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Lean for Scientists and Engineers 2024

1. Logic and proofs for scientists and engineers
1. Introduction to theorem proving
2. Writing proofs in Lean
3. Formalizing derivations in science and engineering

2. Functional programming in Lean 4
1. Functional vs. imperative programming
2. Numerical vs. symbolic mathematics
3. Writing executable programs in Lean

3. Provably-correct programs for scientific computing



Schedule (tentative)
July 9, 2024 Introduction to Lean and proofs

July 10, 2024 Equalities and inequalities

July 16, 2024 Proofs with structure

July 17, 2024 Proofs with structure II

July 23, 2024 Proofs about functions; types

July 24, 2024 Calculus-based-proofs

July 30-31, 2024 Prof. Josephson traveling

August 6, 2024 Functions, recursion, structures

August 7, 2024 Polymorphic functions for floats and reals; lists, arrays

August 13, 2024 Lists, arrays, indexing, and matrices

August 14, 2024 Input / output, compiling Lean to C

August 20, 2024 LeanMD & BET Analysis in Lean

August 21, 2024 SciLean tutorial, by Tomáš Skřivan

Logic and proofs for scientists and engineers
Functional programming in Lean 4
Provably-correct programs for scientific computing

Guest instructor: Tomáš Skřivan

Content inspired by:
Mechanics of Proof, by Heather Macbeth
Functional Programming in Lean, by David Christiansen



Schedule for today

• Recap Lecture 7
• “Do” notation in Lean
• Polymorphic functions
• Lists and arrays
• Recursion over lists



All possible
combinations

of symbols

Logically valid 
statements

Reality

Pure math
Syntax

Code

Scientific models Symbolic models Computable 
models

Syntax and semantics in scientific computing

Reality

Scientific software

Slide from Lecture 3



All possible
combinations

of symbols

Logically valid 
statements

Syntax

Code

Symbolic models Computable 
models

Syntax and semantics in scientific computing

Reality

Traditionally, the 
validity of the 
mathematics and the 
scientific theory are 
established by hand

Humans read the theory 
and write the code as 
best as they can

Then use various automated 
and manual means to 
compare to experiment
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All possible
combinations

of symbols

Logically valid 
statements

Syntax

Code

Symbolic models Computable 
models

Syntax and semantics in scientific computing

Reality

Can we represent all 
of this in Lean, and 
validate the 
construction of the 
math, scientific models, 
and software, in one 
system?

Then use various automated 
and manual means to 
compare to experiment

Slide from Lecture 3



Polymorphic functions to bridge floats and reals

Adsorption data
Filter data to 
focus on “BET 

regime”

Linearize the 
raw data

Perform linear 
regression

Fitted
coefficients

Proof that linear 
regression 

minimizes least 
squares error

Proof that algebra 
for linearization is 

correct

Formal proof of BET Theory

follows from a body of assumptions about  

<latexit sha1_base64="qGJr2BfNG7MrRouJGmSxxRyQAxs=">AAACE3icbVDLSsNAFJ3UV62vqks3g0VIlNZEfG2EohuXFewD2hIm00k7dJKMM5NCCf0HN/6KGxeKuHXjzr9x2mahrQcuHM65l3vv8TijUtn2t5FZWFxaXsmu5tbWNza38ts7NRnFApMqjlgkGh6ShNGQVBVVjDS4ICjwGKl7/ZuxXx8QIWkU3qshJ+0AdUPqU4yUltz84QO8gi1fIJwM3ABiPkpM7tpFbpnOkYmLjmXyYy1Y1sjNF+ySPQGcJ05KCiBFxc1/tToRjgMSKsyQlE3H5qqdIKEoZmSUa8WScIT7qEuamoYoILKdTH4awQOtdKAfCV2hghP190SCAimHgac7A6R6ctYbi/95zVj5l+2EhjxWJMTTRX7MoIrgOCDYoYJgxYaaICyovhXiHtIBKR1jTofgzL48T2onJee8dHZ3Wihfp3FkwR7YByZwwAUog1tQAVWAwSN4Bq/gzXgyXox342PamjHSmV3wB8bnD99Wmv8=</latexit>

q =
vmcp

(p0 � p)(1 + (c� 1)(p/p0))

Proof that output corresponds 
to meaningful parameters

Polymorphic functions
Floating point numbers

Real numbers

ℝ
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Functions: Programming vs. Math

Programming perspective

A function takes arguments, performs 
calculations, and produces an output

Math perspective

A function maps values from a domain 
to a co-domain

Examples in Python

def squared(x):
 y = x*x
 return y

Slide from Lecture 5



Functions: Programming vs. Math

Domain
Co-domain
Image

def squareroot(x):
 y = x**(1/2)
 return y

<latexit sha1_base64="EQlYbSdXL58M7/SpKWDUpFhDsHc=">AAAB9XicbVDLSgNBEOz1GeMr6tHLYBDiJeyKRC9C0IvHCOYBSQyzk9lkyOzDmV5NWPIfXjwo4tV/8ebfOEn2oIkFDUVVN91dbiSFRtv+tpaWV1bX1jMb2c2t7Z3d3N5+TYexYrzKQhmqhks1lyLgVRQoeSNSnPqu5HV3cD3x649caREGdziKeNunvUB4glE00r1XGJ6QS9LSDwrJsJPL20V7CrJInJTkIUWlk/tqdUMW+zxAJqnWTceOsJ1QhYJJPs62Ys0jyga0x5uGBtTnup1Mrx6TY6N0iRcqUwGSqfp7IqG+1iPfNZ0+xb6e9ybif14zRu+inYggipEHbLbIiyXBkEwiIF2hOEM5MoQyJcythPWpogxNUFkTgjP/8iKpnRadUrF0e5YvX6VxZOAQjqAADpxDGW6gAlVgoOAZXuHNerJerHfrY9a6ZKUzB/AH1ucP33yRew==</latexit>

f(x) =
p
x

Not always a function!
With type ℤ→ ℤ or ℝ→ ℝ, there is no 

mapping from the x < 0 part of the domain

With type ℕ→ ℝ or ℝ→ ℂ, it is a function; 
every part of the domain maps to a value in 

the co-domain

Slide from Lecture 5



Glossary
• Equation
• Proposition about equality statement

• Formula
• Proposition about expressions, includes equalities, inequalities, as well as 

logical operators
• Expression
• Like the “right hand side” of an equation
• Type depends on the types and operations of things inside

• Function (aka pure function)
• An expression that maps from domain to co-domain

• Partial function
• An expression that maps from part of domain to co-domain

Slide from Lecture 5



Functions in Lean

• Further discussion in Lecture 7
• No parentheses needed – just a space will do
• f(x) is written as f x

• We can prove things about pure functions; it’s much harder with 
partial functions
• Lean requires you to label “noncomputable” functions
• Noncomputable means “incapable of being computed by any algorithm in a 

finite amount of time”
• Real.pi is noncomputable

Slide from Lecture 6



A guide to number systems
ℕ - Natural numbers (0, 1, 2, 3, 4, …)
ℤ - Integers (… -3, -2, -1, 0, 1, 2, …)
ℚ - Rational numbers (1/2, 3/4, 5/9, etc.)
ℝ - Real numbers (-1, 3.6, π, √2) 
ℂ - Complex numbers (-1, 5 + 2i, √2 + 5i, etc.) 

ℕ ℤ ℚ ℝ ℂ

Slide from Lecture 1



Programming Paradigms
Imperative
• Emphasizes how to solve
• State and Mutation: Variables can be 

changed after they are set
• Procedural Style: Follows a sequence 

of steps to achieve a result
• Control Flow: Uses loops, conditionals, 

and other control structures

• Side Effects: Functions or methods can 
modify global state or have other side 
effects

• Examples: Python, Java, most languages

Functional
• Emphasizes what to solve
• Immutability: Variables, once assigned, 

cannot be changed
• Declarative Style: Focuses on defining and 

declaring what things are
• Functions Priorit: Functions can be passed 

as arguments, returned from other functions, 
and assigned to variables

• Pure Functions: No side effects, given the 
same input, always produces the same 
output

• Examples: Haskell, Lean 4!

It’s possible to write functional-style code in languages like Python
Lean 4 is purely functional; it doesn’t let you use imperative techniques

Slide from Lecture 7



Why is mutability so popular?

0.61 0.13 0.03
0.27 0.68 0.22
0.22 0.83 0.98
0.15 0.99 0.14
0.24 0.38 0.62
0.46 0.92 0.88
0.41 0.28 0.69
0.58 0.29 0.36
0.68 0.89 0.02
0.89 0.15 0.94

0.61 0.13 0.03
0.27 0.68 0.22
0.22 0.83 0.98
0.15 0.99 0.14
0.24 0.76 0.62
0.46 0.92 0.88
0.41 0.28 0.69
0.58 0.29 0.36
0.68 0.89 0.02
0.89 0.15 0.94

Multiply one 
element by 2

Efficiency

If this matrix is immutable, you need to re-copy the rest of the matrix!
In this case, 2x the memory and 30x the computational cost

Functional programming languages use various tricks to manage cost
Lean 4 introduced the “functional but in-place” paradigm
(see de Moura and Ullrich, CADE 2021 for more details)

Slide from Lecture 7



Recursive functions

• Functions can call other functions
• A function is recursive when it calls itself
• Python example: factorial function, n!

def factorial(n):
    if n==0:
        return 1
    else:
        return n*factorial(n-1)

def factorial_loop(n):
    result = 1
    for i in range(1,n+1):
        result = result*i
    return result

Imperative style Functional style

Slide from Lecture 7



Factorial function – recursive

def factorial(n):
    if n==0:
        return 1
    else:
        return n*factorial(n-1)

Functional style

factorial(5)
5*factorial(5-1)
5*factorial(4)
5*4*factorial(3) 
5*4*3*factorial(2) 
5*4*3*2*factorial(1)
5*4*3*2*1*factorial(0)
5*4*3*2*1*1

factorial(5)

return 120

Notice how the “stack” of calculations keeps increasing. 
At scale, this creates memory issues.

This means this is not “tail recursive.”

Slide from Lecture 7



Factorial function – tail-recursive

def factorial_tail(n, acc=1):
    if n == 0:
        return acc
    else:
        return factorial_tail(n-1, n*acc)

Functional style

factorial(5,1)
factorial(4,5*1)
factorial(4,5)
factorial(3,5*4) 
factorial(3,20) 
factorial(2,20*3)
factorial(2,60)
factorial(1,60*2)
factorial(1,120)
factorial(0,120)

factorial(5)

return 120

This tail-recursive function manages the “stack” so  it 
doesn’t blow up.

Almost always, tail-recursive functions perform better

Slide from Lecture 7



The halting problem

• Let’s consider recursive functions
• Does factorial(5) halt?
• How about factorial(20)?
• factorial(1523482)?
• What about factorial(-3)?
• factorial(-60)?

def factorial(n):
    if n==0:
        return 1
    else:
        return n*factorial(n-1)

You don’t need to finish running the program every time
You’re using logic to figure this out! 

Slide from Lecture 7



Recursion in Lean

def factorial : ℕ → ℕ
  | 0 => 1
  | n + 1 => (n + 1) * factorial n

1

ℕ ℕ

1

def not_factorial : ℕ → ℕ
  | 0 => 1
  | n + 1 => (n + 1) * not_factorial (n+1)

This function works This function is broken

Check out the error message on not_factorial:

fail to show termination for not_factorial
with errors
structural recursion cannot be used:

In factorial, Lean automatically proves termination 
via structural recursion, so this function is okay.

2

fac(3) 6

fac(2)

fac(1)

fac(0)

Slide from Lecture 7





“Do” notation in Lean

• Lean can express imperative-style programs using “do” notation
• Helpful if you just want to write programs, but this makes proof-

writing much more difficult

def factorial_do (n : Nat) : Nat := Id.run do
  let mut result := 1
  for i in [1:n+1] do
    result := result * i
  return result



Polymorphic functions

• Polymorphism is when a single symbol represents different types
• A polymorphic function takes variables that can be more than one type
• Python uses polymorphism (most languages do), so a relatively short 

list of familiar symbols can address diverse tasks

def plus(a,b):
    return a + b

plus(1,2)
3

plus('1','2’)
'12'

plus([1],[2])
[1, 2]

plus(1.0,2.0)
3.0

plus(1.0,2)
3.0

Polymorphism in Python is ad hoc – under the hood, these are 
compiled as distinct functions

https://en.wikipedia.org/wiki/Polymorphism_(computer_science)


Polymorphism in Lean

• In functional programming languages, polymorphism is made possible using 
generic types, which get inhabited by specific types based on context

• For example, let’s revisit the structure Point from last time
• We can define a similar structure PPoint that’s polymorphic (from FPIL 1.6)

structure PPoint (α : Type) where
  x : α
  y : α
deriving Repr

structure Point where
  x : Float
  y : Float
deriving Repr

https://en.wikipedia.org/wiki/Parametric_polymorphism


Polymorphic functions

• Three case studies
• identity
• plusOne
• Langmuir



Proposition
5 premises conjectureimply

Derivations in science are math proofs

Langmuir Adsorption
Langmuir, JACS, 1918

Proof ü _____
ü _____
ü _____
ü _____

Derivation using algebraic manipulations 
(substitution, cancelling terms, etc.)

Theorem

Proposition is TRUE

<latexit sha1_base64="AB5kYicBKZoy/SfXK0dcDZCOrEk="></latexit>

A1. Site balance: S0 = S + Sa

A2. Adsorption rate model: rads = kads · p · S
A3. Desorption rate model: rdes = kdes · Sa

A4. Equilibrium assumption: rads = rdes

A5. Mass balance q = Sa

<latexit sha1_base64="5Silut7701UWfqQqFKjm+7OIsug=">AAACEHicbVDLSgMxFM34rPU16tJNsIiCUGbE10YouhHcVLQPaIchk2ba0EwmTTJCGeYT3Pgrblwo4talO//G9CFo64ELJ+fcS+49gWBUacf5smZm5+YXFnNL+eWV1bV1e2OzquJEYlLBMYtlPUCKMMpJRVPNSF1IgqKAkVrQvRz4tXsiFY35ne4L4kWozWlIMdJG8u29HjyHzVAinN76DoTXfkp6GYQiS1148PMUmW8XnKIzBJwm7pgUwBhl3/5stmKcRIRrzJBSDdcR2kuR1BQzkuWbiSIC4S5qk4ahHEVEeenwoAzuGqUFw1ia4hoO1d8TKYqU6keB6YyQ7qhJbyD+5zUSHZ55KeUi0YTj0UdhwqCO4SAd2KKSYM36hiAsqdkV4g4y6WiTYd6E4E6ePE2qh0X3pHh8c1QoXYzjyIFtsAP2gQtOQQlcgTKoAAwewBN4Aa/Wo/VsvVnvo9YZazyzBf7A+vgGc4Ca/w==</latexit>

q =
S0Keqp

1 +Keqp
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Lists vs Arrays

https://medium.com/@bilal_k/wtf-is-linked-list-5d58b8a3bfe7

1
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A “list” in Python is an array!A “list” in Lean is a linked list



Lists in Lean

• FPIL Ch 3
• Lists in Lean are linked lists
• When you declare them, you need to specify the type of the data 

included, or specify a generic type and use polymorphism

• Summing elements in a list requires by polymorphism and recursion

def periodicTable : List String := 
  ["H", "He", "Li", "Be", "B", "C", "N", "O", "F", "Ne”]

def primesUnder10 : List Nat := [2, 3, 5, 7]

def sum_list : List Nat → Nat
| [] => 0
| (x :: xs) => x + sum_list xs



Lists and Arrays in Lean


