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Outline

I will introduce two tools for monoidal categories, which are implemented by Lean’s
metaprogramming:

1. coherence tactic
2. string diagram widget
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Outline

1 Coherence tactic

2 String diagram widget
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Metaprogramming for algebraic structures

• How to prove an equation in a monoid like

(a ∗ (b ∗ (1 ∗ c)) ∗ d) ∗ e = (1 ∗ (a ∗ b)) ∗ (c ∗ (d ∗ e))

in Lean?

• Answer: simp only [mul_assoc, one_mul, mul_one]
• “Meta theorem”: any such equation can be simplified to

a ∗ b ∗ c ∗ d ∗ e

by iterated application of the associative law and the unit laws.
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Metaprogramming for algebraic structures

• In other situations, we often need specialized tactics (ring, abel, etc.).
• The coherence tactic proves coherence conditions in monoidal categories.
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Monoidal categories

A monoidal category consists of
• A : category
• ⊗ : A× A → A

• 1 : A

• associator α : ∀a, b, c : A, (a⊗ b)⊗ c ∼= a⊗ (b⊗ c)

• left unitor λ : ∀a : A, 1⊗ a ∼= a

• right unitor ρ : ∀a : A, a⊗ 1 ∼= a

• coherence conditions (next slide)
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Coherence conditions

• We can define an isomorphism with the following type using associator and unitors:

(a⊗ (b⊗ (1⊗ c))⊗ d)⊗ e ∼= (1⊗ (a⊗ b))⊗ (c⊗ (d⊗ e)),

• but there are several ways to do so.
• Coherence conditions state that they are equal.
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Coherence theorem

All coherence conditions follow from the following two conditions:
• pentagon identity: • triangle identity:

((a⊗ b)⊗ c)⊗ d

(a⊗ (b⊗ c))⊗ d

a⊗ ((b⊗ c)⊗ d) a⊗ (b⊗ (c⊗ d))

(a⊗ b)⊗ (c⊗ d)

α⊗ 1

α

1⊗ α

α

α (a⊗ 1)⊗ b

a⊗ (1⊗ b) a⊗ b

α

1⊗ λ

ρ⊗ 1
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Monoidal categories

A monoidal category consists of
• A : category
• ⊗ : A× A → A

• 1 : A

• associator α : ∀a, b, c : A, (a⊗ b)⊗ c ∼= a⊗ (b⊗ c)

• left unitor λ : ∀a : A, 1⊗ a ∼= a

• right unitor ρ : ∀a : A, a⊗ 1 ∼= a

• pentagon and triangle identities
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Coherence tactic

• How to prove coherence conditions in Lean?

• Answer: coherence tactic
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Coherence tactic

• How to prove coherence conditions in Lean?
• Answer: coherence tactic
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Coherence tactic

There are two ways to implement the coherence tactic:
1. Transporting an equation from a formalized coherence theorem, which is a theorem

about free monoidal categories (formalized in Lean by Markus Himmel).
2. Direct proof-producing tactic, manipulating Lean.Expr terms.

Experience has shown that
• the transporting tactic (at least without an optimization effort) relies on heavy

definitional equalities, and is very slow when expressions are long,
• the proof-producing tactic works well in practice.

Mathlib previously used the first method, but recently switched to the second method.
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Demo

• monoidal tactic in mathlib
• set_option trace.monoidal true to see proof steps
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Expression types

When manipulating Lean expressions, it is useful to define specialized expression types.
We do not use dependent types.
inductive Obj : Type

| unit (e : Expr) : Obj

| tensor (e : Expr) (X Y : Obj) : Obj

| of (e : Expr) : Obj

inductive Iso : Type

| id (e : Expr) (X : Obj) : Iso

| associator (e : Expr) (X Y Z : Obj) : Iso

| leftUnitor (e : Expr) (X : Obj) : Iso

| rightUnitor (e : Expr) (X : Obj) : Iso

| comp (e : Expr) (X Y Z : Obj) (f g : Iso) : Iso

| tensor (e : Expr) (X₁ Y₁ X₂ Y₂ : Obj) (f g : Iso) : Iso

| inv (e : Expr) (X Y : Obj) (f : Iso) : Iso

| of (e : Expr) (X Y : Obj) : Iso
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Metaprogramming TIPS

def tensorM (X Y : Obj) : MonoidalM Obj := do

let ctx ← read

let .some _monoidal := ctx.instMonoidal? | synthMonoidalError

let X_e : Q($ctx.C) := X.e

let Y_e : Q($ctx.C) := Y.e

return .tensor q($X_e ⊗ $Y_e) X Y

• Monads are always useful.
• Qq is useful when constructing Lean.Expr terms.
• Some MetaM functions (synthInstance, mkAppM, etc.) are not sufficiently fast for

our purpose.
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1 Coherence tactic

2 String diagram widget
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2-categorical point of view

n n-category one-object case
0 set point
1 category monoid
2 bicategory monoidal category

n = 0 n = 1 n = 2
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String diagram
• String diagrams are the dual of 2-cell diagrams.
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Demo

• #string_diagram command
• with_panel_widgets [Mathlib.Tactic.Widget.StringDiagram] in tactic proofs
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Implementation of string diagram widget

• Normalization of for 2-morphisms
– Lean.Expr terms manipulation
– extracting “atomic” 2-morphisms and removing associators and unitors

• Drawing by ProofWidgets [Nawrocki et.al.], with its Penrose support
– Penrose is a software for drawing diagrams by specifying constraints.
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Remark

• The monoidal and bicategory tactics are general-purpose tactics for proving
equations involving 2-morphisms. They solve any equation such that the LHS and
the RHS have the same string diagram.

• Normalization of for 2-morphisms for drawing string diagram is actually a part of
these tactics.
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Future directions

• more general-purpose tactic, which involves the whisker exchange relation
• coherence tactic for symmetric monoidal categories
• string diagrams to codes
• drawing pasting diagrams
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