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Bruno Woltzenlogel Paleoa,b

aInstitut für Computersprachen, Vienna University of Technology, Austria
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Abstract

Axiomatization of Physics (and Science in general) has many drawbacks that are
correctly criticized by opposing philosophical views of Science. This paper shows
that, by giving formal proofs a more prominent role in the formalization, many
of the drawbacks can be solved and many of the opposing views are naturally
conciliated. Moreover, this approach allows, by means of Proof Theory, to
open new conceptual bridges between the disciplines of Physics and Computer
Science.
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1. Introduction

“Science is built up with facts, as a house is with stones.
But a collection of facts is no more a science

than a heap of stones is a house.”

- Poincaré

Foundational works on the formalization of Physics typically consider a phys-
ical theory as a collection of facts, i.e. as a set of sentences closed under logical
consequence. However, not as much attention has been given to studying how
these facts are or should be organized or, equivalently, how the physical theory
is or should be structured. Usually, the only structure considered is a distinc-
tion of facts either as axioms or as derivable theorems (i.e. axiomatization).
Although simple, this approach has a few drawbacks.

Firstly, from an epistemological point of view, the mentioned approach suf-
fers from a logical omniscience problem: although physicists might know the
axioms of their theories, it is certainly not the case that they know all the log-
ical consequences of these axioms, simply because they have limited reasoning
resources. Therefore, the approach of defining a theory as a set of sentences
closed under logical consequence fails to capture the notion of theory as per-
ceived by resource-bounded physicists; it is just an idealized approximation.
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Secondly, the selection of which facts should be taken as axioms is arbitrary
and frequently based on subjective criteria such as elegance. For example, there
are axiomatizations of physics that do not rely on the rather natural concepts of
space and time [18]. Should they be considered more elegant, useful or correct?

And finally, there are cases of physical theories, such as Newtonian mechan-
ics and Lagrangean mechanics, that are considered equivalent to each other ac-
cording to the mentioned approach, because their sets of sentences closed under
logical equivalence are the same, even though they actually differ significantly
in how easily they can be used to solve certain classes of problems.

The second and third drawbacks mentioned above have been main reasons for
criticism on the whole enterprise of formalizing Science [20]. However, they actu-
ally only apply to (unstructured) axiomatization. As a response to the criticism,
there was a rise of semantic approaches, which adopted a more model-theoretic
approach to the formalization of Science [20]. Advances in the sibling discipline
of proof theory, on the other hand, have not been given much attention.

The main goal of this paper is to advocate in favor of a more prominent
role for proofs in the formalization of physics, and consequently, for proof the-
ory in approaches to Hilbert’s sixth problem [22] and in studies of the foun-
dations of physics. If a physical theory is considered not as a collection of
sentences closed under logical consequence, but rather as a collection of proofs,
the above mentioned drawbacks are naturally solved. Non-idealized resource-
bounded physicists know only what they have proved so far. Axioms are simply
the assumptions of the proofs contained in the physical theory. And various
physical theories can be objectively compared with respect to the structure
of the proofs they contain. This proposal is in line with current work in the
formalization of mathematics, where mathematical knowledge is formalized as
collections of proofs with the assistance of interactive theorem provers1.

The use of proofs to formalize computations of solutions of physical problems
is exemplified with a simple problem of Newtonian mechanics in Section 3. The
proof calculus used, known as sequent calculus, is briefly explained in Section
2. Finally, Section 4 discusses the benefits and challenges of using proofs in the
formalization of Physics, from philosophical and computational points of view.

2. The Sequent Calculus LKP

The formal proofs in this paper are written in an extension of Gentzen’s
sequent calculus LK [11]. A sequent is a pair Γ ⊢ ∆, where Γ (the antecedent)
and ∆ (the succedent) are multisets of formulas, with the intuitive intended
meaning that the disjunction of the formulas in ∆ is provable assuming the
formulas in Γ. An LK-proof is a (hyper)tree of sequents, such that the leaves
are axiom sequents of the form F ⊢ F , where F is an arbitrary formula, and
the (hyper)edges are instances of the inference rules specified by the calculus.

1Examples of proof assistants are Mizar (http://mizar.uwb.edu.pl/), Coq
(http://coq.inria.fr/) and Isabelle (http://www.cl.cam.ac.uk/research/hvg/Isabelle/).
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The sequent calculus LK has inference rules for propositional connectives (e.g.
∨, →, ¬ and ∧), as exemplified below for the ∧ connective:

Γ ⊢ ∆, A Π ⊢ Λ, B

Γ,Π ⊢ ∆,Λ, A ∧B
∧ : r

A,Γ ⊢ ∆

A ∧B,Γ ⊢ ∆
∧ : l1

A,Γ ⊢ ∆

B ∧A,Γ ⊢ ∆
∧ : l2

The following inference rules for quantifiers are also available (with the im-
portant restriction that the ∀ : r and ∃ : l rules must satisfy the eigenvariable
condition, i.e. the variable α must occur neither in Γ nor in ∆ nor in A):

A{x← t},Γ ⊢ ∆

(∀x)A,Γ ⊢ ∆
∀ : l

Γ ⊢ ∆, A{x← α}
Γ ⊢ ∆, (∀x)A ∀ : r

A{x← α},Γ ⊢ ∆

(∃x)A,Γ ⊢ ∆
∃ : l

Γ ⊢ ∆, A{x← t}
Γ ⊢ ∆, (∃x)A ∃ : r

Moreover, the sequent calculus LK also provides structural rules such as con-
traction, weakening and, most importantly, the cut rule, which, as discussed in
Section 4, eases the structured formalization of Physics:

Γ ⊢ ∆, F F,Γ ⊢ ∆

Γ ⊢ ∆
cut

However, the pure sequent calculus LK does not provide any built-in support
for equality handling, arithmetical simplifications, and differentiation and inte-
gration. Therefore, formalizing physics in the pure sequent calculus LK would
be tedious and uncomfortable, since the lack of built-in support would require
adding several additional assumptions to the antecedents of the sequents, which
would render the proofs large, unreadable and difficult to construct. The se-
quent calculus LKP addresses this issue by extending LK with the following
rules:

• Built-in Support for Equality:

Γ, s = t, A[t] ⊢ ∆

Γ, s = t, A[s] ⊢ ∆
=l

Γ, s = t ⊢ ∆, A[t]

Γ, s = t ⊢ ∆, A[s]
=r

Γ, s = t, A[s] ⊢ ∆

Γ, s = t, A[t] ⊢ ∆
=l

Γ, s = t ⊢ ∆, A[s]

Γ, s = t ⊢ ∆, A[t]
=r

where s and t do not contain variables that are bound in A.

• Built-in Support for Definitions:2 They correspond directly to the
extension principle and introduce new predicate and function symbols as
abbreviations for formulas and terms. Let A[x1, . . . , xk] be an arbitrary
formula with free-variables x1, . . . , xk and P be a new k-ary predicate
symbol defined by P (x1, . . . , xk) ↔ A[x1, . . . , xk]. Let t[x1, . . . , xk] be an

2Definition rules have been succesfully used for formalization and analysis of mathematical
proofs [3]. They are closely related to superdeduction rules [6], which can provide even more
concise, natural and readable formal proofs. However they are not as simple to describe, and
hence definition rules have been used in this paper.
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arbitrary term with free-variables x1, . . . , xk and f be a new k-ary func-
tion symbol defined by f(x1, . . . , xk) = t[x1, . . . , xk]. Then, for arbitrary
sequences of terms t1, . . . , tk, the rules are:

A[t1, . . . , tk],Γ ⊢ ∆

P (t1, . . . , tk),Γ ⊢ ∆
dl

Γ ⊢ ∆, A[t1, . . . , tk]

Γ ⊢ ∆, P (t1, . . . , tk)
dr

F [t[t1, . . . , tk]],Γ ⊢ ∆

F [f(t1, . . . , tk)],Γ ⊢ ∆
dl

Γ ⊢ ∆, F [t[t1, . . . , tk]]

Γ ⊢ ∆, F [f(t1, . . . , tk)]
dr

• Built-in Support for Simplification: let t (or t′) be obtainable from
t′ (t) by algebraic or arithmetical simplifications3. Then the rules are:

F [t′],Γ ⊢ ∆

F [t],Γ ⊢ ∆
sl

Γ ⊢ ∆, F [t′]

Γ ⊢ ∆, F [t]
sr

• Built-in Support for Integration and Differentation:4 let t1 (t2)
be a term denoting the integral of the function denoted by t′1 (t′2) on the
interval (x1, x2). Then the rules are:

F [t1 = t2],Γ ⊢ ∆

F [t′1 = t′2],Γ ⊢ ∆

∫ x2

x1
: l

Γ ⊢ ∆, F [t′1 = t′2]

Γ ⊢ ∆, F [t1 = t2]

∫ x2

x1
: r

3. A Simple Example: Energy Conservation as a Cut

To solve problems of physics, certain invariants (such as energy) are fre-
quently used. This is so because solving problems by using a derived principle
(such as the principle of energy conservation) is usually easier than solving
them by using the most basic physical laws or axioms. This section intends to
exemplify how problem solution can generally be seen from a proof-theoretic
perspective in which the use of derived principles corresponds to an implicit use
of the cut rule. The following simple problem of Newtonian mechanics shall be
considered:

An object of mass m is dropped from height h0 and with initial
velocity equal to zero. The only force acting on the object is the
force of gravity (with an intensity mg). What is the velocity of the
object when its height is equal to zero?

3It is beyond the scope of this paper to define precisely the allowed simplifications. This
kind of rule is inspired by deduction modulo, whose precise definitions can be found in [9].
In principle, simplification rules are not necessary, because they can be simulated by equality
rules together with the arithmetical and algebraic axioms as additional assumptions in the
antecedentes of the sequents. However, the goal of simplification rules (and deduction modulo)
is to hide uninteresting computational details of the underlying theories (e.g. arithmetics),
in order to obtain concise formal proofs that show only interesting information related to the
theory under investigation (e.g. newtonian mechanics).

4Integration and Differentiation Rules have been inspired by emerging idea of integrating
computer algebra systems and automated theorem provers.
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A typical solution (Solution 1) to this problem uses the principle of energy
conservation, as follows:

1. Let tf be the time when the object reaches height zero.

2. According to the principle of energy conservation, e(tf ) = e(0), i.e. the energy
at tf is equal to the initial energy.

3. Hence, by definition of gravitational potential energy in a uniform gravitational

field and by definition of kinetic energy, mgh(tf )+m
ḣ(tf )2

2
= mgh(0)+m

ḣ(0)2

2
.

4. According to the initial conditions, h(0) = h0 and ḣ(0) = 0. Moreover, by

assumption, h(tf ) = 0. Therefore, m
ḣ(tf )2

2
= mgh0.

5. Hence, the result is ḣ(tf ) = −
√
2gh0.

Another solution (Solution 2) computes the velocity as a function of time
by integrating the acceleration produced by the gravitational force. Then it
determines the time when the object reaches height zero, and computes the
velocity at that time. The details are shown below:

1. According to Newton’s second law of motion, f(t) = mḧ(t) at any time t.
Moreover, the uniform gravitational field produces a force f(t) = −mg. Hence,
ḧ(t) = −g.

2. By integration, ḣ(t) = −gt+ ḣ(0).

3. According to the initial conditions, ḣ(0) = 0, and hence ḣ(t) = −gt.
4. By integration again, h(t) = −g t2

2
+ h(0).

5. According to the initial conditions, h(0) = h0, and hence h(t) = −g t2

2
+ h0.

6. For h(tf ) = 0 to hold, it must be the case that tf =
√

2h0
g

.

7. Hence ḣ(tf ) = −g
√

2h0
g

, which can be simplified to ḣ(tf ) = −
√
2gh0.

Solution 2 is simpler in the sense that it uses only the basic physical laws of
motion (here assumed to be Newton’s laws of motion) and of uniform gravita-
tional fields. Solution 1, on the other hand, assumes that energy is conserved,
without actually proving it from Newton’s basic laws.

In order to view problem solving from a proof theoretic perspective, it is
necessary to formalize problem solving as theorem proving. In the example
above, the problem can be stated as the following theorem to be proved:

(∃t′)(h(t′) = 0 ∧ (∃v) ḣ(t′) = v)

Solving the given problem then consists of finding a proof of the theorem
above such that v is instantiated by a ground term. Interestingly, formalizing the
problem as a theorem to be proved enforces the explicit mention of the hidden
assumption that the height eventually becomes zero; otherwise the variable t′

would be free and the theorem would be open.
Traditionally, works of axiomatization have formalized physical laws as ax-

ioms that are supposed to be used as assumptions in proofs [20]. In a more
modern proof-theoretical approach, however, definition rules often provide a
more convenient alternative. The axioms corresponding to certain physical
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laws can be seen as defining new symbols. This is the case, for example, of
Newton’s second law, which states that force equals mass times acceleration
(f(t) = mḧ(t)). It can be seen as defining the function symbol f . Similarly,
the equation for energy of a single object in a uniform newtonian gravitational

field (e(t) = mgh(t)+m ḣ(t)2

2 ) can be seen as defining the function symbol e.For
convenience, the defined predicate symbols below are also used in the following
formal proofs:

Initial Conditions: I ↔ Init ↔ h(0) = h0 ∧ ḣ(0) = 0
Uniform Gravitation: G ↔ Gravity ↔ (∀t)(f(t) = −mg)
Fall of the Object: F ↔ Fall ↔ (∃t) h(t) = 0
Energy Conservation: EC ↔ EnergyConservation ↔ (∀ti)(∀tj) e(ti) = e(tj)

6



Solution 1 can be easily formalized as the proof ϕ1 below (where ϕ′
1 is a

subproof consisting of the single axiom sequent h(tf ) = 0 ⊢ h(tf ) = 0):

ϕ′
1

ḣ(tf ) = −
√

2gh0 ⊢ ḣ(tf ) = −
√

2gh0
∃r

ḣ(tf ) = −
√

2gh0 ⊢ (∃v) ḣ(tf ) = v
sl

mg0 + m
ḣ(tf )2

2
= mgh0 + m 02

2
⊢ (∃v) ḣ(tf ) = v

wl

h(tf ) = 0, h(0) = h0, ḣ(0) = 0,mg0 + m
ḣ(tf )2

2
= mgh0 + m 02

2
⊢ (∃v) ḣ(tf ) = v

=l

h(tf ) = 0, h(0) = h0, ḣ(0) = 0,mgh(tf ) + m
ḣ(tf )2

2
= mgh(0) + m

ḣ(0)2

2
⊢ (∃v) ḣ(tf ) = v

dl
h(tf ) = 0, h(0) = h0, ḣ(0) = 0, e(tf ) = e(0) ⊢ (∃v) ḣ(tf ) = v

∀l
h(tf ) = 0, h(0) = h0, ḣ(0) = 0, (∀ti)(∀tj) e(ti) = e(tj) ⊢ (∃v) ḣ(tf ) = v

∀l
h(tf ) = 0, h(0) = h0, ḣ(0) = 0, (∀ti)(∀tj) e(ti) = e(tj) ⊢ (∃v) ḣ(tf ) = v

∧r
h(tf ) = 0, h(tf ) = 0, h(0) = h0, ḣ(0) = 0, (∀ti)(∀tj) e(ti) = e(tj) ⊢ h(tf ) = 0 ∧ (∃v) ḣ(tf ) = v

cl
h(tf ) = 0, h(0) = h0, ḣ(0) = 0, (∀ti)(∀tj) e(ti) = e(tj) ⊢ h(tf ) = 0 ∧ (∃v) ḣ(tf ) = v

∃r
h(tf ) = 0, h(0) = h0, ḣ(0) = 0, (∀ti)(∀tj) e(ti) = e(tj) ⊢ (∃t′)(h(t′) = 0 ∧ (∃v) ḣ(t′) = v)

∃l
(∃t) h(t) = 0, h(0) = h0, ḣ(0) = 0, (∀ti)(∀tj) e(ti) = e(tj) ⊢ (∃t′)(h(t′) = 0 ∧ (∃v) ḣ(t′) = v)

∧l
(∃t) h(t) = 0, h(0) = h0 ∧ ḣ(0) = 0, (∀ti)(∀tj) e(ti) = e(tj) ⊢ (∃t′)(h(t′) = 0 ∧ (∃v) ḣ(t′) = v)

dl
Fall, Init, EnergyConservation ⊢ (∃t′)(h(t′) = 0 ∧ (∃v) ḣ(t′) = v)

Solution 2 can be formalized as the following proof ϕ2:

h

(

√

2h0
g

)

= 0 ⊢ h

(

√

2h0
g

)

= 0

wl

h(0) = h0, h

(

√

2h0
g

)

= 0 ⊢ h

(

√

2h0
g

)

= 0

ḣ

(

√

2h0
g

)

= −
√

2gh0 ⊢ ḣ

(

√

2h0
g

)

= −
√

2gh0

∃r

ḣ

(

√

2h0
g

)

= −
√

2gh0 ⊢ (∃v) ḣ

(

√

2h0
g

)

= v

sl

ḣ

(

√

2h0
g

)

= −g

√

2h0
g

⊢ (∃v) ḣ

(

√

2h0
g

)

= v

∀l

(∀t)(ḣ(t) = −gt) ⊢ (∃v) ḣ

(

√

2h0
g

)

= v

wl

ḣ(0) = 0, (∀t)(ḣ(t) = −gt) ⊢ (∃v) ḣ

(

√

2h0
g

)

= v

∧r

h(0) = h0, ḣ(0) = 0, h

(

√

2h0
g

)

= 0, (∀t)(ḣ(t) = −gt) ⊢ h

(

√

2h0
g

)

= 0 ∧ (∃v) ḣ

(

√

2h0
g

)

= v

∃r

h(0) = h0, ḣ(0) = 0, h

(

√

2h0
g

)

= 0, (∀t)(ḣ(t) = −gt) ⊢ (∃t′)(h(t′) = 0 ∧ (∃v) ḣ(t′) = v)

sl

h(0) = h0, ḣ(0) = 0, h

(

√

2h0
g

)

= −g

(

√

2h0
g

)2

2
+ h0, (∀t)(ḣ(t) = −gt) ⊢ (∃t′)(h(t′) = 0 ∧ (∃v) ḣ(t′) = v)

∀l

h(0) = h0, ḣ(0) = 0, (∀t)(h(t) = −g t2

2
+ h0), (∀t)(ḣ(t) = −gt) ⊢ (∃t′)(h(t′) = 0 ∧ (∃v) ḣ(t′) = v)

=l

h(0) = h0, ḣ(0) = 0, (∀t)(h(t) = −g t2

2
+ h(0)), (∀t)(ḣ(t) = −gt) ⊢ (∃t′)(h(t′) = 0 ∧ (∃v) ḣ(t′) = v)

∫

l
h(0) = h0, ḣ(0) = 0, (∀t)(ḣ(t) = −gt), (∀t)(ḣ(t) = −gt) ⊢ (∃t′)(h(t′) = 0 ∧ (∃v) ḣ(t′) = v)

cl
h(0) = h0, ḣ(0) = 0, (∀t)(ḣ(t) = −gt) ⊢ (∃t′)(h(t′) = 0 ∧ (∃v) ḣ(t′) = v)

sl
h(0) = h0, ḣ(0) = 0, (∀t)(ḣ(t) = −gt + 0) ⊢ (∃t′)(h(t′) = 0 ∧ (∃v) ḣ(t′) = v)

=l
h(0) = h0, ḣ(0) = 0, (∀t)(ḣ(t) = −gt + ḣ(0)) ⊢ (∃t′)(h(t′) = 0 ∧ (∃v) ḣ(t′) = v)

∫

l
h(0) = h0, ḣ(0) = 0, (∀t)(ḧ(t) = −g) ⊢ (∃t′)(h(t′) = 0 ∧ (∃v) ḣ(t′) = v)

sl
h(0) = h0, ḣ(0) = 0, (∀t)(mḧ(t) = −mg) ⊢ (∃t′)(h(t′) = 0 ∧ (∃v) ḣ(t′) = v)

dl
h(0) = h0, ḣ(0) = 0, (∀t)(f(t) = −mg) ⊢ (∃t′)(h(t′) = 0 ∧ (∃v) ḣ(t′) = v)

∧l
h(0) = h0 ∧ ḣ(0) = 0, (∀t)(f(t) = −mg) ⊢ (∃t′)(h(t′) = 0 ∧ (∃v) ḣ(t′) = v)

dl
Init,Gravity ⊢ (∃t′)(h(t′) = 0 ∧ (∃v) ḣ(t′) = v)
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As expected ϕ1 is not only smaller than ϕ2, but also simpler in the sense
that it does not use integration. Furthermore, while in ϕ2 the time when the
object hits the floor has to be computed explicitly (i.e. t′ is instantiated to a
ground term), in ϕ1 this is not so (i.e. t′ is instantiated to a variable).

Solution 1 implicitly uses cuts, because EnergyConservation and Fall are
not considered to be basic laws of physics. In principle, ϕ1 must be composed
with a proof ϕE of EnergyConservation and a proof ϕF of Fall . This is done
with two cuts, as shown in the following proof ϕ:

ϕF

Init,Gravity ⊢ Fall

ϕE

Gravity ⊢ EC

ϕP

Init,Fall,EC ⊢ (∃t′)(h(t′) = 0 ∧ (∃v) ḣ(t′) = v)
cut

Init,Gravity,Fall ⊢ (∃t′)(h(t′) = 0 ∧ (∃v) ḣ(t′) = v)
cut

Init, Init,Gravity,Gravity ⊢ (∃t′)(h(t′) = 0 ∧ (∃v) ḣ(t′) = v)
cl

Init,Gravity ⊢ (∃t′)(h(t′) = 0 ∧ (∃v) ḣ(t′) = v)

Where ϕF is the proof below, proving that the object will eventually fall to
height zero under the gravitational field and the initial conditions specified in
the description of the problem:

h
(√

2h0
g

)

= 0 ⊢ h
(√

2h0
g

)

= 0
∃r

h
(√

2h0
g

)

= 0 ⊢ (∃t′) h(t′) = 0
sl

h
(√

2h0
g

)

= −g

(

√

2h0
g

)2

2
+ h0 ⊢ (∃t′) h(t′) = 0

∀l
(∀t)(h(t) = −g t2

2
+ h0) ⊢ (∃t′) h(t′) = 0

wl

h(0) = h0, (∀t)(h(t) = −g t2

2
+ h0) ⊢ (∃t′) h(t′) = 0

=l

h(0) = h0, (∀t)(h(t) = −g t2

2
+ h(0)) ⊢ (∃t′) h(t′) = 0 ∫

l
h(0) = h0, (∀t)(ḣ(t) = −gt) ⊢ (∃t′) h(t′) = 0

wl

h(0) = h0, ḣ(0) = 0, (∀t)(ḣ(t) = −gt+ 0) ⊢ (∃t′) h(t′) = 0
sl

h(0) = h0, ḣ(0) = 0, (∀t)(ḣ(t) = −gt+ 0) ⊢ (∃t′) h(t′) = 0
=l

h(0) = h0, ḣ(0) = 0, (∀t)(ḣ(t) = −gt+ ḣ(0)) ⊢ (∃t′) h(t′) = 0 ∫

l
h(0) = h0, ḣ(0) = 0, (∀t)(ḧ(t) = −g) ⊢ (∃t′) h(t′) = 0

sl
h(0) = h0, ḣ(0) = 0, (∀t)(mḧ(t) = −mg) ⊢ (∃t′) h(t′) = 0

dl
h(0) = h0, ḣ(0) = 0, (∀t)(f(t) = −mg) ⊢ (∃t′) h(t′) = 0 ∧l

h(0) = h0 ∧ ḣ(0) = 0, (∀t)(f(t) = −mg) ⊢ (∃t′) h(t′) = 0
d

Init ,Gravity ⊢ Fall
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And ϕE is the proof that energy is conserved in a uniform gravitational field:

⊢ gh(0) +
ḣ(0)2

2
= gh(0) +

ḣ(0)2

2
wl

(ḣ(α) = −gα + ḣ(0)), (h(t) = −g α2

2
+ ḣ(0)α + h(0)), (ḣ(β) = −gβ + ḣ(0)), (h(β) = −g

β2

2
+ ḣ(0)β + h(0)) ⊢ gh(0) +

ḣ(0)2

2
= gh(0) +

ḣ(0)2

2
=∗

r, s∗r

(ḣ(α) = −gα + ḣ(0)), (h(t) = −g α2

2
+ ḣ(0)α + h(0)), (ḣ(β) = −gβ + ḣ(0)), (h(β) = −g

β2

2
+ ḣ(0)β + h(0)) ⊢ gh(α) +

ḣ(α)2

2
= gh(β) +

ḣ(β)2

2
∀l

(∀t)(ḣ(t) = −gt + ḣ(0)), (∀t)(h(t) = −g t2

2
+ ḣ(0)t + h(0)), (∀t)(ḣ(t) = −gt + ḣ(0)), (∀t)(h(t) = −g t2

2
+ ḣ(0)t + h(0)) ⊢ gh(α) +

ḣ(α)2

2
= gh(β) +

ḣ(β)2

2
cl

(∀t)(ḣ(t) = −gt + ḣ(0)), (∀t)(h(t) = −g t2

2
+ ḣ(0)t + h(0)) ⊢ gh(α) +

ḣ(α)2

2
= gh(β) +

ḣ(β)2

2
cl

(∀t)(ḣ(t) = −gt + ḣ(0)) ⊢ gh(α) +
ḣ(α)2

2
= gh(β) +

ḣ(β)2

2 ∫

l

(∀t)(ḧ(t) = −g) ⊢ gh(α) +
ḣ(α)2

2
= gh(β) +

ḣ(β)2

2
s

(∀t)(mḧ(t) = −mg) ⊢ mgh(α) + m
ḣ(α)2

2
= mgh(β) + m

ḣ(β)2

2
dr

(∀t)(mḧ(t) = −mg) ⊢ e(α) = e(β)
dl

(∀t)(f(t) = −mg) ⊢ e(α) = e(β)
∀r

(∀t)(f(t) = −mg) ⊢ e(α) = e(β)
∀r

(∀t)(f(t) = −mg) ⊢ (∀ti)(∀tj) e(ti) = e(tj)

d
Gravity ⊢ EnergyConservation
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4. Benefits and Challenges of a Proof-Theoretical Approach to the

Formalization of Physics

The following subsections are devoted to discussing what proof theory has
to offer to the formalization of Physics, with emphasis on computational and
philosophical aspects.

4.1. Cut-Introduction

The example discussed in the previous section illustrates that an essential
task of theoretical science is to invent or discover important concepts that are
useful to solve problems, such as the principle of energy conservation in new-
tonian mechanics. Nevertheless, in a traditional axiomatization approach, such
principles have no prominent role, because they are merely theorems derivable
from the axioms. In a more proof-theoretic approach, on the other hand, proofs
allow a structured formalization of the scientific knowledge, where important
principles like energy conservation appear prominently formalized as active for-
mulas in cut inferences, as shown in the formal proof ϕ of Section 3. Indeed,
reductionism in Science can generally be captured by the proof-theretical notion
of cut. Consequently, a significant part of the usual scientific activity can be
formally described as cut-introduction.

Cut-introduction also leads to the compression of proofs. Although the gen-
eral problem of finding the shortest proofs by means of cut-introduction is un-
decidable [5], there are a few preliminary algorithms that introduce simple cuts
[15, 10, 24], and it has been shown that some techniques of machine learning,
such as decision tree learning, can be seen as cut-introduction techniques from a
proof-theoretical point of view [23]. Therefore, a potential benefit of using proofs
to formalize Physics is the possibility of applying cut-introduction techniques in
order to automatically discover useful physical concepts. However, it must be
noted that current cut-introduction techniques are still not sophisticated enough
to be applied to formalized proofs of Physics.

4.2. Cut-Elimination

The problem of eliminating cuts from proofs is much easier than the problem
of introducing cuts and has been much more deeply investigated [11, 4]. By us-
ing cut-elimination algorithms, it might be possible to automatically transform
a solution that uses a derived principle (i.e. a cut) such as energy conservation
(e.g. Solution 1 in Section 3) into a solution that uses only the basic laws of a
theory (e.g. Solution 2 in Section 3). This is advantageous in certain cases, for
in a cut-free proof it is easy, via Gentzen’s Midsequent Theorem [11] or more
general Herbrand sequent extraction algorithms [16], to extract a Herbrand dis-
junction [12] that contains instances of the quantified variables of the problem.
For example, in the cut-free proof of Solution 2, the existentially quantified
variable for the time when the object reaches height zero is instantiated by a
ground term that denotes exactly when this happens. In the proof with cuts
that formalizes Solution 1, on the other hand, it is instantiated by an eigen-
variable, and hence the time when the object reaches height zero is not known.
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Therefore, cut-elimination could in principle be used as an algorithm that in-
stantiates the variables of a problem that were left unsolved. However, even
though this idea has been succesfully used in mathematics [14], the challenge in
the case of Physics is to make cut-elimination algorithms work with high-level
calculi such as LKP.

4.3. Logic Programming

The idea of formalizing a problem as a theorem and in such a way that its
solution is in the instances used for the quantified variables in the proof is the
fundamental principle behind the logic programming paradigm of computation,
of which Prolog [19] is the most prominent language. Therefore, the proof-
theoretical approach to the formalization of Physics brings a new paradigm
of computation that might be the subject of studies from the point of view of
Physics itself, as imperative computation, which is modeled by Turing machines,
has been.

4.4. Functional Programming and the Curry-Howard Isomorphism

The Curry-Howard isomorphism [8] states that there is a correspondence
between proofs of the implicational fragment of intuitionistic logic and lambda
terms. A proof is essentially a functional program. Cut-elimination corresponds
to beta-reduction, which is the execution of the program. Cut-introduction cor-
responds to structuring of the program and possibly to code reuse. By extrap-
olating this isomorphism, theories of Physics formalized as collections of proofs
can be seen as collections of programs. This kind of computation, which is im-
plicit in the formalization of Physics, is yet another link between Physics and
computation that might be the target of future work.

4.5. Instrumentalism: Truth versus Usefulness

From an instrumental viewpoint, “the most important function of a theory
is not to organize or assert statements that are true or false but to furnish
material principles of inference that may be used in inferring one set of facts from
another”. This idea is supported by the proof-theoretical approach described
here, as shown in the formal proof ϕ2 in Section 3, where Newton’s law of
motion was not merely a statement; it was used as a principle of inference, in
the form of a definition inference rule. Instrumentalism also judges theories
by how useful they are in solving problems. The proof-theoretical approach
naturally embraces this criterium of usefulness, since solutions to problems can
be formalized as proofs, as shown by ϕ1 and ϕ2. And as the commitment to
truth is not given up, it conciliates two opposing positions in the philosophy of
science.

4.6. The Evolution of Theories

Another philosophical viewpoint that opposes axiomatization is that of Welt-
anschauungen analyses, according to which science ought to be viewed as “an on-
going social enterprise [and] epistemic understanding of scientific theories could
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only be had by seeing the dynamics of theory development” [20]. “An ultimately
meaningful answer to the question ‘what is a scientific theory?’ cannot be given
in terms of the kinds of concepts considered earlier [axiomatization and seman-
tics]. An adequate and complete answer can be given only in terms of an explicit
and detailed consideration of both the producers and consumers of the theory.”
[21]. Proof theory conciliates formalization with this philosophical viewpoint in
the following way: by defining scientific theories as collections of proofs, they
can evolve by the addition of new proofs, and Kuhn’s major paradigm shifts can
be seen as major proof transformations (e.g. cut-elimination, cut-introduction
and addition of new definitions).

4.7. Algorithmic Information Theory

Algorithmic Information Theory (AIT) sees scientific theories as data com-
pressed in the form of programs. It provides a very simple, elegant and general
criterium to judge and compare theories: the smaller the program, the better
the theory. However, the proponents of AIT are currently making an unfortu-
nate choice of how to encode their data, and this causes the limitations of their
approach. Diagrams in [7] suggest that theories/programs should correspond to
axioms, and the execution of the program by a computer, regarded as an auto-
mated theorem prover, should output empirical data in the form of theorems.
Therefore, they essentially adhere to the traditional Hilbert-style axiomatization
approach, and hence they suffer the same drawbacks, which are nicely explained
from a computational point of view in [7]. Two of them can be summarized as
follows: in current AIT, computation time is ignored, because only program
size matters; and the theory/program’s language is static, implying that new
concepts can never emerge and the theory can never evolve.

Fortunately, proof theory can rescue AIT as well, and even provide further
insight. The idea is that AIT’s principle of program-size minimality should
be applied not to axioms (artificially encoded as programs) but rather to the
proofs that formalize a scientific theory. From a conceptual point of view, it
is clear that proof theory and AIT fit perfectly together, because proofs are
already programs according to the (extrapolated) Curry-Howard isomorphism.
The computation time that was previously ignored now appears explicitly as
the length of proofs [17] and theories can naturally evolve by the addition and
transformation of proofs in the collection, with new concepts emerging by the
introduction of cuts and definition inferences.

Another indication that AIT and proof theory fit well together is the nat-
ural relation between cut-introduction and kolmogorov complexity [13]. The
Kolmogorov complexity C(ψ) of a proof ψ can be defined as the size of the
shortest proof ψ′ that can be obtained by cut-introduction from ψ (and, con-
versely, such that ψ can be reconstructed from ψ′ by cut-elimination).

5. Conclusions

“It is unheard of to find a substantive example of a theory actually worked
out as a logical calculus in the writings of most philosophers of science. Much
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handwaving is indulged in to demonstrate that this [. . . ] is simple in principle
and only a matter of tedious detail, but concrete evidence is seldom given.”
[21]. In Section 3, an example of problem solution in Newtonian mechanics has
been successfully worked out in a sequent calculus extended with sophisticated
simplification, integration and definition rules, inspired by recent advances in
Proof Theory. These extensions are the key to the small size and significantly
reduced amount of tedious detail in the obtained formal proofs.

Section 4 showed that this proof-theoretical approach successfully conciliates
and unifies various philosophical views of Science, such as formalism, instrumen-
talism and Weltanschauungen analyses. The essence of these achievements lies
in seeing scientific theories not just as collections of facts, as assumed by tradi-
tional axiomatization. Scientific theories ought to be formalized as collections of
proofs. The structure of scientific knowledge can be nicely formalized with cuts,
and much of the scientific activity can be formally described as proof generation
or proof transformation. The task of organizing knowledge, for example, can be
formally described as cut-introduction.

Moreover, cut-introduction potentially compresses proofs, which can also be
seen as programs according to the (extrapolated) Curry-Howard isomorphism.
This indicates a tight relation between cut-introduction and Kolmogorov com-
plexity, and thus the use of proofs clarifies, conceptually improves and solves
some limitations of the ideas of algorithmic information theory with respect to
the formalization of Science.

The proof-theoretical approach advocated here should be seen not as com-
peting against existing axiomatic and semantical approaches, but rather as com-
plementing them by enriching their formalizations with structure.

Future work should concentrate on applying these proof-theoretical ideas
to complement the formalization of more interesting physical theories, such as
Relativity (e.g. [2]) and Quantum Mechanics (e.g. [1]); on improving proof
assistants and proof-theoretical techniques, such as cut-elimination and cut-
introduction, in order to support logical calculi at least as sophisticated as LKP;
and on investigating the new links between Physics and Computation that are
opened by Proof Theory.
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