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Abstract

The Collatz Conjecture, first posed in 1937 by Lothar Collatz, has

finally been confirmed through a series of nested proofs by fifteen-year-

old Cody T. Dianopoulos.
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1 Introduction

In 1937, Lothar Collatz posed a relevant additive number theory. He speculated
that given a number n ∈ N can be transformed recursively to become 1 with
the following series of transformations:

c(n) =

{

n/2 if n ≡ 0 (mod 2)
3n+ 1 if n ≡ 1 (mod 2)

For example, start with the number 18. 18→9→28→14→7→22→11→34→
17→52→26→13→40→20→10→5→16→8→4→2→1. The conjecture, which later
became known as the Collatz Conjecture, states:

This process will eventually reach the number 1, regardless of
which positive integer is chosen initially.

Previously, there are no solid proofs that his conjecture was correct, although
much evidence supports it. For example, computer algothims have confirmed
that if a non-reducible number existed, it would have to be larger than the
5.764×1018 already tested values of n. Fortunately, my proof is here to confirm
that no values of n are non-reducible.

2 What Needs to Be Proven?

The first step in proving the Collatz Conjecture would be to evaluate what
actually needs to be proven. The recursive function needs to be proven across
all n ∈ N. Since any even numbers will just be divided by 2 enough times to
transform into an odd number, this conjecture only needs to be proven for all
odd natural numbers. This will be proven by working backwards. This whole
proof is based on the fact that

4k − 1

3
∈ N∀k ∈ N

3 Considerations

Consider functions o(x) = x−1
3 and e(x) = x(2k) for an arbitrary k ∈ N. These

are the reverse of the two transformations requested in this problem. o(x)
converts even inputs only into odd outputs. e(x) converts odd inputs only into
even outputs. This means that the only senisble compound functions would be
o(e(x)) and e(o(x)). Since I’m only trying to prove this for odd numbers only,

let f(x) = o(e(x)) =
x(2k)− 1

3

and

let fa(x) = f compounded within itself a times

Also, let µ = the set of all numbers reducible to 1 through the Collatzian
algorithm c(n).
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4 Proof

Lemma 1. A power of 2 plus that natural power plus 1 of 2 is divisible by 3.

Proof.

2k + 2k+1 = 2k(1 + 2) = 2k(3) where k ∈ N

Lemma 2. A power of 2, minus 1, and divided by 3 composite if and only if it

is an even power of 2.

Proof. Consider a formula for a power of 2, minus 1, and divided by 3:

2k − 1

3
=

k−1
∑

i=0

2i

3

If this were true, then it can be rearranged to be

2k = 1 +

k−1
∑

i=0

2i

You can use mathematical induction to show that this formula applies for k+1:

2k+1 = 2 +

k−1
∑

i=0

2i+1 = 2 +

k
∑

i=1

2i = 1 +

k
∑

i=0

2i

Because of Lemma 1, 2i

3 must be added an even amount of times, thus k must
be a multiple of 2.

Working backwards manages to state that near the end of the series of trans-
formations, either µ must be a power of 2 initially, or will contain a number n
such that

n =
4k − 1

3

This series, in which ak = 4k−1
3 , constitutes the first values of µ.

Lemma 3.

fa(n) =























n−1
3 + n

k−1
∑

i=0

4i if n ≡ 1 (mod 3)

2n−1
3 + 2n

k−1
∑

i=0

4i if n ≡ 2 (mod 3)
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Proof. The values of µ can be grouped into three groups: those divisible by 3,
those with a remainder of 1 when divided by 3, and those with a remainder of
2 when divided by 3. Since the proof is sticking with the odd domain, 3x will
represent the multiple of 3, 3x+4 will be the value with remainder 1, and 3x+2
will be the value with remainder 2.

When performing f(3x), it would not be in a range of natural numbers

because 3x(2k)−1
3 = x(2k)− 1

3 . This means that if the reverse sequence reaches
a multiple of 3, the sequence terminates at that path.

With f(3x + 4), the sequence continues for f2a(x). This is given by the
equation:

n(4k)− 1

3

. This sequence can be generalized to be equal to another:

n(4k)− 1

3
=

n− 1

3
+ n

k−1
∑

i=0

4i

It can be rearranged and proven through Lemma 2:

4k = 1 + 3

k−1
∑

i=0

4i ⇒
22n − 1

3
=

k−1
∑

i=0

4i

With f(3x + 1), the sequence continues for f2a+1(x). This is given by the
equation:

2n(4k)− 1

3

. This sequence can be generalized to be equal to another:

2n(4k)− 1

3
=

2n− 1

3
+ 2n

k−1
∑

i=0

4i

It, too, can be rearranged and proven through Lemma 2:

4k = 1 + 3

k−1
∑

i=0

4i ⇒
22n − 1

3
=

k−1
∑

i=0

4i

Therefore,

fa(n) =























n−1
3 + n

k−1
∑

i=0

4i if n ≡ 1 (mod 3)

2n−1
3 + 2n

k−1
∑

i=0

4i if n ≡ 2 (mod 3)
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Lemma 4. µ contains the set of all natural numbers.

Proof. Lemma 3 states that µ now encapsulates all

fa(n) =























n−1
3 + n

k−1
∑

i=0

4i if n ≡ 1 (mod 3)

2n−1
3 + 2n

k−1
∑

i=0

4i if n ≡ 2 (mod 3)

Since
k

∑

i=0

4i has no limit, it can be disregarded and state that µ encapsulates all

fa(n) =

{

n−1
3 if n ≡ 1 (mod 3)

2n−1
3 if n ≡ 2 (mod 3)

This means that all that is left to do is to state that fa(n) is valid for the set
of all odd natural numbers. Since fa(n) accounts for modular values of odd
numbers, and fa(n) extends and terminates at all multiples of 3, fa(n) has a
value for all natural numbers.
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