LSUMBC - .
VN

a (B:izeczrf?ei;i:cal and \/
8 Environmental THEOREM PROVER

Engineering

Lean for Scientists and Engineers

Tyler R.Josephson
Al & Theory-Oriented Molecular Science (ATOMS) Lab
University of Maryland, Baltimore County

Boba Beach

Twitter: @trjosephson
o~ Grynpyret

Email: tjo@umbc.edu

https://twitter.com/trjosephson

Lean for Scientists and Engineers 2024

|. Logic and proofs for scientists and engineers
|. Introduction to theorem proving
2. Writing proofs in Lean
3. Formalizing derivations in science and engineering

2. Functional programming in Lean 4
|. Functional vs.imperative programming
2. Numerical vs. symbolic mathematics
3. Writing executable programs in Lean

3. Provably-correct programs for scientific computing

Logic and proofs for scientists and engineers

SChedUIG (tentative) Functional programming in Lean 4

July 9,2024

July 10, 2024
July 16,2024
July 17,2024
July 23,2024
July 24,2024
July 30-31,2024
August 6, 2024
August 8,2024
August 13,2024
August 14,2024
August 20,2024
August 21,2024

Provably-correct programs for scientific computing
Introduction to Lean and proofs

Equalities and inequalities

Proofs with structure Content inspired by:
Mechanics of Proof, by Heather Macbeth

Proofs with structure || , L , -
Functional Programming in Lean, by David Christiansen

Proofs about functions; types

Calculus-based-proofs

Prof. Josephson traveling

Functions, definitions, structures, recursion

Polymorphic functions for floats and reals, compiling Lean to C
Input / output, lists, arrays, and indexing

Lists, arrays, indexing, and matrices

LeanMD & BET Analysis in Lean

SciLean tutorial, by Tomas Skrivan

Guest instructor: Tomas Skrivan

Schedule for today

|. Recap Lecture 5

2. More on function types
3. “Junk” values
4.

Calculus in Lean

Slide from Lecture 3

How to find tactics

* Keep learning them one by one!
* Indexes for Mechanics of Proof, Mathematics in Lean

* Consult lists of useful tactics

* https://github.com/madvorak/lean4-tactics
* https://github.com/Colin | 66/Lean4/blob/main/Useful Tactics

* If you have a tactic in hand, mouseover in VS Code to see
documentation and example(s)

https://github.com/madvorak/lean4-tactics
https://github.com/Colin166/Lean4/blob/main/UsefulTactics

Slide from Lecture 3

How to find theorems

* Keep practicing!

e Search Mathlib documentation

* https://leanprover-community.github.io/mathlib4 _docs/
* Using the search bar, make a guess about what the theorem would be named, and

start checking things that look promising
* Moogle
* https://www.moogle.ai
* Describe theorem (or definition) in natural language, the scroll through options

* Consult lists of useful theorems
* https://github.com/Colin | 66/Lean4/blob/main/UsefulLemmas.lean

* If you have a theorem in hand, mouseover in VS Code to see
documentation and example(s)

https://leanprover-community.github.io/mathlib4_docs/
https://www.moogle.ai/
https://github.com/Colin166/Lean4/blob/main/UsefulLemmas.lean

Glossary of logical symbols

A - and

V-or

71 - not

- - implies

o - if and only if (implies in both directions)
J - exists

V - for all

Slide from Lecture 5

Functions: Programming vs. Math

Programming perspective Math perspective

A function takes arguments, performs
calculations, and produces an output

A function maps values from a domain
to a co-domain

Examples in Python

def squared(x):
y = X*X
return y

Slide from Lecture 5

Functions: Programming vs. Math

def squareroot(x):

X f(a) =z

return y

Not always a function!
With type Z — Z or R — R, there is no

f XY mappmg fromthe x <0 pal’t of the domain

Domain With type N — R or R — C, it is a function;

Co-domain every part of the domain maps to a value in
the co-domain

Functions: Programming vs. Math

def division(x,y): X
z = xly f (Cl?) y) -
return z Y

Not a function!
Typeis R - R —> R
Everyplace in the domain maps to an place in

f XY the codomain, except fory = 0
So... what do you do!
: X
Domain y#0 flzy)=-
Co-domain Y

y=0 flz,y) =0

https://xenaproject.wordpress.com/2020/07/05/division-by-zero-in-type-theory-a-faq/

A guide to number systems

N - Natural numbers (0, I, 2, 3,4, ...)

Z - Integers (... -3,-2,-1,0, 1,2, ...)

Q - Rational numbers (1/2, 3/4, 5/9, etc.)

R - Real numbers (-1, 3.6, 1, V2)

C - Complex numbers (-1,5 + 2i,v/2 + 5i, etc.)
~

[N lz @ J]R }@

)

Examples of functions

Electric current as a function of time

Temperature as a function of position,
Cartesian coordinates

Temperature as a function of position,
polar coordinates

Pressure as a function of thermodynamic state

Detector threshold as a function of measurement

What’s a good type!?

Currying

f(f,U) — 33'2 Type N — N

flz,y) =xxy Type N — N — N
All binary operators do this

This is called “currying” — a function with multiple arguments is transformed into a
series of functions with single arguments

Nat.mul : N — (N — N)
Natmulx: N — N
Nat.mul xy: N

Junk Values

Junk values
For N |/0=0
For N, [-2=0

Real.sqrt(-5) =0

Weird, but it makes sense if you think about number systems
For N 4/3 = |

For N, 27(1/2) = |
Nat.sqrt(8) = 2

deriv

e deriv f : R — R is a function that returns the derivative if it exists and
returns 0 otherwise
* You provide the function f and tell it what you're taking the derivative of, and
you get
* If the derivative exists (i.e., 3 f, HasDerivAt f f x),
then f x' = f x + (X' - x) * deriv f x + o(X' - X) where x' converges to x.
* This is about filters - a generalization of limits
* Learn more in Topology chapter of Mathematics in Lean

* Notice the type, this maps R as input to R as output
* Deriv does not map a function to a function, it maps a functionand a Rtoa R

Examples! (showing off some tactics today)

* simp? and aesop! are helpful tactics that find lemmas in Mathlib to
solve your problem

* simp and aesop do the same thing, but don’t show you what lemmas
were found

* The show tactic is like the have tactic, but it’s used in-place so you
don’t even generate a hypothesis

The product rule

(u-v) =u - v+u-

In Lean, access this with
rw [deriv_mul]

This creates 3 goals:

|) Prove the calculation above is correct
2) Prove that U’ is differentiable

3) Prove that v’ is differentiable

