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@ Computational real algebraic geometry
© Isabelle/HOL

© Automation

@ Equivalent definitions

© Transferring results between frameworks

@ Summary
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Computational Real Algebraic Geometry

o Study {z € R" [ p1(x) > 0,...,pu(2) 20} (p; € Q[T]).

pi(z) =1 — 22 — o2

pa(z) = (z — 0.3)* + (y — 0.5)% — 0.02
p3(z) = (x +0.3)%> + (y — 0.5)* — 0.02
pa(z) = 0.0522 4 (y 4 0.5)* — 0.02

@ Want to formally verify algorithms and their implementations.
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Real closed fields

Definition

A real closed field (RCF) R is an ordered field in which
every positive element has a square root and
every odd-degree polynomial has a root.

@ RCFs have the same first-order properties as R: many
equivalent definitions.

@ An RCF R has algebraic closure R(i).
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Puiseaux series

Let K be a field. The field of Puiseaux series over K is

akeK,mEZ,nEN}

0 e 2+ e /2 4 1e1/3 1 2e11/6 4. € R(e).

Theorem (Newton-Puiseaux for RCFs)
Let R be an RCF. Then R{e)) is an RCF.
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Representing algebraic numbers

@ Root of p € Z[T: @ Non-Archimedean coefficients:
rational interval isolation. isolation not always possible.

p(T) = T(T — ¢) has rationally
indistinguishable roots 0, €.

[-1,-0.5] [0.5,1] [2,2.5] 0 A D
3 15 1,05 0 0% 1 15 2125 l [0
st

p(T)=T3—2T2 - T +1
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Thom encoding

Theorem (Thom's Lemma)

Let R be an RCF, and let p € R[T] be a nonzero polynomial.
Then the roots of p are distinguished by the signs of

P (D), 0" (T),p(T),...,p\%EPN(T).

p(x) > 0;p"(x <n/\ x) > 0;p"(x) <0

p(r)<()

p(T)=T3 —2T2 —T+1
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Isabelle/HOL

@ Generic proof assistant based on higher-order logic.
@ lIsar language — human-readable proofs.

@ Sledgehammer — powerful automated proof-finding.
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HOL-Algebra framework

@ Type class system: attractive but inflexible for algebra
@ Locale system: more flexible but automation is more difficult

@ HOL-Algebra: locale-based abstract algebra library with
structures defined on a carrier set
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Example Proof in Isabelle/HOL

Let R be an integral domain, and suppose p € R[T] is irreducible.
If degp > 1, then p has no roots in R.

Suppose p(z) = 0 for some x € R. By the factor theorem,
p= (T —z) - q for some q € R[T)]. Since degp > 1, p is a product
of two non-units in R[T].4 O
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Example Proof in Isabelle/HOL

Let R be an integral domain, and suppose p € R[T] is irreducible.
If degp > 1, then p has no roots in R.

lemma (in UP_domain) irred_imp_no_root:
assumes "f € carrier P" "ring irreduciblesPs f" "deg R f > 1"
shows "Vx € carrier R. to_fun f x # 0"
proof
fix x assume "x € carrier R"
show "to_fun f x # 0"
proof (rule ccontr)
assume "- to_fun f x # 0"
hence pr: "f = X _poly _minus R x @sPs UP_root_div f x"
"X_poly minus R x € carrier P" "UP_root div f x € carrier P"
using factor_theorem
by (auto simp add: <f € carrier P> «x € carrier R> X _minus_closed UP_root_div_closed)
hence "deg R f = deg R (X _poly minus R x) + deg R (UP_root div f x)"
using integral iff deg mult <ring irreduciblesPs f> ring_irreducibleE(1l) by metis
hence "deg R (X _poly minus R x) > 0" "deg R (UP_root div f x) > 0"
using degree of X minus <x € carrier R> <deg R f > 1> by auto
hence "X poly minus R x ¢ Units P" "UP_root_div f x ¢ Units P"
using unit_deg zero degree of X minus <x € carrier R> <deg R f > 1> by fastforce+
thus False using <ring irreduciblesPs f> ring irreducibleE(5) pr by force
qed
qed
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Successful automation

Let R be an integral domain, and suppose p € R[T]*.
Then degp = 0.

lemma (in UP_domain) pos_deg not_unit:
assumes "f ¢ carrier P" "deg R f > 0"
shows "f ¢ Units P"
by (metis P.Units_1_inv_ex add_is_0 assms deg_mult deg one integral iff zero_not_one not_gr_zero)

lemma (in UP_domain) unit_deg_zero:
assumes "f ¢ Units P"
shows "deg R f = 0"
using assms pos deg not unit Units closed by blast
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Automation difficulties: computation

Let K be a field, and let p(T') = aT + b be a degree-1 polynomial.
Then p(—b/a) = 0.

lemma (in UP field) deg 1 root explicit:
assumes "f € carrier P" "deg R f = 1"
shows "to fun f (© (f 0 = f 1)) = 0"
proof-
have nz: "f 1 # 0"
using assms coeff simp lcoeff nonzero deg P def by force
hence cl: "o (f 6 = f 1) € carrier R" using assms(1l) cfs closed by simp
hence c12: "f i ® (6 (f @ =~ f 1)) [?] i € carrier R" for i
using cl cfs closed assms(1l) by simp
have "to fun f (& (f0 = f1)) = (P ie{.1}. fiw (o (fo+f1l1) [~] i)"
using to_fun_formula assms cl by simp
also have "... =fl® (6 (fOo - f 1)) & f 0"
using R.finsum Suc R.finsum 0 cl c12 assms(1l) cfs closed by simp
also have "... =f 0@ o (fO® (fl®inv f 1))"
using assms(1l) cfs closed nz field inv closed by algebra
also have "... = 0"
using assms(1l) cfs closed nz field inv closed field Units R.r neg by simp
ultimately show ?thesis by simp
qed
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Automation difficulties: complex objects

In an ordered field, if Y1 | x? = 0, then x; = 0 for all j.

lemma sos_nonvanishing:
assumes "x: {1..n::nat} — carrier R" "(@Pie{l..n}. x i ® x i) = 0" "j € {1..n}"
shows "x j = 0"
using assms proof (induction n arbitrary: x j)
case 0
thus ?case by fastforce
next
case c: (Suc n)
have f: "(Mi. x i ® x i) € {1..n} — carrier R" using c(2) by auto
hence sum cl: "(@Pie{l..n}. x i ® x i) € carrier R" using finsum closed by auto
have t cl: "x (Suc n) € carrier R" using c(2) by auto
hence t sq cl: "(x (Suc n) ® x (Suc n)) € carrier R" by auto
have "insert (Suc n) {1..n} = {1..Suc n}" by auto
hence "0 = (x (Suc n) ® x (Suc n)) @& (Pie{l..n}. x i ® x i)"
using finsum_insert[of "{1..n}" "Suc n" "AXi. x i ® x i"] c(2) c(3) by auto
hence eqn: "(x (Suc n) ® x (Suc n)) = o(@Pie{l..n}. x i ® x i)"
using sum cl t sq cl minus_equality by presburger
hence "(x (Suc n) ® x (Suc n)) C 0" using sos_notation[of x n] sos _pos sum cl c(2)
minus_nonpos_is nonneg by force
hence sq _z: "(x (Suc n) ® x (Suc n)) = 0"
by (metis t sq cl zero closed sq_nonneg t _cl le antisym)
have sum_z: "(@ie{l..n}. x i ® x i) = 0" by (metis sq_z add.inv_eq 1 iff sum_cl eqn)
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Equivalent definitions of RCF

For an ordered field R the following properties are equivalent:

@ R is real closed.

e R[i] = R[T]/(T?+ 1) is an algebraically closed field.

@ R has the intermediate value property, i.e. for any p € R[T
and a,b € R such that a < b and p(a)p(b) < 0, there exists
x € (a,b) such that p(z) = 0.

@ R has no non-trivial algebraic extensions which can be
ordered.
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Formalisation of the definitions

context ordered field with poly
begin

definition "Propl real closed =
positive cone = {x ® x |x. xe€carrier R}
A (VP. polynomial (carrier R) P A odd (degree P) — (3Jrecarrier R. eval P r = 0))

definition "Prop2 alg closed =
algebraically closed (Rupt (carrier R) [1,0,1])"

definition "Prop3 ivt =
(VP a b. (P € carrier (poly_ring R) A a € carrier R A b € carrier R A aC b
A eval ParC 0AO0C eval P b)
— (3c. c € carrier RAaC cAclCbAeval Pc=0))"

definition "Prop4 closure =
VP. P € carrier (poly ring R)

A (Jle'. (ordered_field ((Rupt (carrier R) P)) le'))
— (degree P = 1)"

Formalisation of the equivalent definitions of RCF
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Symmetric polynomials

The following lemma is the one of the key lemmas to prove the
equivalence of the different definitions of RFC.

Let R be a real closed field, and let L O R be an algebraically
closed field. Suppose i € L satisfies the equation i> +1 = 0. Then
all non-constant polynomials over R have a root in R(i).

In order to prove this lemma we need to use symmetric polynomials
and some results which were proved using types instead of locales.
NB: The formalisation of this lemma is still in progress.
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The needed lemma about symmetric polynomials

Let K be a field. Fix a polynomial p € K[T| of degree d, and let
Z1,...,xq be the roots of p (listed with multiplicity) in some
algebraically closed field C O K. Let g € K [T1,...,Ty] be a
symmetric polynomial. Then q (z1,...,24) € K.
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An existing (type-based) formalisation

lemma symmetric poly of roots in subring monic:

fixes K :: "'b :: comm_ring 1:set"
and A :: "nat set"
and root :: "nat = ''a :: comm ring 1"

and 1 :: "'a = 'b"
and g :: "'b mpoly"
assumes "ring_closed K" and "Vm. coeff q m € K"
assumes "ring homomorphism 1"
assumes "finite A"
assumes "symmetric mpoly A g" and "vars g C A"
assumes "p = ([]ieA. [:-root i, 1:])"
assumes "Vi. 1 (poly.coeff p i) € K"
shows "insertion (Ax. 1 (root x)) gq € K"
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@ Type-based:

lemma uminus add conv diff:
fixes a b::"'a :: ab group add"
shows "- a+b=Db - a"

@ Pros: conciseness, better
automation. For example,
given a concrete type int, we
have -5+3=3-5
without any assumptions.

o Cons: inflexibility, e.g.,
cannot reason about
sub-groups.

Type-based vs. set-based formalisations

@ Set-based:

lemma uminus_add_conv_diff':

fixes S:: "'a set"
and add minus::"'a = 'a = ‘'a"
and zero::'a and uminus::"'a = ‘a"
and a b::"'a"

assumes "ab_group_add on with

S add zero minus uminus"
assumes "aeS" "beS"
shows "add (uminus a) b = minus b a"

@ Pros: flexibility.

@ Cons: verbosity, more proof
obligations. For example, to
derive =5 +3 =3 —5 we
still need to show 3 € Z and
5 €.
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Types-to-sets framework

@ A framework to convert a type-based formalisation to a
set-based one.

@ 'Prove easily and still be flexible.’

@ Labour in relativisation: converting ¢[a] to @O, o, A, f].
o For example, ¢[a] can be

a :: ab_group_add
and ¢, [, A, f] can be

ab_group_add_on_with S add zero minus uminus.
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Types-to-sets: ad-hoc locale to encode type class

assumptions over a carrier set

The predicate for type class assumptions
.. / / / ! !/ /
class.comm_semiring :: (‘a =" a =" a) = (‘a =" a =" a) = bool

can be ‘internalised’ automatically but those properties over a
carrier set need to be encoded ad hoc:

comm _semiring_on_with :: 'a set = (‘a =’ a =’ a)
= ("a =" a ="a) = bool
And we relate the two encodings via the Transfer package:

lemma right total comm semiring transfer[transfer rulel:
includes lifting syntax
fixes T::"'a = 'b = bool"
assumes [transfer rule]: "right total T" "bi unique T"
shows "((T ===> T ===> T)
===> (T ===> T ===> T)
===>(=))
(comm_semiring on with ({x. Domainp T x}))
class.comm semiring"
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Types-to-sets: compiling out overloaded definitions

Functions on type classes may contain overloaded definitions (e.g.,
1 and *):

fun power :: "'a::{one,times} = nat = 'a" where
"power a 0 = 1" |
"power a (Suc n) = a * (power a n)"

In types-to-sets, we may need to manually compile them out:

fun power with::"('a = 'a = 'a)
= 'a = 'a = nat = 'a" where
"power with times' one' a 0 = one'" |
"power with times' one' a (Suc n)
= times' a (power with times' one

a n)
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A locale-based formulation of the previous result on

symmetric polynomials

proposition (in field) symmetric eval in ring:
fixes K:: "'a set" and root p::"nat = 'a"
and g::"nat multiset = 'a" and A::"nat set"
assumes "algebraic closure R K"
and "p € up (R(carrier := K))"
and "p = finprod (UP R)
(Ax n. if n=0 then S(root x)
else if n=1 then 1 else 0) A"
and "Vi. root i € carrier R"
and "symmetric_mvar poly A q"
and "q € carrier (Pring (R(carrier := K)) A)"
and "finite A"
shows "eval in ring R A root q € K"
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Transferring between similar theorems

Theorem (Newton-Puiseaux for RCFs)

Let R be an RCF. Then R{e) is an RCF.

instance fpxs :: ("{alg closed field, field char 0, field gcd}") alg closed field

Theorem (Newton-Puiseaux)

Let C' be an algebraically closed field. Then C{e) is an
algebraically closed field.

locale pxs _rcf = pxs ordered field +
assumes rcf: "real closed field R (Cs)"

begin

sublocale real closed field "R(X)" "(C)
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Finding a common lemma

Theorem (‘Generalised Newton-Puiseux')

@ Let K be a field of characteristic 0, and let
P(T)=Y" AT € K(e)[T] be an irreducible polynomial
of degree n > 1. Then there is an irreducible polynomial
p € K[T] of degree d > 1 with d | n.

@ Suppose further that A, =1 and A,,_1 = 0. Write n = rd
and p"(T) = Y1 yayT*. Then a, =1, ap—1 =0 and a; is
the leading coefficient of A; for some j < n.
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Finding a common lemma

Theorem (‘Generalised Newton-Puiseux')

@ Let K be a field of characteristic 0, and let
P(T)=Y" AT € K(e)[T] be an irreducible polynomial
of degree n > 1. Then there is an irreducible polynomial
p € K[T] of degree d > 1 with d | n.

@ Suppose further that A,, =1 and A,_1 =0. Writen = rd
and p"(T) = Y1 yayT*. Then a, =1, ap—1 =0 and a; is
the leading coefficient of A; for some j < n.

Corollary (of the first part)

Fixn > 1, and let K be a field of characteristic 0. Suppose all
polynomials over K of degree d > 1 with d | n are reducible. Then
all polynomials over K (c)) of degree n are reducible.
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Transferring the common lemma

lemma RCF_pxs_fact2 [fpxs_transfer field char 0]:

fixes p :: "'a::{field char 0,field gcd} fpxs poly"

assumes deg p: "degree p > 1"
and lc_p: "lead coeff p = 1"
and coeff_deg _minus_1l: "coeff p (degree p - 1) = 0"
and "coeff p 0 # 0" "irreducible p"

obtains j r k where "irreducible (r :: 'a poly)" "degree r > 1" "degree p = k * degree r"
"lead_coeff (r ~ k) = 1" "coeff (r ~ k) (degree (r ~ k) - 1) = 0"
"j < degree (r ~ k)" "coeff p j # 0"
"coeff (r ~ k) j = fpxs_nth (coeff p j) (fpxs_val (coeff p j))"

lemma 1ift fact:

assumes "p € carrier R(X)[T]" "deg R(X) p > 1" "up ring.coeff RX)[T] p @ # OsR(X)<"
"up_ring.coeff R(X)[T] p (deg R(X) p) = LsR(Xps"
"up_ring.coeff R(X)[T] p (deg RX) p - 1) 0sR{X)¢" "ring irreduciblesR(X)[T]s p"

obtains r j k where "r € carrier R[T]" "ring irreduciblesR[T]« r" "deg R r > 1"
"deg RX) p = k * deg R r"
"up _ring.coeff R[T] (r [*]sR[T]s k) (deg R (r [*]sR[T]¢ k)) = LsRe"
"up_ring.coeff R[T] (r [* ]sR[T]a k) (deg R (r [*]sR[T]< k) - 1) = 0sRs"
"j < deg R (r [*]sR[T]z k)" "up ring.coeff RX)[T] p j # OsR{X)<"
"up_ring.coeff R[T] (r [* ]sR[T]a k) j = fs lead coeff (up ring.coeff RX)[T] p j)"
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@ Sledgehammer is very effective at closing small
(non-computational) gaps in a proof.

@ Sledgehammer allows automation of theorems that are simple
consequences of existing ones, and finds relevant lemmas.

@ In the HOL-Algebra framework, Sledgehammer struggles with
computations and complex objects. Closure conditions disrupt
automation capabilities.

@ It is feasible to transfer results from one framework to another
using the types-to-sets framework and the Transfer package.
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Project progress

@ Newton-Puiseaux for RCFs has been formalised!

@ Thom's Lemma has been formalised — up to equivalent
definitions of an RCF.

theorem Thom_encoding_unique:
assumes "P € carrier (poly ring R)" "P # 0p" "x € carrier R" "y € carrier R"
"Der_sgn_cond x P = Der_sgn cond y P" "eval P x = 0" "eval Py = 0"

shows "x = y"
using assms Thom encoding unique' self in Reali Der sgn cond[of y] by algebra

@ Equivalence of different definitions of RCF is still in progress.
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Thank you for your attention.
Any questions?
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Thom's lemma - informal proof

@ Let 0g,...,04 be a list of signs.

o Claim: {2 € R |sign pY)(z) = 0} is either empty, a point, or
an open interval.

Khovanov, Nedzelsky and Li Formalising Real Algebraic Geometry



	Computational real algebraic geometry
	Isabelle/HOL
	Automation
	Equivalent definitions
	Transferring results between frameworks
	Summary

