
EQUIVALENT NOTIONS OF PRINCIPAL ELEMENT
IN A QUANTALE

E. DEAN YOUNG AND HARM DERKSEN

Abstract. A quantale is an abstraction of the notion of an ideal
in a ring. After establishing definitions intrinsic to quantales and
their modules, the authors consider three definitions of principal
element in a quantale, each a generalization of principal elements in
a ring. Two of these definitions were considered in papers by Ward
and Dilworth. The main result is a proof that these definitions are
equivalent in a modular quantale. Proofs of Nakayama’s Lemma
and the Chinese Remainder Theorem, generalized to the setting of
quantales, are included at the end.

1. Introduction

We begin by giving an exposition of the definition and basic proper-
ties of quantales in Section 2. Fundamental properties of quantales are
tabulated there, along with the example of the quantale End(M) for a
complete lattice M . Section 3 is an analogous consideration for quan-
tale modules, which are to modules as quantales are to rings. Section 4
establishes the notion of saturated map in the category of quantale
modules over a given quantale. Section 5 uses the saturated map con-
cept to give a new notion of principal element in a quantale, which is
shown to be equivalent to the notion of principal element as defined
first by R. P. Dilworth in [1] in any modular quantale. Before this, Dil-
worth and Ward had defined a notion of principal in [2]. We show here
that these definitions are in fact equivalent in a modular quantale (any
quantale arising from a ring is modular). In Section 6, we give a proof
of Nakayama’s lemma, and Section 7 contains a proof of the Chinese
Remainder Theorem, both generalized to the setting of quantales.

2. Quantales

A morphism of partially ordered sets (posets) A and B is a function
f : A → B such that a ≤ b implies f(a) ≤ f(b). If a poset has binary
meets and joins we say it is a lattice. A lattice with arbitrary meets
and joins is called complete. For a complete lattice A, we write

∑
i∈I ai
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for the join of elements {ai}i∈I in A and a+b for the join of elements a
and b in A. Similarly, we write

⋂
i∈I ai for the meet of elements {ai}i∈I

in X and a ∩ b for the meet of elements a and b in A. We denote the
unique minimal (resp. maximal) element in complete lattice A by 0
(resp. 1).

We will use the concept of adjoint poset morphisms here.

Definition 1. For lattices A and B, a morphism f : A → B is left
adjoint to a morphism g : B → A, when f(a) ≤ b ⇔ a ≤ g(b) for each
a ∈ A, b ∈ B.

The adjoint functor theorem for lattices says that a poset morphism
which preserves arbitrary joins is a left adjoint, and a poset morphism
which preserves arbitrary meets is a right adjoint:

Theorem 2. Let f : A → B be a morphism of complete lattices such
that

f

(∑
i∈I

ai

)
=
∑
i∈I

f(ai)

for any (possibly empty) indexing set I, and ai ∈ A. Then f has a left
adjoint g : B → A given by

g(b) =
∑
f(c)≤b

c.

Proof. Take a, b ∈ A. Then we have

a ≤ g(b) =
∑
f(c)≤b

c⇒ f(a) ≤ f

∑
f(c)≤b

c

 =
∑
f(c)≤b

f(c) ≤ b

and
f(a) ≤ b⇒ a ≤

∑
f(c)≤b

c = g(b).

�

Similarly, a morphism of complete lattices g : B → A which pre-
serves (set indexed) meets has a left adjoint f : A → B defined where
f(a) =

⋂
g(b)≥a b. The proof is entirely analogous.

Definition 3. A quantale is a triple (E,≤, ∗) where (E,≤) is a com-
plete lattice, (E, ∗) is a monoid (we will write ab for a ∗ b), and where
left and right multiplication distributes over arbitrary joins (including
the empty join): a

∑
i∈I ai =

∑
i∈I aai and

(∑
i∈I ai

)
a =

∑
i∈I aia, for

a, {ai}i∈I in E.
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We denote the product of a, b ∈ E as ab and the product of elements
{ai}ni=1 of elements of E as

qn
i=1ai. We write 1 for the greatest element

of E and 0 for the least element.

Definition 4. A morphism f : E → F of quantales (E,≤, ∗) and (F,≤
, ∗) is a pair (f∗, f

∗), where f∗ : E → F is a left adjoint poset morphism,
with f∗ : F → E its right adjoint, such that f∗ : (E, ∗) → (F, ∗) is a
morphism of monoids. We may define f by defining its left adjoint f∗
alone.

The category of sup-lattices is the category whose objects are com-
plete lattices, and whose morphisms are join preserving functions f :
A → B such that a ≤ b ⇒ f(a) ≤ f(b). Quantales can equivalently
be defined as monoid objects in the category of sup-lattices. There is
a direct correspondence between join preserving complete lattice maps
and meet preserving complete lattice maps, and indeed the category
of sup-lattices is isomorphic to the opposite category of complete lat-
tices with meet preserving poset maps. For a left adjoint morphism
f∗ : A → B of complete lattices, we write f∗ : B → A for its unique
right adjoint. For a morphism f : E → F of quantales, we can write
f∗ : E → F for f and f∗ : F → E for its corresponding right adjoint
lattice morphism.

It is readily seen that there is a left adjoint embedding functor
from monoids to quantales, which sends a monoid M to the triple
(P(M),≤, ∗), where P(M) is the power set of M , ≤ is inclusion of
subsets, and X ∗ Y = {xy : x ∈ X, y ∈ Y }. However the functor that
relates to our own interests is from rings to quantales; every (commuta-
tive) ring A induces a quantale Aquant as the triple (E,⊆, ∗), where E is
the set of ideals of A, ⊆ is inclusion of ideals, and ∗ is product of ideals.
Join becomes sum of ideals, meet becomes intersection of ideals, and the
monoidal operation becomes ideal product. Every morphism of rings
f : A → B induces a morphism of quantales fquant : Aquant → Bquant,
which is a left adjoint morphism sending an ideal a ∈ A to aB in B,
whose right adjoint (fquant)∗ : Bquant → Aquant sends an ideal b in B to
f∗(b).

For a quantale E with element a ∈ E, we write bac for the set
{b ∈ E : b ≥ a}. We can define a multiplication operation on bac
making it into a quantale in its own right, where the complete lattice
structure is inherited from E, and where we take b ∗ c = bc + a. Simi-
larly, we write dae for the complete lattice {b ∈ E : b ≤ a} with partial
order inherited from E. For a morphism f : E → F of quantales E and
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F , we define its kernel ker(f) as df∗(0)e, its cokernel coker(f) as bf∗(1)c,
its image Im(f) as df∗(1)e, and its coimage Coim(f) as bf∗(0)c.

Example 5. Let E be a complete lattice. The set End(E) of left ad-
joint morphisms of complete lattices E → E forms a monoid under
composition. End(E) also has a partial order where, for f, g ∈ End(E),
f ≤ g when f∗(a) ≤ g∗(a) and f∗(a) ≥ g∗(a) for all a ∈ E. End(E) is
complete under this partial order. To show this it suffices to show that
End(E) has arbitrary joins, since any poset with arbitrary joins has
arbitrary meets.

Let {fi}i∈I be elements of End(E). Define f∗(a) =
∑

i∈I(fi)∗(a) and
f∗(a) =

⋂
i∈I(fi)

∗(x). Observe that

a ≤ b⇒
∑
i∈I

(fi)∗(a) ≤
∑
i∈I

(fi)∗(b)

and
a ≤ b⇒

⋂
i∈I

(fi)
∗(a) ≤

⋂
i∈I

(fi)
∗(b).

We show that f∗ is left adjoint to f∗. It suffices to show f∗(a) ≤ b ⇔
a ≤ f∗(b). We have ∑

i∈I

(fi)∗(a) ≤ b

⇔ (fi)∗(a) ≤ b for all i ∈ I
⇔ a ≤ (fi)

∗(b) for all i ∈ I

⇔ a ≤
⋂
i∈I

(fi)
∗(b).

Thus f∗ is left adjoint to f∗, proving that End(E) has arbitrary joins.
Clearly E satisfies the distributive law. It is thus the case that End(E)
forms a quantale, which we also denote by End(E). Note that the 0
element for End(E) is the map sending x to 0 for each x ∈ E. The
greatest element in End(E) is IdE.

Remark. For a quantale E with element a ∈ E, we define the map
µ(a)∗ : E → E, where b 7→ ab. µ(a)∗ is left adjoint for each element a
since it preserves joins. Its right adjoint µ(a)∗ where µ(a)∗(b) =

∑
ac≤b c

corresponds to the familiar ideal quotient of rings. We write (b : a)
for µ(a)∗(b). It is readily verified that there is a natural quantale map
µ : E → End(E) given where a 7→ µ(a)∗, which is in particular a left
adjoint map of complete lattices.
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We tabulate some essential properties of quantales below, all of which
follow easily from the axioms alone. Take a, b, c, {ai}i∈I in a quantale
E.

Table 1: Fundamental Properties of Quantales

Property Dual Property

1a = a (a : 1) = a
(ab)c = a(bc) ((a : b) : c) = (a : cb)
a ≤ b⇒ ac ≤ bc a ≤ b⇒ (c : a) ≥ (c : b)
b ≤ c⇒ ab ≤ ac b ≤ c⇒ (b : a) ≤ (c : a)
ab ≤ a a ≤ (a : b)
(a : b)b ≤ a a ≤ (ab : b)∑

i∈I(aai) = a
(∑

i∈I ai
) ⋂

i∈I(ai : a) =
(⋂

i∈I ai : a
)

a0 = 0 (a : 1) = a
a
(⋂

i∈I ai
)
≤
⋂
i∈I aai

⋂
i∈I(a : ai) ≤

(
a :
∑

i∈I ai
)(∑

i∈I ai
)
a =

∑
i∈I(aia)

(
a :
∑

i∈I ai
)

=
⋂
i∈I(a : ai)

0a = 0 (a : 0) = 1

A quantale E is called commutative if ab = ba for all a, b ∈ E. For
the purpose of this paper, all quantales are assumed to be commutative.
For more information on basic quantale theory, the reader is referred
to [4].

3. Quantale Modules

Let E be a quantale.

Definition 6. A quantale module over E, or E-quantale module, is a
triple M = (X,≤, µ), where (X,≤) is a complete poset, and µ : E →
End(X) is a morphism of quantales, called the structure map, with
End(X) as in Example 5.

We write 1M for the greatest element in M , and 0 for the least ele-
ment of M . We write µ(a)∗ for µ(a), and µ(a)∗ for the right adjoint cor-
responding to µ(a). We write ax for µ(a)∗(x) and (x : a) for µ(a)∗(x).
By the adjoint functor theorem, (x : a) =

∑
ay≤x y and ax =

⋂
(y:a)≥x y.

Note that each quantale E can be viewed as a quantale module over
itself with structure map µ : E → End(E) where µ(a)∗(b) = ab.

For an E-quantale module M with x ∈ M , we write bxc for the set
{y ∈ M : y ≥ x}. We can make bxc into an E-quantale module in its
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own right, where the complete lattice structure is inherited from M ,
and where take a ∗ y = ay + x. Similarly, we write dxe for the com-
plete lattice {y ∈M : y ≤ x} with partial order inherited from M . We
may make this lattice into a quantale module where a∗y = ay for y ≤ x.

Definition 7. A morphism f : M → N of E-quantale modules M and
N is a join preserving morphism of complete lattices f∗ : M → N such
that f∗(ax) = af∗(x) and f∗((x : a)) = (f∗(x) : a) for each a ∈ E, x ∈M ,
where f∗ : N →M is the right adjoint lattice map corresponding to f∗.

For a morphism f : M → N of E-quantale modules, we write f∗ to
specify the left adjoint map f∗ : E → F and f∗ : F → E to specify its
corresponding right adjoint lattice map. We define its kernel ker(f) as
df∗(0)e, its cokernel coker(f) as bf∗(1)c, its image Im(f) as df∗(1)e, and
its coimage Coim(f) as bf∗(0)c.

Let M be an E quantale module for a quantale E. Take elements
a, b, {ai}i∈I in E, x, y, {xi}i∈I in M . The following properties follow
readily from the axioms:

Table 2: Fundamental Properties of Quantale Modules

Property Dual Property

a ≤ b⇒ ax ≤ bx a ≤ b⇒ (x : b) ≤ (x : a)
x ≤ y ⇒ ax ≤ ay x ≤ y ⇒ (x : a) ≤ (y : a).
1x = x (x : 1) = x
0x = 0 (x : 0) = 1∑

i∈I(aix) =
(∑

i∈I ai
)
x

⋂
i∈I(x : ai) =

(
x :
∑

i∈I ai
)

a
∑

i∈I xi =
∑

i∈I axi
(⋂

i∈I xi : a
)

=
⋂
i∈I (xi : a)

a
⋂
i∈I xi ≤

⋂
i∈I axi

∑
i∈I (xi : a) ≤

(∑
i∈I xi : a

)
x ≤ (ax : a) a(x : a) ≤ x.
a(bx) = (ab)x ((x : a) : b) = (x : ab)
ax ≤ x (x : a) ≥ x.
a0 = 0 (1 : a) = 1

An A-module M induces an Aquant-quantale module, called Mquant.
More precisely, define Φ : Aquant → End(Mquant), with End(Mquant) as



EQUIVALENT NOTIONS OF PRINCIPAL ELEMENT IN A QUANTALE 7

in Example 5, by taking

Φ(a)∗(x) = ax =

{
n∑
i=1

aiyi : ai ∈ a, yi ∈ x

}
and

Φ(a)∗(x) = (x : a) = {y ∈M : ya ≤ x} .
Φ(a)∗ and Φ(a)∗ are adjoint for each a ∈ Aquant. Indeed, ax ≤ y ⇔ x ≤
(y : a). Φ distributes over colimits, so that it is left adjoint by the ad-
joint functor theorem. Moreover, Φ(ab)∗(x) = abx = Φ(a)∗(Φ(b)∗(x))
and

Φ(ab)∗(x) = (x : ab) = ((x : a) : b) = Φ(a)∗(Φ(b)∗(x)).

Every A-module morphism f : M → N induces an Aquant-quantale
module morphism fquant : Mquant → Nquant, the familiar extension and
contraction of submodules. Let M and N be modules over a ring A and
f : M → N be an A-module morphism. Take x ∈ Mquant, y ∈ Nquant.
f(x) ⊆ y if and only if x ⊆ f−1(y), so extension and contraction of
submodules is indeed an adjoint relationship. It should be clear that
extension and contraction commute with multiplication by an element.
More information on the basic theory of quantale modules can be found
at [4].

4. Saturated Maps

Let f : M → N be a morphism of quantale modules over a quantale
E. f∗ induces a map of quantale modules g∗ : Coim(f) → Im(f) which
sends x to f∗(x). We can consider whether g∗ is an isomorphism, which
is analogous to the first isomorphism theorem for modules. This is in
general false; when it is true, we call f saturated. Similarly, we say a
morphism f : M → N of E-quantale modules is saturated if the map
g∗ : Coim(f)→ Im(f) where x 7→ f∗(x) is an isomorphism.

Not all morphisms are saturated: for example, take the quantale
I = kquant for a field k. Consider the I-quantale modules I and
M = {0, x, 1}, where 0 < x < 1. The map f∗ : I → M where 1 7→ 1
and 0 7→ 0 violates the saturation property.

Definition 8. Let f : M → N be a morphism of quantale modules
over a quantale E. f is saturated if any of the equivalent statements
are true:
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(1) The induced morphism g : Coim(f) → Im(f), where g∗ sends
x ∈ Coim(f) to f∗(x) and g∗ sends y ∈ Im(f) to f∗(y) is an
isomorphism of E-quantale modules.

(2) f∗ is injective on Coim(f) and f∗ is injective on Im(f).
(3) f∗ is surjective onto Im(f) and f∗ is surjective onto Coim(f).
(4) (f∗ ◦ f∗)|Im(f) = Id |Im(f) and (f∗ ◦ f∗)|Coim(f) = Id |Coim(f)

Proof. Clearly (1) ⇒ (2), and (4) ⇒ (1). We show (2) ⇒ (3) and
(3)⇒ (4).

To show (2)⇒ (3), take x ∈ Coim(f). f∗(x) = f∗(f
∗(f∗(x))) since f∗ is

left adjoint to f∗, so x = f∗(f∗(x)). Thus f∗ is surjective onto Coim(f).
Conversely, take x ∈ Im(f). f∗(x) = f∗(f∗(f

∗(x))) since f∗ is left adjoint
to f∗, so x = f∗(f

∗(x)). Thus f∗ is surjective onto Im(f).

To show (3)⇒ (4), take x ∈ Im(f). Then we get x = f∗(y) for y ∈ N ,
so

f∗ ◦ f∗(x) = f∗ ◦ f∗ ◦ f∗(y) = f∗(y) = x.

Thus it follows that (f∗ ◦ f∗)Im(f) = Id |Im(f). Similarly, taking x ∈
Coim(f), write x = f∗(y). Then we have

f∗ ◦ f∗(x) = f∗ ◦ f∗ ◦ f∗(y) = f∗(y) = x.

We conclude that (f∗ ◦ f∗)Coim(f) = Id |Coim(f). �

Theorem 9. Let f : E → F be a morphism of quantales. Then

(i) There is a unique θ : Coim(f) → Im(f) such that f∗ factors as

E
Pf∗(0)→ Coim(f)

θ→ Im(f)
ι→ F where ι is the embedding. θ is an

isomorphism if and only if f is saturated.
(ii) There is a unique θ : Im(f) → Coim(f) such that f∗ factors as

F
If∗(1)→ Im(f∗)

θ→ Im(f∗)
ι→ E where ι is the embedding. θ is an

isomorphism if and only if f is saturated.

Proof. For (i), We must define θ(a) = ι(θ(Pf∗(0)(a))) = f∗(a) for a ∈
Coim(f), which determines f∗. Then, for a ∈ E,

ι ◦ f∗ ◦ Pf∗(0)(a) = df∗(a + f∗(0))e = f∗(a) + f∗(f
∗(0)) = f∗(a).

So that indeed f∗ factors as ι ◦ θ ◦ Pf∗(0). That θ is an isomorphism if
and only if f is saturated follows from definition.

(ii) Follows similarly. �

Theorem 10. Let f∗ : E → F and g∗ : F → G be saturated maps.
Then g∗ ◦ f∗ : E → G is saturated.
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Proof. Let θ : Coim(f∗)→ Im(f∗) be the isomorphism corresponding to
f∗ as in Theorem 9. Similarly, let η : Coim(g∗) → Im(g∗) be the iso-
morphism corresponding to g∗ as in Theorem 9. Let θ′ : bf∗(g∗(0))c →
{a ∈ F : g∗(0) ≤ a ≤ f∗(1)} be the bijection formed by restriction
of θ, and let η′ : {a ∈ F : g∗(0) ≤ a ≤ f∗(1)} → dg∗(f∗(1))e be the
bijection formed by restriction of η. g∗ ◦ f∗(a) = η′ ◦ θ′(a) for each
a ≥ f∗(g∗(0)), so that η′ ◦ θ′ is an isomorphism corresponding to g∗ ◦ f∗
as in Theorem 9. Therefore g ◦ f is saturated. �

5. Equivalent Notions Principal Element

A central concept in the theory of quantales is the notion of a prin-
cipal element, which approximates the notion of principal ideal in a
ring. Principal elements were first introduced in quantales by R. P.
Dilworth in [1], replacing a weaker notion of principal defined by Ward
and Dilworth in [2]. These correspond to Definition 15 and Defini-
tion 16, respectively. We show that these are in fact equivalent in a
modular quantale. We also provide a third definition, which has proven
to be advantageous in our own work. In honor of R. P. Dilworth, we
call Dilworth’s notion of principal ‘Dilworth principal’ in the present
publication. The novel definition, Definition 11, will be called principal.

Definition 11. Let M be a quantale module over a quantale E. Note
that a morphism f∗ : E → M of quantale modules is determined by
f∗(1), since f∗(a) = af∗(1), and that every element x ∈M determines a
map f∗ : E → M where f∗(1) = x, which is not necessarily saturated.
An element x ∈ M is called principal if the unique map E → M
sending 1 to x is saturated. In particular we can take M = E as a
quantale module over itself to consider elements which are principal in
a quantale. Note that, for a module M over a commutative ring A, a
submodule in M generated by 1 element is always Dilworth principal
in Mquant.

Definition 12. Let E be a quantale. For any a ∈ E let Ia : E → E
be the lattice morphism sending b ∈ E to b ∩ a. For each a ∈ E, let
Pa : E → E be the lattice morphism sending b ∈ E to b + a.

Definition 13. We call a quantale E modular if, for each a, b, c ∈ E
with b ≤ c, (a + b) ∩ c = (a ∩ c) + b.

Proposition 14. Let A be a ring. Aquant is modular.

Proof. Take ideals a, b, c ∈ Aquant with b ≤ c. We show that (a +
b) ∩ c = (a ∩ c) + b by showing that (a ∩ c) + b ≤ (a + b) ∩ c and
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(a + b) ∩ c ≤ (a ∩ c) + b. Firstly,

(a ∩ c) + b ≤ c

since b ≤ c and a ∩ c ≤ c, and

(a ∩ c) + b ≤ a + b

since a ∩ c ≤ a, so

(a ∩ c) + b ≤ (a + b) ∩ c.

For the other inequality, take x ∈ (a + b) ∩ c. We may write x = a+ b
for a ∈ a and b ∈ b. Then a = x − b ∈ c since x ∈ c and b ∈ b ⊂ c.
So a ∈ a ∩ c. We have expressed x = a+ b for a ∈ a ∩ c and b ∈ b. So
x ∈ (a ∩ c) + b. �

Definition 15. Let E be a quantale with structure map µ : E →
End(E) as in the remark after Example 5. An element p ∈ E is Dil-
worth principal if for each a ∈ E, the following two diagrams commute:

E E

E E

µ(p)∗

I(a:p) Ia

µ(p)∗

E E

E E

µ(p)∗

Ppa Pa

µ(p)∗

See [1] for the original exposition of this definition.

Definition 16. Let E be a quantale and set µ : E → End(E) the
quantale map sending each element to the map which multiplies by
that element. We say an element p ∈ E is second Dilworth principal if
µ(p)∗ ◦ µ(p)∗ = Ip and µ(p)∗ ◦ µ(p)∗ = P(0:p). This definition was first
given in [2].

Theorem 17. Let E be a modular quantale and let p ∈ E be an ele-
ment. p is principal if and only if it is Dilworth principal, if and only
if it is second Dilworth principal.

Proof. We show that principal implies Dilworth principal, that Dil-
worth principal implies second Dilworth principal, and that second
Dilworth principal implies principal.

Suppose p ∈ E is principal. The map µ(p)∗ : E → E factors through

Coim(µ(p)) and Im(µ(p)) as E
P(0:p)→ Coim(µ(p))

θ→ Im(µ(p))
ι→ E

by Theorem 9, where ι : Im(µ(p)) → E is the embedding. Since p
is principal, µ(p) is saturated, so that θ is an isomorphism again by
Theorem 9. Take a ∈ E. Since (0 : p) ≤ (a : p) and E is modular, the
following diagram commutes:
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E Coim(µ(p))

E Coim(µ(p))

P(0:p)

I(a:p) I(a:p)

P(0:p)

The following diagram also commutes since θ is an isomorphism:

Coim(µ(p)) Im(µ(p))

Coim(µ(p)) Im(µ(p))

Iθ−1(a)

θ

Ia

θ

Since θ−1(a) = (a : p), the following diagram commutes for each a ∈ E:

E b(0 : p)c dpe E

E b(0 : p)c dpe E

P(0:p)

I(a:p) I(a:p)

θ

Ia

ι

Ia

P(0:p) θ ι

Thus the following commutes for each a ∈ E:

E E

E E

µ(p)∗

I(a:p) Ia

µ(p)∗

To show the commutativity of the other diagram as in Definition 15,
note that the map µ(p)∗ : E → E factors through Im(µ(p)) and

Coim(µ(p)) as E
Ip→ Im(µ(p))

η→ Coim(µ(p))
ι→ E for an isomorphism

η in the same manner as in Theorem 9, where ι : Coim(µ(p)) → E
is the embedding. Take a ∈ E. Since pa ≤ p and E is modular, the
following diagram commutes:

E Im(µ(p))

E Im(µ(p))

Ip

Ppa Ppa

Ip

The following diagram also commutes since θ is an isomorphism:

Im(µ(p)) Coim(µ(p))

Im(µ(p)) Coim(µ(p))

Pη−1(a)

η

Pa

η
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Since θ−1(a) = pa, the following diagram commutes for each a ∈ E:

E Im(µ(p)) Coim(µ(p)) E

E Im(µ(p)) Coim(µ(p)) E

Ip

Ppa Ppa

η

Pa

i

Pa

Ip η i

Thus the following commutes for each a ∈ E:

E E

E E

µ(p)∗

Ppa Pa

µ(p)∗

Suppose next that p is Dilworth principal, and let a ∈ E be arbitrary.
By definition, the following diagram commutes:

E E

E E

µ(p)∗

I(a:p) Ia

µ(p)∗

E E

E E

µ(p)∗

Ppa Pa

µ(p)∗

Evalutating at 1 in the first diagram, we see that

1 p

(a : p) p(a : p) = p ∩ a

Evaluating at 0 in the second diagram, we see that

0 (0 : p)

ap (pa : p) = a + (0 : p)

These equalities are the definition of second Dilworth principal.

Suppose lastly that p second Dilworth principal, and let µ : E →
End(E) be the structure map of the quantaleE. Then µ(p)∗◦µ(p)∗|Im(µ(p)) =
IdIm(µ(p)) and µ(p)∗ ◦ µ(p)∗|Coim(µ(p)) = IdCoim(µ(p)), which is one of the
equivalent statements in Definition 8. �

Definition 18. Take a quantale E with element p ∈ E. If p is first,
second, or second Dilworth principal, we simply say p is Dilworth prin-
cipal.
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Note that multiplication of principal elements p, η ∈ E corresponds
to composition of maps µ(p)∗ ◦ µ(η)∗ (as is clear from Definition 11).
In particular, the product of principal elements is principal.

Suppose M and N are quantale modules over a quantale E, and that
p ∈M is Dilworth principal. For any saturated map f : M → N , f∗(p)
is Dilworth principal. Indeed, if g∗ : E → M is the saturated map
sending 1 to p, then f∗ ◦ g∗ is saturated, so that f∗(p) = f∗(g∗(1)) is
Dilworth principal.

6. Nakayama’s Lemma

Definition 19. An element m of a quantale E is called maximal if
m 6= 1 and m < a ⇒ a = 1. m ∈ E is maximal if and only if
bmc ∼= kquant, the unique quantale with two elements 0 and 1, where
0 < 1.

Theorem 20. Let E be a nonzero quantale such that, if
∑

i∈I ai = 1
for {ai}i∈I in E, then

∑
i∈F ai = 1 for some finite set F ⊆ I. If a 6= 1E

in E, then E has a maximal element containing a.

Proof. Let X = {b ∈ E, a ⊆ b, b 6= 1}. We show that X has a
maximal element using Zorn’s lemma. First note that X is nonempty,
as it contains a. Suppose b0 ⊆ b1 ⊆ b2 ⊆ · · · is an increasing chain
of elements of X. Set b =

∑
i∈N≥0

bi. b = 1 implies that
∑

i∈F bi = 1

for some finite set F ⊆ N≥0. Choosing i ∈ F maximal, b = bi 6= 1, a
contradiction. By Zorn’s lemma, we conclude that E has a maximal
element containing a. �

Theorem 21 (Nakayama’s Lemma). Let E be a commutative quantale.
Suppose that, if

∑
i∈I ai = 1 for {ai}i∈I in E, then

∑
i∈F ai = 1 for some

finite set F ⊆ I. Let M be a quantale module over E in which 1 is
the sum of finitely many Dilworth principal elements. Write Jac(E) =⋂

m∈E,m maximalm. If Jac(E)1M = 1M then M = 0.

Proof. Suppose for a contradiction that M 6= 0, while Jac(E)1M = 1M .
Let p1, ..., pn ∈ M be Dilworth principal elements such that 1M =∑n

i=1 pi, with n ∈ N≥1 minimal such that this is possible. Since 1M =
Jac(E)1M , we have

n∑
i=1

pi ≤ Jac(E)
n∑
i=1

pi ≤ Jac(E)p1 +
n∑
i=2

pi,

so
∑n

i=1 pi = Jac(E)p1 +
∑n

i=2 pi. Let y =
∑n

i=2 pi. We pass to byc,
writing p for p1 + y in byc. p is Dilworth principal in byc since the
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canonical map from M to byc is saturated, so that the map f : E → byc
where a is sent to ap is injective on bac, where a =

∑
bp≤y b. If a 6= 1E,

then a ≤ m for some maximal element of E by Theorem 20. Then
f(m) ≥ f(Jac(E)) ≥ f(1E), so that m = 1E since f is injective on
bac. Contradiction! Therefore a = 1E, so that p = 1Ep ≤ y. Thus
p1 ≤

∑n
i=2 pi, contradicting the minimality of n. Thus M = 0. �

Corollary 22. Let E be a quantale as in Theorem 21 and let M be
an E-quantale module in which 1 is the sum of finitely many Dilworth
principal elements. Take x ∈M . If 1M = x+ Jac(E)1M , then x = 1M .

Proof. If 1M = x + Jac(E)1M , then 1bxc = Jac(E)1bxc. Thus bxc = 0.
We conclude x = 1M . �

Corollary 23. Let E be a quantale as in Theorem 21 and let M be
an E-quantale module in which 1 is the sum of finitely many Dilworth
principal elements. Take Dilworth principal elements {xi}i∈I in M .
For each i ∈ I, let yi be the image of xi in bJac(E)1Mc. If

∑
i∈I yi = 1

in bJac(E)1Mc, then
∑

i∈I xi = 1 in M .

Proof. Suppose
∑

i∈I yi = 1 in bJac(E)1Mc. Then (
∑

i∈I xi)+Jac(E)1M =∑
i∈I(xi + Jac(E)1M) = 1M so

∑
i∈I xi = 1M by Corollary 23. �

7. The Chinese Remainder Theorem

We show that the pairwise Chinese Remainder Theorem holds in an
arbitrary quantale. Note that for two quantales E and F , one can
form the product E

q

F which consists of pairs (a, b), ordered where
(a, b) ≤ (a′, b′) when a ≤ a′ in E and b ≤ b′ in F , and whose multipli-
cation is defined as (a, b)(a′, b′) = (aa′, bb′).

Theorem 24 (Pairwise Chinese Remainder Theorem). Let E be a
quantale with elements a, b ∈ E such that a + b = 1. Then ba ∩ bc ∼=
bac

q

bbc as quantales.

Proof. Passing to ba∩bc, it suffices to assume that a∩b = 0 and show
that E ∼= bac

q

bbc. We show that the canonical map f : E → bac

q

bbc
is an isomorphism. Define a set map g : bac

q

bbc → E where (x, y) 7→
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ya + xb. To show f ◦ g = 1, observe that

f(g(x, y))

= (ya + xb + a, ya + xb + b)

= (xb + a, ya + b)

= (xb + xa + a, ya + yb + b)

= (x(a + b) + a, y(a + b) + b)

= (x+ a, y + b)

= (x, y).

And for the other direction,

g(f(x)) = g(x+a, x+b) = (x+a)b+(x+b)a = xb+xa+ab = xb+xa = x

since ab ≤ a ∩ b = 0. �
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