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Computational Real Algebraic Geometry

Study {x ∈ Rn | p1(x) ≥ 0, . . . , pn(x) ≥ 0} (pi ∈ Q[T ]).

Example

p1(x) = 1− x2 − y2

p2(x) = (x− 0.3)2 + (y − 0.5)2 − 0.02

p3(x) = (x+ 0.3)2 + (y − 0.5)2 − 0.02

p4(x) = 0.05x2 + (y + 0.5)2 − 0.02

Want to formally verify algorithms and their implementations.
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Real closed fields

Definition

A real closed field (RCF) R is an ordered field in which
every positive element has a square root and
every odd-degree polynomial has a root.

RCFs have the same first-order properties as R: many
equivalent definitions.

An RCF R has algebraic closure R(i).

Examples

R ⊆ C
Ralg ⊆ Calg
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Puiseaux series

Definition

Let K be a field. The field of Puiseaux series over K is

K⟨⟨ε⟩⟩ =

{ ∞∑
k=−m

akε
k/n

∣∣∣∣∣ ak ∈ K,m ∈ Z, n ∈ N

}

Example

ε−2 + πε−1/2 + 1
2ε

1/3 + 2ε11/6 + · · · ∈ R⟨⟨ε⟩⟩.

Theorem (Newton-Puiseaux for RCFs)

Let R be an RCF. Then R⟨⟨ε⟩⟩ is an RCF.
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Representing algebraic numbers

Root of p ∈ Z[T ]:
rational interval isolation.

Example

p (T ) = T 3 − 2T 2 − T + 1

Non-Archimedean coefficients:
isolation not always possible.

Example

p(T ) = T (T − ε) has rationally
indistinguishable roots 0, ε.
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Thom encoding

Theorem (Thom’s Lemma)

Let R be an RCF, and let p ∈ R[T ] be a nonzero polynomial.
Then the roots of p are distinguished by the signs of

p′(T ), p′′(T ), p(3)(T ), . . . , p(deg p)(T ).

Example

p (T ) = T 3 − 2T 2 − T + 1

Example

p(T ) = T (T − ε)

p′(T ) = 2T − ε

p′(0) = −ε < 0

p′(ε) = ε > 0
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Isabelle/HOL

Generic proof assistant based on higher-order logic.

Isar language – human-readable proofs.

Sledgehammer – powerful automated proof-finding.
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HOL-Algebra framework

Type class system: attractive but inflexible for algebra

Locale system: more flexible but automation is more difficult

HOL-Algebra: locale-based abstract algebra library with
structures defined on a carrier set
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Example Proof in Isabelle/HOL

Lemma

Let R be an integral domain, and suppose p ∈ R[T ] is irreducible.
If deg p > 1, then p has no roots in R.

Proof.

Suppose p(x) = 0 for some x ∈ R. By the factor theorem,
p = (T − x) · q for some q ∈ R[T ]. Since deg p > 1, p is a product
of two non-units in R[T ].#
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Example Proof in Isabelle/HOL
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Successful automation

Lemma

Let R be an integral domain, and suppose p ∈ R[T ]×.
Then deg p = 0.
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Automation difficulties: computation

Lemma

Let K be a field, and let p(T ) = aT + b be a degree-1 polynomial.
Then p(−b/a) = 0.
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Automation difficulties: complex objects

Lemma

In an ordered field, if
∑n

i=1 x
2
i = 0, then xj = 0 for all j.
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Equivalent definitions of RCF

For an ordered field R the following properties are equivalent:

R is real closed.

R[i] = R[T ]/(T 2 + 1) is an algebraically closed field.

R has the intermediate value property, i.e. for any p ∈ R[T ]
and a, b ∈ R such that a < b and p(a)p(b) < 0, there exists
x ∈ (a, b) such that p(x) = 0.

R has no non-trivial algebraic extensions which can be
ordered.
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Formalisation of the definitions

Formalisation of the equivalent definitions of RCF
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Symmetric polynomials

The following lemma is the one of the key lemmas to prove the
equivalence of the different definitions of RFC.

Lemma

Let R be a real closed field, and let L ⊇ R be an algebraically
closed field. Suppose i ∈ L satisfies the equation i2 + 1 = 0. Then
all non-constant polynomials over R have a root in R(i).

In order to prove this lemma we need to use symmetric polynomials
and some results which were proved using types instead of locales.
NB: The formalisation of this lemma is still in progress.
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The needed lemma about symmetric polynomials

Lemma

Let K be a field. Fix a polynomial p ∈ K[T ] of degree d, and let
x1, . . . , xd be the roots of p (listed with multiplicity) in some
algebraically closed field C ⊇ K. Let q ∈ K [T1, . . . , Td] be a
symmetric polynomial. Then q (x1, . . . , xd) ∈ K.
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An existing (type-based) formalisation
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Type-based vs. set-based formalisations

Type-based:

Pros: conciseness, better
automation. For example,
given a concrete type int, we
have −5 + 3 = 3− 5
without any assumptions.

Cons: inflexibility, e.g.,
cannot reason about
sub-groups.

Set-based:

Pros: flexibility.

Cons: verbosity, more proof
obligations. For example, to
derive −5 + 3 = 3− 5 we
still need to show 3 ∈ Z and
5 ∈ Z.
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Types-to-sets framework

A framework to convert a type-based formalisation to a
set-based one.

‘Prove easily and still be flexible.’

Labour in relativisation: converting φ[α] to φon
with [α,A, f̄ ].

For example, φ[α] can be

’a :: ab group add

and φon
with [α,A, f̄ ] can be

ab group add on with S add zero minus uminus.
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Types-to-sets: ad-hoc locale to encode type class
assumptions over a carrier set

The predicate for type class assumptions

class.comm semiring :: (′a ⇒′ a ⇒′ a) ⇒ (′a ⇒′ a ⇒′ a) ⇒ bool

can be ‘internalised’ automatically but those properties over a
carrier set need to be encoded ad hoc:

comm semiring on with :: ’a set ⇒ (′a ⇒′ a ⇒′ a)

⇒ (′a ⇒′ a ⇒′ a) ⇒ bool

And we relate the two encodings via the Transfer package:
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Types-to-sets: compiling out overloaded definitions

Functions on type classes may contain overloaded definitions (e.g.,
1 and *):

In types-to-sets, we may need to manually compile them out:
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A locale-based formulation of the previous result on
symmetric polynomials
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Transferring between similar theorems

Theorem (Newton-Puiseaux for RCFs)

Let R be an RCF. Then R⟨⟨ε⟩⟩ is an RCF.

Theorem (Newton-Puiseaux)

Let C be an algebraically closed field. Then C⟨⟨ε⟩⟩ is an
algebraically closed field.
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Finding a common lemma

Theorem (‘Generalised Newton-Puiseux’)

1 Let K be a field of characteristic 0, and let
P (T ) =

∑n
i=0AiT

i ∈ K⟨⟨ε⟩⟩[T ] be an irreducible polynomial
of degree n > 1. Then there is an irreducible polynomial
p ∈ K[T ] of degree d > 1 with d | n.

2 Suppose further that An = 1 and An−1 = 0. Write n = rd
and pr(T ) =

∑n
i=0 akT

k. Then an = 1, an−1 = 0 and aj is
the leading coefficient of Aj for some j < n.

Corollary (of the first part)

Fix n > 1, and let K be a field of characteristic 0. Suppose all
polynomials over K of degree d > 1 with d | n are reducible. Then
all polynomials over K⟨⟨ε⟩⟩ of degree n are reducible.

Khovanov, Nedzelsky and Li Formalising Real Algebraic Geometry



26/31

Finding a common lemma

Theorem (‘Generalised Newton-Puiseux’)

1 Let K be a field of characteristic 0, and let
P (T ) =

∑n
i=0AiT

i ∈ K⟨⟨ε⟩⟩[T ] be an irreducible polynomial
of degree n > 1. Then there is an irreducible polynomial
p ∈ K[T ] of degree d > 1 with d | n.

2 Suppose further that An = 1 and An−1 = 0. Write n = rd
and pr(T ) =

∑n
i=0 akT

k. Then an = 1, an−1 = 0 and aj is
the leading coefficient of Aj for some j < n.

Corollary (of the first part)

Fix n > 1, and let K be a field of characteristic 0. Suppose all
polynomials over K of degree d > 1 with d | n are reducible. Then
all polynomials over K⟨⟨ε⟩⟩ of degree n are reducible.

Khovanov, Nedzelsky and Li Formalising Real Algebraic Geometry



27/31

Transferring the common lemma
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Summary

Sledgehammer is very effective at closing small
(non-computational) gaps in a proof.

Sledgehammer allows automation of theorems that are simple
consequences of existing ones, and finds relevant lemmas.

In the HOL-Algebra framework, Sledgehammer struggles with
computations and complex objects. Closure conditions disrupt
automation capabilities.

It is feasible to transfer results from one framework to another
using the types-to-sets framework and the Transfer package.
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Project progress

Newton-Puiseaux for RCFs has been formalised!

Thom’s Lemma has been formalised – up to equivalent
definitions of an RCF.

Equivalence of different definitions of RCF is still in progress.
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Thank you for your attention.

Any questions?

Khovanov, Nedzelsky and Li Formalising Real Algebraic Geometry



31/31

Thom’s lemma - informal proof

Let σ0, . . . , σd be a list of signs.

Claim: {x ∈ R | sign p(j)(x) = σj} is either empty, a point, or
an open interval.
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