Here is the input problem: Axiom 1 (diag): mul(X, X) = mul(Y, Y). Axiom 2 (flattening): mul3 = mul(y, x2). Axiom 3 (flattening): mul2 = mul(y, y). Axiom 4 (flattening): mul4 = mul(mul(y, y), mul(y, x2)). Axiom 5 (eq1323): X = mul(Y, mul(mul(mul(Y, Y), X), Y)). Axiom 6 (flattening): mul5 = mul(mul(mul(y, y), mul(y, x2)), y). Goal 1 (eq2744): x = mul(mul(mul(y, y), mul(y, x2)), y). 1. mul(X, X) ~> mul(?, ?) 2. mul(y, x2) -> mul3 3. mul(?, ?) -> mul2 4. mul(mul2, mul3) -> mul4 5. mul(X, mul(mul(mul2, Y), X)) -> Y 6. mul(mul4, y) -> mul5 7. mul(X, mul(mul2, X)) -> mul2 8. mul(mul3, mul4) -> mul2 9. mul(X, mul(mul4, X)) -> mul3 10. mul3 -> mul4 11. mul(mul4, mul2) -> mul4 12. mul(y, mul5) -> mul4 13. mul(mul2, mul4) -> mul4 14. mul(mul(mul2, X), mul2) -> X 15. mul(X, mul2) -> X 16. mul(mul2, X) -> X 17. mul(X, mul(Y, X)) -> Y 18. mul(x2, mul4) -> y 19. x2 -> mul5 20. mul(mul5, mul4) -> y 21. mul(mul(X, Y), X) -> Y Ran out of critical pairs. This means the conjecture is not true. Here is the final rewrite system: x2 -> mul5 mul3 -> mul4 mul(X, X) ~> mul(?, ?) mul(X, mul2) -> X mul(?, ?) -> mul2 mul(mul5, mul4) -> y mul(y, mul5) -> mul4 mul(mul4, y) -> mul5 mul(mul2, X) -> X mul(X, mul(Y, X)) -> Y mul(mul(X, Y), X) -> Y RESULT: CounterSatisfiable (the conjecture is false).