Automation of Logic.

Scenario 3 My KBO in Isabelle/HOL

"Jasmin": I can supervise work on (1) **formalization**, (2) proof assistant implementation, and (3) automatic theorem provers (calculi and implementation). So you have plenty of languages to choose from (Isabelle/HOL, Standard ML, C, ...).

Isabelle/Isar Proofs from ATP Proofs in Sledgehammer

Jasmin Christian Blanchette

Inria Nancy – Grand Est, France Max-Planck-Institut für Informatik, Saarbrücken, Germany Does there exist a function f from reals to reals such that for all x and y, $f(x + y^2) - f(x) \ge y$?

let lemma = prove (`!f:real->real. ~(!x y. f(x + y * y) - f(x) >= y)`, REWRITE_TAC[real_ge] THEN REPEAT STRIP_TAC THEN SUBGOAL_THEN `!n x y. &n * y <= f(x + &n * y * y) - f(x)` MP_TAC THENL [MATCH_MP_TAC num_INDUCTION THEN SIMP_TAC[REAL_MUL_LZERO; REAL_ADD_RID] THEN REWRITE_TAC[REAL_SUB_REFL; REAL_LE_REFL; GSYM REAL_OF_NUM_SUC] THEN GEN_TAC THEN REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN FIRST_X_ASSUM(MP_TAC o SPECL [x + &n * y * y; y:real]) THEN SIMP_TAC[REAL_ADD_ASSOC; REAL_ADD_RDISTRIB; REAL_MUL_LID] THEN REAL_ARITH_TAC; X_CHOOSE_TAC `m:num` (SPEC `f(&1) - f(&0):real` REAL_ARCH_SIMPLE) THEN DISCH_THEN(MP_TAC o SPECL [`SUC m EXP 2`; `&0`; `inv(&(SUC m))`]) THEN REWRITE_TAC[REAL_ADD_LID; GSYM REAL_OF_NUM_SUC; GSYM REAL_OF_NUM_POW] THEN REWRITE_TAC[REAL_FIELD `(&m + &1) pow 2 * inv(&m + &1) = &m + &1`; REAL_FIELD `(&m + &1) pow 2 * inv(&m + &1) * inv(&m + &1) = &1`] THEN ASM_REAL_ARITH_TAC]);;

"John"

Does there exist a function f from reals to reals such that for all x and y, $f(x + y^2) - f(x) \ge y$?

[1] $f(x + y^2) - f(x) \ge y$ for any x and y (given)

[2] $f(x + ny^2) - f(x) \ge ny$ for any x, y, and natural number n (by an easy induction using [1] for the step case)

[3] f(1) - f(0) ≥ m + 1 for any natural number m (set $n = (m + 1)^2$, x = 0, y = 1/(m + 1) in [2])

[4] Contradiction of [3] and the Archimedean property of the reals

"John"

```
lemma
           shows "¬ (\exists f :: real \Rightarrow real. \forall x y. f (x + y * y) - f x \ge y)"
         proof
           assume "af :: real \Rightarrow real. \forall x \lor f(x + \lor * \lor) - f(x > \lor"
           then obtain f :: "real \Rightarrow real" where f: "\land x y. f (x + y * y) - f x \ge y"
             by plast
                                                                                            intermediate
                     ∧(n :: nat) x y. f (x + real n * y * y) - f x ≥ real n * y"
           have nf:
           proof -
                                                                                                properties
             fix n x y
             show <u>"f(x + real</u> n * y * y) - f x \geq real n * y"
             proof (induct n)
               case v cnus : case by simp
manual
               case (Suc n) show ?case
               proof simp
                 have "\exists r. y \leq f(y * y + (x + y * (y * real n))) - r \wedge y * real n \leq r - f x"
                 by (metis Suc.hyps add.commute f mult.commute)
               then have "y + y * real n \le f (y * y + (x + y * (y * real n))) - f x"
                 by linarith
               then show "(1 + real n) * y \leq f (x + (1 + real n) * y * y) - f x"
                 by (simp add: add.left_commute distrib_left mult.commute)
               qed
             aed
                                                                                                            generated
           qed
           have min: "\wedgem. f 1 - f 0 \geq real m + 1"
                                                                                                      automatically
           proof -
             fix m
             show "f 1 - f 0 \geq real m + 1"
             proof -
               have "\landr ra rb. (r :: real) / ra * rb = r * (rb / ra)"
                 by simp
               then have "real (m + 1) * (real (m + 1) / real (m + 1)) \leq
                     (real (m + 1) * (real (m + 1) / (real (m + 1) * real (m + 1))) = \frac{1}{2}0"
                 using nf[where n = (m + 1) * (m + 1)'' and x = 0 and y = (m + 1)''
                 by (metis (no_types) add.left_neutral divide_divide_eq_left mult.right_neutral of_nat_mult
                   times_divide_eq_right)
               then have "real (m + 1) \leq f 1 - f 0"
                 by simp
               then show ?thesis
                 by simp
            qed
           aed
           then show False
             by (metis add.commute add_le_imp_le_diff add_le_same_cancel2 add_mono diff_add_cancel
               ex_le_of_nat not_one_le_zero)
         qea
```

Scratch.thy (modified)
📑 🚰 🏝 🗉 : 🥱 🥐 : 🔏 📄 🗊 : 👧 🖓 : 📑 🗔 : 🐼 : 💀 : 🔹 🎉 : 🛖 : 🕜 :
Scratch.thy (~/)
$\square \lemma "A + B = (A # U B) + (A # n B)"$
Cumentation Side
✓ Proof state ✓ Auto update Update Search:
<pre>proof (prove) goal (1 subgoal): 1. A + B = A #u B + A #n B </pre>
 Output Query Sledgehammer Symbols

Scratch.thy (modified)	
📑 🚰 🏊 🗉 : 🥱 👌 🍖 : 🔏 🗊 🗊 : 👧 🖓 : 📑 🗔 🕢 🐼 : 🏤 🤹 🎼 : 🙆 :	
Scratch.thy (~/)	
<pre>lemma "A + B = (A #u B) + (A #n B)" sledgehammer</pre>	Documentation Sidekick
✓ Proof state ✓ Auto update Update Search: 100% ▼ Sledgehammering	k State Theor
	ies
 Output Query Sledgehammer Symbols 	

Scratch.thy (modified)	
📑 🚰 🏝 z 🚔 z 🥱 🥐 z 🔏 🗊 🗊 z 👧 🖓 z 📑 🗔 🐼 z 💀 z z 😹 🕺 z 🦛 z 🚱 z 🖗 z	
Scratch.thy (~/)	
•	8
$= 1 \text{ or } ma = (A + \mu R) + (A + \sigma R)''$	-
$\Rightarrow \text{ sledgehammer}$	Do
	cum
	enta
	tion
	Sic
	dekio
	*
✓ Proof state ✓ Auto update Update Search:	State
Sledgehammering	<u> </u>
"z3": Try this: by (smt Multiset.diff_add add_diff_cancel_right' mset_le_add_right multise	heori
Isar proof (26 ms):	ies
proof -	
have "A + B = A + B + (B - (A + B))" by (metis mset le add right subset mset sup orderE sup subset mset def)	
then have f1: "A + B = ((+ (B - A)) $\# \cup (A + B)$ "	
<pre>by (simp add: Multiset. iff add subset_mset.sup_commute sup_subset_mset_def) base "A = (D = A)</pre>	
by (simp add: subset is to commute sup subset mset def)	
then show ?thesis	
using f1 by (simp add: Multiset.diff_add multiset_inter_def sup_subset_mset_def)	

Output Query Sledgehammer Symbols

Scratch.thy (modified)
📑 🗁 🏝 🗉 : 🥱 🥐 : 🔏 🗊 🗊 : 👧 🖓 : 🗂 🗔 : 🗟 💥 : 🕂 : 💽 : 🖉 : 🤹 🦛 : 🕐 :
Scratch.thy (~/)
\neg
sledgehammer
Cum l
enta
tion
Si
deki
✓ Proof state ✓ Auto update Update Search:
Sledgehammering
"z3": Try this: by (smt Multiset.diff_add add_diff_cancel_right' mset_le_add_right multise المن الم
Isar proof (26 ms):
proof -
have "A + B = A + B + (B - (A + B))" by (motic meet lo add might subset meet sup orderE sup subset meet dof)
then have f1: "A + B = $(A + (B - A)) \# (A + B)$ "
<pre>by (simp add: Multiset. iff add subset_mset.sup_commute sup_subset_mset_def)</pre>
have "A + (B - A) = B #U A \downarrow
then show ?thesis
using f1 by (simp add: Multiset.diff_add multiset_inter_def sup_subset_mset_def)
qed
🖾 🔻 Output Ouerv Sledgehammer Symbols
- output Query Sledgenummer Symbols

Next: Proof with holes Higher-order reasoning (induction etc.)

Matryoshka