

Lean for Scientists and Engineers

Tyler R. Josephson

Al & Theory-Oriented Molecular Science (ATOMS) Lab University of Maryland, Baltimore County

Twitter: <a>@trjosephson

Email: tjo@umbc.edu

Boba Beach Grynpyret

Lean for Scientists and Engineers 2024

- I. Logic and proofs for scientists and engineers
 - I. Introduction to theorem proving
 - 2. Writing proofs in Lean
 - 3. Formalizing derivations in science and engineering
- 2. Functional programming in Lean 4
 - I. Functional vs. imperative programming
 - 2. Numerical vs. symbolic mathematics
 - 3. Writing executable programs in Lean
- 3. Provably-correct programs for scientific computing

Schedule (tentative)

Logic and proofs for scientists and engineers Functional programming in Lean 4

Provably-correct programs for scientific computing

July 9, 2024	Introduction to	Lean and proofs
--------------	-----------------	-----------------

July 10, 2024 Equalities and inequalities

July 16, 2024 Proofs with structure

July 17, 2024 Proofs with structure II

July 23, 2024 Proofs about functions; types

July 24, 2024 Calculus-based-proofs

July 30-31, 2024 Prof. Josephson traveling

August 6, 2024 Functions, definitions, structures, recursion

August 8, 2024 Polymorphic functions for floats and reals, compiling Lean to C

August 13, 2024 Input / output, lists, arrays, and indexing

August 14, 2024 Lists, arrays, indexing, and matrices

August 20, 2024 LeanMD & BET Analysis in Lean

August 21, 2024 SciLean tutorial, by Tomáš Skřivan

Content inspired by:

Mechanics of Proof, by Heather Macbeth

Functional Programming in Lean, by David Christiansen

Guest instructor: Tomáš Skřivan

Schedule for today

- I. Recap Lecture 4
- 2. Types
- 3. Functions
 - I. Math vs. programming
 - 2. Examples of functions
 - 3. Computable vs. noncomputable
- 4. "Proportional to"

How to find tactics

- Keep learning them one by one!
- Indexes for Mechanics of Proof, Mathematics in Lean
- Consult lists of useful tactics
 - https://github.com/madvorak/lean4-tactics
 - https://github.com/Colin166/Lean4/blob/main/UsefulTactics
- If you have a tactic in hand, mouseover in VS Code to see documentation and example(s)

How to find theorems

- Keep practicing!
- Search Mathlib documentation
 - https://leanprover-community.github.io/mathlib4_docs/
 - Using the search bar, make a guess about what the theorem would be named, and start checking things that look promising
- Moogle
 - https://www.moogle.ai
 - Describe theorem (or definition) in natural language, the scroll through options
- Consult lists of useful theorems
 - https://github.com/Colin166/Lean4/blob/main/UsefulLemmas.lean
- If you have a theorem in hand, mouseover in VS Code to see documentation and example(s)

Definitions

- Allow us to reuse terms outside of individual examples / theorems
- Facilitates modular code and verification of different parts of code
- Propositions
- Functions

Glossary of logical symbols

- Λ and
- V or
- ¬ not
- → implies
- ↔ if and only if (implies in both directions)
- ∃ exists
- ∀ for all

- Empirical science often describes phenomena using proportions
- Kepler's Third Law orbital period T vs. semi-major axis d

$$T^2 \propto d^3$$
 $T^2 = \left(\frac{4\pi^2}{G(m+M)}\right)d^3$ $T^2 = \left(\frac{4\pi^2}{GM}\right)d^3$

- Empirical science often describes phenomena using proportions
- Boyle's Law
 - Pressure is inversely proportional to volume

$$P \propto \frac{1}{V}$$
 $P = \frac{k}{V}$ $PV = k$ $P_1V_1 = P_2V_2$

- Empirical science often describes phenomena using proportions
- Boyle's Law
 - Pressure is inversely proportional to volume

$$P \propto \frac{1}{V}$$
 $P = \frac{k}{V}$ $PV = k$ $P_1V_1 = P_2V_2$

• There exists some constant k, such that for all thermodynamic states, this relationship between pressure and volume holds

- Empirical science often describes phenomena using proportions
- Boyle's Law
 - Pressure is inversely proportional to volume

$$P \propto \frac{1}{V}$$
 $P = \frac{k}{V}$ $PV = k$ $P_1V_1 = P_2V_2$

- There exists some constant k, such that for all thermodynamic states, this relationship between pressure and volume holds
- \exists (k : \mathbb{R}), \forall (n : \mathbb{N}), (P n)*(V n) = k
- Next time!

A guide to number systems

- \mathbb{N} Natural numbers (0, 1, 2, 3, 4, ...)
- \mathbb{Z} Integers (...-3, -2, -1, 0, 1, 2, ...)
- Q Rational numbers (1/2, 3/4, 5/9, etc.)
- \mathbb{R} Real numbers (-1, 3.6, π , $\sqrt{2}$)
- \mathbb{C} Complex numbers (-1, 5 + 2i, $\sqrt{2}$ + 5i, etc.)

Types

- Lean has an unusually expressive type system (Dependent Type Theory) that underlies its ability to check math proofs
- You can think of types as sets
 - Terms are members of a type
- The various number systems $(\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C})$ are types
 - Most of these are constructed from other operations

Types

- Lean has an unusually expressive type system (Dependent Type Theory) that underlies its ability to check math proofs
- You can think of types as sets
 - Terms are members of a type
- The various number systems $(\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C})$ are types
 - Most of these are constructed from other operations
- Lean also has familiar programming types
 - Float, String, List, Array, Bool, etc.

Types

- Lean has an unusually expressive type system (Dependent Type Theory) that underlies its ability to check math proofs
- You can think of types as sets
 - Terms are members of a type
- The various number systems $(\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C})$ are types
 - Most of these are constructed from other operations
- Lean also has familiar programming types
 - Float, String, List, Array, Bool, etc.
- Formulas and theorems have type Prop (for proposition)
- Functions have types, too
 - A function that doubles a natural number has type $\mathbb{N} \to \mathbb{N}$

Exercises with Types

- Theorem Proving in Lean 4, Chapter 2
 - https://leanprover.github.io/theorem_proving_in_lean4/dependent_type_theory.html
- What's the type of "Type"?
 - Type I
 - What's the type of "Type I"?
 - Type 2
 - What's the type of "Type 2"?
 - Type 3, etc.
- Lean has a hierarchy of Type universes
 - See above for more details, we don't usually need to deal with this

Corinne's Shibboleth: Functions in Physics vs Math

From blog: https://physicsteacher.blog/2018/02/16/corinnes-shibboleth/

Dray & Manogue, 2002, Vector calculus bridge project website http://www.math.oregonstate.edu/bridge/ideas/functions

Suppose the temperature on a rectangular slab of metal is given by $T(x, y) = k(x^2 + y^2)$ where k is a constant.

What is $T(r, \theta)$?

Did you answer:

- A: T(r, θ) = kr²
- **B**: $T(r, \theta) = k(r^2 + \theta^2)$
- C: Neither

Corinne's Shibboleth: Functions in Physics vs Math

From blog: https://physicsteacher.blog/2018/02/16/corinnes-shibboleth/

Dray & Manogue, 2002, Vector calculus bridge project website http://www.math.oregonstate.edu/bridge/ideas/functions

Suppose the temperature on a rectangular slab of metal is given by $T(x, y) = k(x^2 + y^2)$ where k is a constant.

What is $T(r, \theta)$?

Did you answer:

- **A:** $T(r, \theta) = kr^2$
- **B**: $T(r, \theta) = k(r^2 + \theta^2)$
- C: Neither

Mathematicians usually choose A

Most scientists and engineers choose B

Programming perspective

A function takes arguments, performs calculations, and produces an output

Examples in Python

```
def squared(x):

y = x^*x

return y
```

Programming perspective

A function takes arguments, performs calculations, and produces an output

Examples in Python

Math perspective

A function maps values from a domain to a co-domain

$$f(x) = x^2$$

Domain

Co-domain

Image

A function! With type $\mathbb{Z} \to \mathbb{Z}$ Or $\mathbb{R} \to \mathbb{R}$

Domain

Co-domain

Image

$$\begin{array}{ll} \operatorname{def squareroot(x):} \\ \mathbf{y} = \mathbf{x}^{**}(\mathbf{I/2}) \\ \operatorname{return y} \end{array} \qquad f(x) = \sqrt{x} \\$$

Not always a function! With type $\mathbb{Z} \to \mathbb{Z}$ or $\mathbb{R} \to \mathbb{R}$, there is no mapping from the x < 0 part of the domain

With type $\mathbb{N} \to \mathbb{R}$ or $\mathbb{R} \to \mathbb{C}$, it is a function; every part of the domain maps to a value in the co-domain

Corinne's Shibboleth: Functions in Physics vs Math

From blog: https://physicsteacher.blog/2018/02/16/corinnes-shibboleth/

Dray & Manogue, 2002, Vector calculus bridge project website http://www.math.oregonstate.edu/bridge/ideas/functions

Suppose the temperature on a rectangular slab of metal is given by $T(x, y) = k(x^2 + y^2)$ where k is a constant.

What is $T(r, \theta)$?

Did you answer:

- **A:** $T(r, \theta) = kr^2$
- **B**: $T(r, \theta) = k(r^2 + \theta^2)$
- C: Neither

Mathematicians usually choose A

Most scientists and engineers choose B

→ : implies

P → Q means "if P, then Q"

P: detecting argon

Q: detecting a noble gas

P → Q: detecting argon implies detecting a noble gas

P: true, Q: true – then $P \rightarrow Q$: true

P: false, Q: true – then $P \rightarrow Q$: true

P: true, Q: false – then $P \rightarrow Q$: false

P: false, Q: false – then $P \rightarrow Q$: true

Glossary

- Equation
 - Proposition about equality statement
- Formula
 - Proposition about expressions, includes equalities, inequalities, as well as logial operators
- Expression
 - Like the "right hand side" of an equation
 - Type depends on the types and operations of things inside
- Function (aka pure function)
 - An expression that maps from domain to co-domain
- Partial function
 - An expression that maps from part of domain to co-domain

Examples of functions

What's a good type?

I(t)

Electric current as a function of time

T(x,y)

Temperature as a function of position, Cartesian coordinates

 $T(r,\theta)$

Temperature as a function of position, polar coordinates

 P_n

Pressure as a function of thermodynamic state

 $\delta(x)$

Detector threshold as a function of measurement

Functions in Lean

- Further discussion in Lecture 7
- No parentheses needed just a space will do
 - f(x) is written as f x
- We can prove things about pure functions; it's much harder with partial functions
- Lean requires you to label "noncomputable" functions
 - Noncomputable means "incapable of being computed by any algorithm in a finite amount of time"
 - Real.pi is noncomputable

Syntax and semantics in scientific computing

- Empirical science often describes phenomena using proportions
- Boyle's Law
 - Pressure is inversely proportional to volume

$$P \propto \frac{1}{V}$$
 $P = \frac{k}{V}$ $PV = k$ $P_1V_1 = P_2V_2$

- There exists some constant k, such that for all thermodynamic states, this relationship between pressure and volume holds
- \exists (k : \mathbb{R}), \forall (n : \mathbb{N}), (P n)*(V n) = k
- Next time!

Building a network of proofs

