AddCommute.neg : ∀ {G : Type u_1} [inst : SubtractionMonoid G] {a b : G}, AddCommute a b → -(a + b) = -a + -b AddCommute.add_neg : ∀ {G : Type u_1} [inst : SubtractionMonoid G] {a b : G}, AddCommute a b → -(a + b) = -a + -b Commute.inv : ∀ {G : Type u_1} [inst : DivisionMonoid G] {a b : G}, Commute a b → (a * b)⁻¹ = a⁻¹ * b⁻¹ Commute.mul_inv : ∀ {G : Type u_1} [inst : DivisionMonoid G] {a b : G}, Commute a b → (a * b)⁻¹ = a⁻¹ * b⁻¹ Exists₂.imp : ∀ {α : Sort u_1} {β : α → Sort u_2} {p q : (a : α) → β a → Prop}, (∀ (a : α) (b : β a), p a b → q a b) → (∃ a b, p a b) → ∃ a b, q a b BEx.imp_right : ∀ {α : Sort u_1} {p : α → Prop} {P Q : (x : α) → p x → Prop}, (∀ (x : α) (h : p x), P x h → Q x h) → (∃ x, ∃ (h : p x), P x h) → ∃ x, ∃ (h : p x), Q x h imp_or : ∀ {a b c : Prop}, a → b ∨ c ↔ (a → b) ∨ (a → c) imp_or' : ∀ {a : Sort u_1} {b c : Prop}, (∀ (a : a), b ∨ c) ↔ (∀ (a : a), b) ∨ ∀ (a : a), c forall₂_imp : ∀ {α : Sort u_1} {β : α → Sort u_2} {p q : (a : α) → β a → Prop}, (∀ (a : α) (b : β a), p a b → q a b) → (∀ (a : α) (b : β a), p a b) → ∀ (a : α) (b : β a), q a b BAll.imp_right : ∀ {α : Sort u_1} {p : α → Prop} {P Q : (x : α) → p x → Prop}, (∀ (x : α) (h : p x), P x h → Q x h) → (∀ (x : α) (h : p x), P x h) → ∀ (x : α) (h : p x), Q x h max_def : ∀ {α : Type u_1} [inst : LinearOrder α] (a b : α), max a b = if a ≤ b then b else a LinearOrder.max_def : ∀ {α : Type u_2} [self : LinearOrder α] (a b : α), max a b = if a ≤ b then b else a min_def : ∀ {α : Type u_1} [inst : LinearOrder α] (a b : α), min a b = if a ≤ b then a else b LinearOrder.min_def : ∀ {α : Type u_2} [self : LinearOrder α] (a b : α), min a b = if a ≤ b then a else b Bool.coe_false : (false = true) = False Bool.coe_sort_false : (false = true) = False Bool.coe_sort_true : (true = true) = True Bool.coe_true : (true = true) = True Bool.bool_eq_false : ∀ {b : Bool}, ¬b = true → b = false Bool.eq_false_of_not_eq_true : ∀ {b : Bool}, ¬b = true → b = false Function.LeftInverse.rightInverse_of_injective : ∀ {α : Sort u_1} {β : Sort u_2} {f : α → β} {g : β → α}, Function.LeftInverse f g → Function.Injective f → Function.RightInverse f g Function.rightInverse_of_injective_of_leftInverse : ∀ {α : Sort u₁} {β : Sort u₂} {f : α → β} {g : β → α}, Function.Injective f → Function.LeftInverse f g → Function.RightInverse f g Quotient.ind₂' : ∀ {α : Sort u_1} {β : Sort u_2} {s₁ : Setoid α} {s₂ : Setoid β} {p : Quotient s₁ → Quotient s₂ → Prop}, (∀ (a₁ : α) (a₂ : β), p (Quotient.mk'' a₁) (Quotient.mk'' a₂)) → ∀ (q₁ : Quotient s₁) (q₂ : Quotient s₂), p q₁ q₂ Quotient.inductionOn₂' : ∀ {α : Sort u_1} {β : Sort u_2} {s₁ : Setoid α} {s₂ : Setoid β} {p : Quotient s₁ → Quotient s₂ → Prop} (q₁ : Quotient s₁) (q₂ : Quotient s₂), (∀ (a₁ : α) (a₂ : β), p (Quotient.mk'' a₁) (Quotient.mk'' a₂)) → p q₁ q₂ Subtype.val_prop : ∀ {α : Type u_1} {S : Set α} (a : { a // a ∈ S }), ↑a ∈ S Subtype.coe_prop : ∀ {α : Type u_1} {S : Set α} (a : { a // a ∈ S }), ↑a ∈ S Option.casesOn'_some : ∀ {α : Type u_1} {β : Type u_2} (x : β) (f : α → β) (a : α), (some a).casesOn' x f = f a Option.casesOn'_coe : ∀ {α : Type u_1} {β : Type u_2} (x : β) (f : α → β) (a : α), (some a).casesOn' x f = f a lt_of_le_of_lt' : ∀ {α : Type u_2} [inst : Preorder α] {a b c : α}, b ≤ c → a < b → a < c lt_of_lt_of_le : ∀ {α : Type u_1} [inst : Preorder α] {a b c : α}, a < b → b ≤ c → a < c Ne.lt_of_le : ∀ {α : Type u_2} [inst : PartialOrder α] {a b : α}, a ≠ b → a ≤ b → a < b lt_of_le_of_ne : ∀ {α : Type u_1} [inst : PartialOrder α] {a b : α}, a ≤ b → a ≠ b → a < b lt_of_lt_of_le' : ∀ {α : Type u_2} [inst : Preorder α] {a b c : α}, b < c → a ≤ b → a < c lt_of_le_of_lt : ∀ {α : Type u_1} [inst : Preorder α] {a b c : α}, a ≤ b → b < c → a < c Ne.lt_of_le' : ∀ {α : Type u_2} [inst : PartialOrder α] {a b : α}, b ≠ a → a ≤ b → a < b lt_of_le_of_ne' : ∀ {α : Type u_2} [inst : PartialOrder α] {a b : α}, a ≤ b → b ≠ a → a < b lt_trans' : ∀ {α : Type u_2} [inst : Preorder α] {a b c : α}, b < c → a < b → a < c lt_trans : ∀ {α : Type u_1} [inst : Preorder α] {a b c : α}, a < b → b < c → a < c left_or_right_lt_sup : ∀ {α : Type u} [inst : SemilatticeSup α] {a b : α}, a ≠ b → a < a ⊔ b ∨ b < a ⊔ b Ne.lt_sup_or_lt_sup : ∀ {α : Type u} [inst : SemilatticeSup α] {a b : α}, a ≠ b → a < a ⊔ b ∨ b < a ⊔ b Ne.inf_lt_or_inf_lt : ∀ {α : Type u} [inst : SemilatticeInf α] {a b : α}, a ≠ b → a ⊓ b < a ∨ a ⊓ b < b inf_lt_left_or_right : ∀ {α : Type u} [inst : SemilatticeInf α] {a b : α}, a ≠ b → a ⊓ b < a ∨ a ⊓ b < b sdiff_eq_left : ∀ {α : Type u} {x y : α} [inst : GeneralizedBooleanAlgebra α], x \ y = x ↔ Disjoint x y sdiff_eq_self_iff_disjoint' : ∀ {α : Type u} {x y : α} [inst : GeneralizedBooleanAlgebra α], x \ y = x ↔ Disjoint x y Set.not_subset_iff_exists_mem_not_mem : ∀ {α : Type u_1} {s t : Set α}, ¬s ⊆ t ↔ ∃ x ∈ s, x ∉ t Set.not_subset : ∀ {α : Type u} {s t : Set α}, ¬s ⊆ t ↔ ∃ a ∈ s, a ∉ t Set.inter_nonempty_iff_exists_left : ∀ {α : Type u} {s t : Set α}, (s ∩ t).Nonempty ↔ ∃ x ∈ s, x ∈ t Set.inter_nonempty : ∀ {α : Type u} {s t : Set α}, (s ∩ t).Nonempty ↔ ∃ x ∈ s, x ∈ t Set.mem_of_mem_of_subset : ∀ {α : Type u} {x : α} {s t : Set α}, x ∈ s → s ⊆ t → x ∈ t Set.mem_of_subset_of_mem : ∀ {α : Type u} {s₁ s₂ : Set α} {a : α}, s₁ ⊆ s₂ → a ∈ s₁ → a ∈ s₂ Set.Nonempty.eq_univ : ∀ {α : Type u} {s : Set α} [Subsingleton α], s.Nonempty → s = Set.univ Subsingleton.eq_univ_of_nonempty : ∀ {α : Type u_1} [Subsingleton α] {s : Set α}, s.Nonempty → s = Set.univ Set.setOf_eq_eq_singleton : ∀ {α : Type u} {a : α}, {n | n = a} = {a} Set.set_compr_eq_eq_singleton : ∀ {α : Type u} {a : α}, {b | b = a} = {a} Equiv.optionEquivSumPUnit_coe : ∀ {α : Type u_4} (a : α), (Equiv.optionEquivSumPUnit α) (some a) = Sum.inl a Equiv.optionEquivSumPUnit_some : ∀ {α : Type u_4} (a : α), (Equiv.optionEquivSumPUnit α) (some a) = Sum.inl a Equiv.optionSubtype_symm_apply_apply_some : ∀ {α : Type u_1} {β : Type u_2} [inst : DecidableEq β] (x : β) (e : α ≃ { y // y ≠ x }) (a : α), ↑((Equiv.optionSubtype x).symm e) (some a) = ↑(e a) Equiv.optionSubtype_symm_apply_apply_coe : ∀ {α : Type u_1} {β : Type u_2} [inst : DecidableEq β] (x : β) (e : α ≃ { y // y ≠ x }) (a : α), ↑((Equiv.optionSubtype x).symm e) (some a) = ↑(e a) Set.pi_univ_ite : ∀ {ι : Type u_1} {α : ι → Type u_2} (s : Set ι) [inst : DecidablePred fun x => x ∈ s] (t : (i : ι) → Set (α i)), (Set.univ.pi fun i => if i ∈ s then t i else Set.univ) = s.pi t Set.univ_pi_ite : ∀ {ι : Type u_1} {α : ι → Type u_2} (s : Set ι) [inst : DecidablePred fun x => x ∈ s] (t : (i : ι) → Set (α i)), (Set.univ.pi fun i => if i ∈ s then t i else Set.univ) = s.pi t Set.subset_prod : ∀ {α : Type u_1} {β : Type u_2} {s : Set (α × β)}, s ⊆ (Prod.fst '' s) ×ˢ (Prod.snd '' s) Set.subset_fst_image_prod_snd_image : ∀ {α : Type u_1} {β : Type u_2} {s : Set (α × β)}, s ⊆ (Prod.fst '' s) ×ˢ (Prod.snd '' s) Set.Nontrivial.offDiag_nonempty : ∀ {α : Type u_1} {s : Set α}, s.Nontrivial → s.offDiag.Nonempty Set.Subsingleton.offDiag_eq_empty : ∀ {α : Type u_1} {s : Set α}, s.Nontrivial → s.offDiag.Nonempty mul_div : ∀ {G : Type u_3} [inst : DivInvMonoid G] (a b c : G), a * (b / c) = a * b / c mul_div_assoc' : ∀ {G : Type u_3} [inst : DivInvMonoid G] (a b c : G), a * (b / c) = a * b / c add_sub : ∀ {G : Type u_3} [inst : SubNegMonoid G] (a b c : G), a + (b - c) = a + b - c add_sub_assoc' : ∀ {G : Type u_3} [inst : SubNegMonoid G] (a b c : G), a + (b - c) = a + b - c Nat.not_even_two_mul_add_one : ∀ (n : ℕ), ¬Even (2 * n + 1) Nat.not_even_bit1 : ∀ (n : ℕ), ¬Even (2 * n + 1) Function.Involutive.iterate_bit0 : ∀ {α : Type u_4} {f : α → α}, Function.Involutive f → ∀ (n : ℕ), f^[2 * n] = id Function.Involutive.iterate_two_mul : ∀ {α : Type u_4} {f : α → α}, Function.Involutive f → ∀ (n : ℕ), f^[2 * n] = id invertible_unique : ∀ {α : Type u} [inst : Monoid α] (a b : α) [inst_1 : Invertible a] [inst_2 : Invertible b], a = b → ⅟ a = ⅟ b Invertible.congr : ∀ {α : Type u} [inst : Monoid α] (a b : α) [inst_1 : Invertible a] [inst_2 : Invertible b], a = b → ⅟ a = ⅟ b mul_le_mul_of_nonneg_of_nonpos' : ∀ {R : Type u} [inst : Semiring R] [inst_1 : Preorder R] {a b c d : R} [ExistsAddOfLE R] [PosMulMono R] [MulPosMono R] [AddRightMono R] [AddRightReflectLE R], c ≤ a → b ≤ d → 0 ≤ a → d ≤ 0 → a * b ≤ c * d mul_le_mul_of_nonpos_of_nonneg' : ∀ {R : Type u} [inst : Semiring R] [inst_1 : Preorder R] {a b c d : R} [ExistsAddOfLE R] [PosMulMono R] [MulPosMono R] [AddRightMono R] [AddRightReflectLE R], c ≤ a → b ≤ d → 0 ≤ a → d ≤ 0 → a * b ≤ c * d RelIso.eq_iff_eq : ∀ {α : Type u_1} {β : Type u_2} {r : α → α → Prop} {s : β → β → Prop} (f : r ≃r s) {a b : α}, f a = f b ↔ a = b RelIso.apply_eq_iff_eq : ∀ {α : Type u_1} {β : Type u_2} {r : α → α → Prop} {s : β → β → Prop} (f : r ≃r s) {x y : α}, f x = f y ↔ x = y OrderHomClass.monotone : ∀ {F : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] [inst_2 : FunLike F α β] [OrderHomClass F α β] (f : F), Monotone ⇑f OrderHomClass.mono : ∀ {F : Type u_1} {α : Type u_2} {β : Type u_3} [inst : Preorder α] [inst_1 : Preorder β] [inst_2 : FunLike F α β] [OrderHomClass F α β] (f : F), Monotone ⇑f Option.map₂_some_some : ∀ {α : Type u_1} {β : Type u_2} {γ : Type u_3} (f : α → β → γ) (a : α) (b : β), Option.map₂ f (some a) (some b) = some (f a b) Option.map₂_coe_coe : ∀ {α : Type u_1} {β : Type u_2} {γ : Type u_3} (f : α → β → γ) (a : α) (b : β), Option.map₂ f (some a) (some b) = some (f a b) Mathlib.Meta.Positivity.lt_of_le_of_ne' : ∀ {A : Type u_1} {a b : A} [inst : PartialOrder A], a ≤ b → b ≠ a → a < b lt_of_le_of_ne' : ∀ {α : Type u_2} [inst : PartialOrder α] {a b : α}, a ≤ b → b ≠ a → a < b Int.IsUnit.natAbs_eq : ∀ {u : ℤ}, IsUnit u → u.natAbs = 1 Int.natAbs_of_isUnit : ∀ {u : ℤ}, IsUnit u → u.natAbs = 1 Nonneg.pow_nonneg : ∀ {α : Type u_1} [inst : MonoidWithZero α] [inst_1 : Preorder α] [ZeroLEOneClass α] [PosMulMono α] {a : α}, 0 ≤ a → ∀ (n : ℕ), 0 ≤ a ^ n pow_nonneg : ∀ {M₀ : Type u_2} [inst : MonoidWithZero M₀] [inst_1 : Preorder M₀] {a : M₀} [ZeroLEOneClass M₀] [PosMulMono M₀], 0 ≤ a → ∀ (n : ℕ), 0 ≤ a ^ n Nonneg.coe_nsmul : ∀ {α : Type u_1} [inst : AddMonoid α] [inst_1 : Preorder α] [inst_2 : AddLeftMono α] (n : ℕ) (a : { x // 0 ≤ x }), ↑(n • a) = n • ↑a Nonneg.nsmul_coe : ∀ {α : Type u_1} [inst : AddMonoid α] [inst_1 : Preorder α] [inst_2 : AddLeftMono α] (n : ℕ) (r : { x // 0 ≤ x }), ↑(n • r) = n • ↑r Mathlib.Tactic.Ring.natCast_add : ∀ {R : Type u_1} [inst : CommSemiring R] {b₁ b₂ : R} {a₁ a₂ : ℕ}, ↑a₁ = b₁ → ↑a₂ = b₂ → ↑(a₁ + a₂) = b₁ + b₂ Mathlib.Tactic.Ring.inv_add : ∀ {R : Type u_1} [inst : CommSemiring R] {b₁ b₂ : R} {a₁ a₂ : ℕ}, ↑a₁ = b₁ → ↑a₂ = b₂ → ↑(a₁ + a₂) = b₁ + b₂ Set.union_iInter : ∀ {β : Type u_2} {ι : Sort u_5} (s : Set β) (t : ι → Set β), s ∪ ⋂ i, t i = ⋂ i, s ∪ t i Set.union_distrib_iInter_left : ∀ {α : Type u_1} {ι : Sort u_5} (s : ι → Set α) (t : Set α), t ∪ ⋂ i, s i = ⋂ i, t ∪ s i Set.union_distrib_iInter₂_right : ∀ {α : Type u_1} {ι : Sort u_5} {κ : ι → Sort u_8} (s : (i : ι) → κ i → Set α) (t : Set α), (⋂ i, ⋂ j, s i j) ∪ t = ⋂ i, ⋂ j, s i j ∪ t Set.iInter₂_union : ∀ {α : Type u_1} {ι : Sort u_5} {κ : ι → Sort u_8} (s : (i : ι) → κ i → Set α) (t : Set α), (⋂ i, ⋂ j, s i j) ∪ t = ⋂ i, ⋂ j, s i j ∪ t Set.iInter_union : ∀ {β : Type u_2} {ι : Sort u_5} (s : ι → Set β) (t : Set β), (⋂ i, s i) ∪ t = ⋂ i, s i ∪ t Set.union_distrib_iInter_right : ∀ {α : Type u_1} {ι : Sort u_5} (s : ι → Set α) (t : Set α), (⋂ i, s i) ∪ t = ⋂ i, s i ∪ t Set.union_distrib_iInter₂_left : ∀ {α : Type u_1} {ι : Sort u_5} {κ : ι → Sort u_8} (s : Set α) (t : (i : ι) → κ i → Set α), s ∪ ⋂ i, ⋂ j, t i j = ⋂ i, ⋂ j, s ∪ t i j Set.union_iInter₂ : ∀ {α : Type u_1} {ι : Sort u_5} {κ : ι → Sort u_8} (s : Set α) (t : (i : ι) → κ i → Set α), s ∪ ⋂ i, ⋂ j, t i j = ⋂ i, ⋂ j, s ∪ t i j Set.dual_ordConnected_iff : ∀ {α : Type u_1} [inst : Preorder α] {s : Set α}, (⇑OrderDual.ofDual ⁻¹' s).OrdConnected ↔ s.OrdConnected Set.ordConnected_dual : ∀ {α : Type u_1} [inst : Preorder α] {s : Set α}, (⇑OrderDual.ofDual ⁻¹' s).OrdConnected ↔ s.OrdConnected leOnePart_le_one' : ∀ {α : Type u_1} [inst : Lattice α] [inst_1 : Group α] {a : α}, a⁻ᵐ ≤ 1 ↔ a⁻¹ ≤ 1 leOnePart_le_one : ∀ {α : Type u_1} [inst : Lattice α] [inst_1 : Group α] {a : α}, a⁻ᵐ ≤ 1 ↔ a⁻¹ ≤ 1 negPart_nonpos : ∀ {α : Type u_1} [inst : Lattice α] [inst_1 : AddGroup α] {a : α}, a⁻ ≤ 0 ↔ -a ≤ 0 negPart_nonpos' : ∀ {α : Type u_1} [inst : Lattice α] [inst_1 : AddGroup α] {a : α}, a⁻ ≤ 0 ↔ -a ≤ 0 LinearEquiv.coe_toLinearMap : ∀ {R : Type u_1} {S : Type u_5} {M : Type u_6} {M₂ : Type u_8} [inst : Semiring R] [inst_1 : Semiring S] [inst_2 : AddCommMonoid M] [inst_3 : AddCommMonoid M₂] {module_M : _root_.Module R M} {module_S_M₂ : _root_.Module S M₂} {σ : R →+* S} {σ' : S →+* R} {re₁ : RingHomInvPair σ σ'} {re₂ : RingHomInvPair σ' σ} (e : M ≃ₛₗ[σ] M₂), ⇑↑e = ⇑e LinearEquiv.coe_coe : ∀ {R : Type u_1} {S : Type u_5} {M : Type u_6} {M₂ : Type u_8} [inst : Semiring R] [inst_1 : Semiring S] [inst_2 : AddCommMonoid M] [inst_3 : AddCommMonoid M₂] {module_M : _root_.Module R M} {module_S_M₂ : _root_.Module S M₂} {σ : R →+* S} {σ' : S →+* R} {re₁ : RingHomInvPair σ σ'} {re₂ : RingHomInvPair σ' σ} (e : M ≃ₛₗ[σ] M₂), ⇑↑e = ⇑e Set.image2_sInter_left_subset : ∀ {α : Type u_1} {β : Type u_2} {γ : Type u_3} (S : Set (Set α)) (t : Set β) (f : α → β → γ), Set.image2 f (⋂₀ S) t ⊆ ⋂ s ∈ S, Set.image2 f s t Set.image2_sInter_subset_left : ∀ {α : Type u_1} {β : Type u_2} {γ : Type u_3} (f : α → β → γ) (S : Set (Set α)) (t : Set β), Set.image2 f (⋂₀ S) t ⊆ ⋂ s ∈ S, Set.image2 f s t Set.image2_sInter_subset_right : ∀ {α : Type u_1} {β : Type u_2} {γ : Type u_3} (f : α → β → γ) (s : Set α) (T : Set (Set β)), Set.image2 f s (⋂₀ T) ⊆ ⋂ t ∈ T, Set.image2 f s t Set.image2_sInter_right_subset : ∀ {α : Type u_1} {β : Type u_2} {γ : Type u_3} (t : Set α) (S : Set (Set β)) (f : α → β → γ), Set.image2 f t (⋂₀ S) ⊆ ⋂ s ∈ S, Set.image2 f t s Subgroup.map_inf_eq : ∀ {G : Type u_1} [inst : Group G] {N : Type u_5} [inst_1 : Group N] (H K : Subgroup G) (f : G →* N), Function.Injective ⇑f → Subgroup.map f (H ⊓ K) = Subgroup.map f H ⊓ Subgroup.map f K Subgroup.map_inf : ∀ {G : Type u_1} [inst : Group G] {N : Type u_5} [inst_1 : Group N] (H K : Subgroup G) (f : G →* N), Function.Injective ⇑f → Subgroup.map f (H ⊓ K) = Subgroup.map f H ⊓ Subgroup.map f K AddSubgroup.map_inf : ∀ {G : Type u_1} [inst : AddGroup G] {N : Type u_5} [inst_1 : AddGroup N] (H K : AddSubgroup G) (f : G →+ N), Function.Injective ⇑f → AddSubgroup.map f (H ⊓ K) = AddSubgroup.map f H ⊓ AddSubgroup.map f K AddSubgroup.map_inf_eq : ∀ {G : Type u_1} [inst : AddGroup G] {N : Type u_5} [inst_1 : AddGroup N] (H K : AddSubgroup G) (f : G →+ N), Function.Injective ⇑f → AddSubgroup.map f (H ⊓ K) = AddSubgroup.map f H ⊓ AddSubgroup.map f K Multiset.induction_on : ∀ {α : Type u_1} {p : Multiset α → Prop} (s : Multiset α), p 0 → (∀ (a : α) (s : Multiset α), p s → p (a ::ₘ s)) → p s Multiset.induction : ∀ {α : Type u_1} {p : Multiset α → Prop}, p 0 → (∀ (a : α) (s : Multiset α), p s → p (a ::ₘ s)) → ∀ (s : Multiset α), p s Multiset.strongDownwardInduction_eq : ∀ {α : Type u_1} {p : Multiset α → Sort u_3} {n : ℕ} (H : (t₁ : Multiset α) → ({t₂ : Multiset α} → t₂.card ≤ n → t₁ < t₂ → p t₂) → t₁.card ≤ n → p t₁) (s : Multiset α), Multiset.strongDownwardInduction H s = H s fun {t₂} ht _hst => Multiset.strongDownwardInduction H t₂ ht Multiset.strongDownwardInduction.eq_def : ∀ {α : Type u_1} {p : Multiset α → Sort u_3} {n : ℕ} (H : (t₁ : Multiset α) → ({t₂ : Multiset α} → t₂.card ≤ n → t₁ < t₂ → p t₂) → t₁.card ≤ n → p t₁) (s : Multiset α), Multiset.strongDownwardInduction H s = H s fun {t} ht _h => Multiset.strongDownwardInduction H t ht Multiset.strongInductionOn.eq_def : ∀ {α : Type u_1} {p : Multiset α → Sort u_3} (s : Multiset α) (ih : (s : Multiset α) → ((t : Multiset α) → t < s → p t) → p s), s.strongInductionOn ih = ih s fun t _h => t.strongInductionOn ih Multiset.strongInductionOn_eq : ∀ {α : Type u_1} {p : Multiset α → Sort u_3} (s : Multiset α) (H : (s : Multiset α) → ((t : Multiset α) → t < s → p t) → p s), s.strongInductionOn H = H s fun t _h => t.strongInductionOn H Multiset.ext'_iff : ∀ {α : Type u_1} [inst : DecidableEq α] {s t : Multiset α}, s = t ↔ ∀ (a : α), Multiset.count a s = Multiset.count a t Multiset.ext : ∀ {α : Type u_1} [inst : DecidableEq α] {s t : Multiset α}, s = t ↔ ∀ (a : α), Multiset.count a s = Multiset.count a t Multiset.sub_add_cancel : ∀ {α : Type u_1} [inst : DecidableEq α] {s t : Multiset α}, t ≤ s → s - t + t = s Multiset.add_sub_cancel : ∀ {α : Type u_1} [inst : DecidableEq α] {s t : Multiset α}, t ≤ s → s - t + t = s List.take_one_drop_eq_of_lt_length : ∀ {α : Type u} {l : List α} {n : ℕ} (h : n < l.length), List.take 1 (List.drop n l) = [l.get ⟨n, h⟩] List.take_one_drop_eq_of_lt_length : ∀ {α : Type u} {l : List α} {n : ℕ} (h : n < l.length), List.take 1 (List.drop n l) = [l.get ⟨n, h⟩] Multiset.Nodup.inter : ∀ {α : Type u_1} [inst : DecidableEq α] {s : Multiset α} (t : Multiset α), s.Nodup → (s ∩ t).Nodup Multiset.Nodup.inter_left : ∀ {α : Type u_1} {s : Multiset α} [inst : DecidableEq α] (t : Multiset α), s.Nodup → (s ∩ t).Nodup Finset.cons_induction : ∀ {α : Type u_3} {motive : Finset α → Prop}, motive ∅ → (∀ (a : α) (s : Finset α) (h : a ∉ s), motive s → motive (Finset.cons a s h)) → ∀ (s : Finset α), motive s Finset.cons_induction_on : ∀ {α : Type u_3} {motive : Finset α → Prop} (s : Finset α), motive ∅ → (∀ (a : α) (s : Finset α) (h : a ∉ s), motive s → motive (Finset.cons a s h)) → motive s Finset.induction_on : ∀ {α : Type u_3} {motive : Finset α → Prop} [inst : DecidableEq α] (s : Finset α), motive ∅ → (∀ (a : α) (s : Finset α), a ∉ s → motive s → motive (insert a s)) → motive s Finset.induction : ∀ {α : Type u_3} {motive : Finset α → Prop} [inst : DecidableEq α], motive ∅ → (∀ (a : α) (s : Finset α), a ∉ s → motive s → motive (insert a s)) → ∀ (s : Finset α), motive s Finset.union_sdiff_self : ∀ {α : Type u_1} [inst : DecidableEq α] (s t : Finset α), (s ∪ t) \ t = s \ t Finset.union_sdiff_right : ∀ {α : Type u_1} [inst : DecidableEq α] (s t : Finset α), (s ∪ t) \ t = s \ t Finset.exists_mem_ne : ∀ {α : Type u_1} {s : Finset α}, 1 < s.card → ∀ (a : α), ∃ b ∈ s, b ≠ a Finset.exists_ne_of_one_lt_card : ∀ {α : Type u_1} {s : Finset α}, 1 < s.card → ∀ (a : α), ∃ b ∈ s, b ≠ a Finset.biUnion_subset : ∀ {α : Type u_1} {β : Type u_2} {s : Finset α} {t : α → Finset β} [inst : DecidableEq β] {s' : Finset β}, s.biUnion t ⊆ s' ↔ ∀ x ∈ s, t x ⊆ s' Finset.biUnion_subset_iff_forall_subset : ∀ {α : Type u_4} {β : Type u_5} [inst : DecidableEq β] {s : Finset α} {t : Finset β} {f : α → Finset β}, s.biUnion f ⊆ t ↔ ∀ x ∈ s, f x ⊆ t Fin.succAbove_zero_apply : ∀ {n : ℕ} (i : Fin n), Fin.succAbove 0 i = i.succ Fin.zero_succAbove : ∀ {n : ℕ} (i : Fin n), Fin.succAbove 0 i = i.succ Fin.succAbove_inj : ∀ {n : ℕ} {p : Fin (n + 1)} {i j : Fin n}, p.succAbove i = p.succAbove j ↔ i = j Fin.succAbove_right_inj : ∀ {n : ℕ} {p : Fin (n + 1)} {i j : Fin n}, p.succAbove i = p.succAbove j ↔ i = j Submodule.subtype_injective : ∀ {R : Type u} {M : Type v} [inst : Semiring R] [inst_1 : AddCommMonoid M] {module_M : _root_.Module R M} (p : Submodule R M), Function.Injective ⇑p.subtype Submodule.injective_subtype : ∀ {R : Type u} {M : Type v} [inst : Semiring R] [inst_1 : AddCommMonoid M] {module_M : _root_.Module R M} (p : Submodule R M), Function.Injective ⇑p.subtype NonUnitalSubring.mem_carrier : ∀ {R : Type u} [inst : NonUnitalNonAssocRing R] {s : NonUnitalSubring R} {x : R}, x ∈ s.toNonUnitalSubsemiring ↔ x ∈ s NonUnitalSubring.mem_toNonUnitalSubsemiring : ∀ {R : Type u} [inst : NonUnitalNonAssocRing R] {s : NonUnitalSubring R} {x : R}, x ∈ s.toNonUnitalSubsemiring ↔ x ∈ s Finset.exists_not_mem : ∀ {α : Type u} [Infinite α] (s : Finset α), ∃ a, a ∉ s Infinite.exists_not_mem_finset : ∀ {α : Type u_1} [Infinite α] (s : Finset α), ∃ x, x ∉ s RingHom.closure_preimage_le : ∀ {R : Type u} {S : Type v} [inst : Ring R] [inst_1 : Ring S] (f : R →+* S) (s : Set S), Subring.closure (⇑f ⁻¹' s) ≤ Subring.comap f (Subring.closure s) Subring.closure_preimage_le : ∀ {R : Type u} {S : Type v} [inst : Ring R] [inst_1 : Ring S] (f : R →+* S) (s : Set S), Subring.closure (⇑f ⁻¹' s) ≤ Subring.comap f (Subring.closure s) NonUnitalAlgHom.prod_toFun : ∀ {R : Type u} [inst : Monoid R] {A : Type v} {B : Type w} {C : Type w₁} [inst_1 : NonUnitalNonAssocSemiring A] [inst_2 : DistribMulAction R A] [inst_3 : NonUnitalNonAssocSemiring B] [inst_4 : NonUnitalNonAssocSemiring C] [inst_5 : DistribMulAction R B] [inst_6 : DistribMulAction R C] (f : A →ₙₐ[R] B) (g : A →ₙₐ[R] C) (i : A), (f.prod g) i = Pi.prod (⇑f) (⇑g) i NonUnitalAlgHom.prod_apply : ∀ {R : Type u} [inst : Monoid R] {A : Type v} {B : Type w} {C : Type w₁} [inst_1 : NonUnitalNonAssocSemiring A] [inst_2 : DistribMulAction R A] [inst_3 : NonUnitalNonAssocSemiring B] [inst_4 : NonUnitalNonAssocSemiring C] [inst_5 : DistribMulAction R B] [inst_6 : DistribMulAction R C] (f : A →ₙₐ[R] B) (g : A →ₙₐ[R] C) (i : A), (f.prod g) i = Pi.prod (⇑f) (⇑g) i NonUnitalAlgHom.snd_apply : ∀ (R : Type u) [inst : Monoid R] (A : Type v) (B : Type w) [inst_1 : NonUnitalNonAssocSemiring A] [inst_2 : DistribMulAction R A] [inst_3 : NonUnitalNonAssocSemiring B] [inst_4 : DistribMulAction R B] (self : A × B), (NonUnitalAlgHom.snd R A B) self = self.2 NonUnitalAlgHom.snd_toFun : ∀ (R : Type u) [inst : Monoid R] (A : Type v) (B : Type w) [inst_1 : NonUnitalNonAssocSemiring A] [inst_2 : DistribMulAction R A] [inst_3 : NonUnitalNonAssocSemiring B] [inst_4 : DistribMulAction R B] (self : A × B), (NonUnitalAlgHom.snd R A B) self = self.2 NonUnitalAlgHom.fst_toFun : ∀ (R : Type u) [inst : Monoid R] (A : Type v) (B : Type w) [inst_1 : NonUnitalNonAssocSemiring A] [inst_2 : DistribMulAction R A] [inst_3 : NonUnitalNonAssocSemiring B] [inst_4 : DistribMulAction R B] (self : A × B), (NonUnitalAlgHom.fst R A B) self = self.1 NonUnitalAlgHom.fst_apply : ∀ (R : Type u) [inst : Monoid R] (A : Type v) (B : Type w) [inst_1 : NonUnitalNonAssocSemiring A] [inst_2 : DistribMulAction R A] [inst_3 : NonUnitalNonAssocSemiring B] [inst_4 : DistribMulAction R B] (self : A × B), (NonUnitalAlgHom.fst R A B) self = self.1 Submodule.map_comap_eq_of_le : ∀ {R : Type u_1} {R₂ : Type u_2} {M : Type u_5} {M₂ : Type u_6} [inst : Semiring R] [inst_1 : Semiring R₂] [inst_2 : AddCommMonoid M] [inst_3 : AddCommMonoid M₂] [inst_4 : _root_.Module R M] [inst_5 : _root_.Module R₂ M₂] {τ₁₂ : R →+* R₂} {F : Type u_10} [inst_6 : FunLike F M M₂] [inst_7 : SemilinearMapClass F τ₁₂ M M₂] [inst_8 : RingHomSurjective τ₁₂] {f : F} {p : Submodule R₂ M₂}, p ≤ LinearMap.range f → Submodule.map f (Submodule.comap f p) = p Submodule.map_comap_eq_self : ∀ {R : Type u_1} {R₂ : Type u_2} {M : Type u_5} {M₂ : Type u_6} [inst : Semiring R] [inst_1 : Semiring R₂] [inst_2 : AddCommMonoid M] [inst_3 : AddCommMonoid M₂] [inst_4 : _root_.Module R M] [inst_5 : _root_.Module R₂ M₂] {τ₁₂ : R →+* R₂} {F : Type u_10} [inst_6 : FunLike F M M₂] [inst_7 : SemilinearMapClass F τ₁₂ M M₂] [inst_8 : RingHomSurjective τ₁₂] {f : F} {q : Submodule R₂ M₂}, q ≤ LinearMap.range f → Submodule.map f (Submodule.comap f q) = q Antisymmetrization.ind : ∀ {α : Type u_1} (r : α → α → Prop) [inst : IsPreorder α r] {p : Antisymmetrization α r → Prop}, (∀ (a : α), p (toAntisymmetrization r a)) → ∀ (q : Antisymmetrization α r), p q Antisymmetrization.induction_on : ∀ {α : Type u_1} (r : α → α → Prop) [inst : IsPreorder α r] {p : Antisymmetrization α r → Prop} (a : Antisymmetrization α r), (∀ (a : α), p (toAntisymmetrization r a)) → p a WCovBy.of_image : ∀ {α : Type u_1} {β : Type u_2} [inst : Preorder α] [inst_1 : Preorder β] {a b : α} (f : α ↪o β), f a ⩿ f b → a ⩿ b OrderEmbedding.wcovBy_of_apply : ∀ {α : Type u_3} {β : Type u_4} [inst : Preorder α] [inst_1 : Preorder β] (f : α ↪o β) {x y : α}, f x ⩿ f y → x ⩿ y CovBy.of_image : ∀ {α : Type u_1} {β : Type u_2} [inst : Preorder α] [inst_1 : Preorder β] {a b : α} (f : α ↪o β), f a ⋖ f b → a ⋖ b OrderEmbedding.covBy_of_apply : ∀ {α : Type u_3} {β : Type u_4} [inst : Preorder α] [inst_1 : Preorder β] (f : α ↪o β) {x y : α}, f x ⋖ f y → x ⋖ y Set.Ico_succ_right_eq_Icc : ∀ {α : Type u_1} [inst : LinearOrder α] [inst_1 : SuccOrder α] [NoMaxOrder α] (a b : α), Set.Ico a (Order.succ b) = Set.Icc a b Order.Ico_succ_right : ∀ {α : Type u_1} [inst : LinearOrder α] [inst_1 : SuccOrder α] [NoMaxOrder α] (a b : α), Set.Ico a (Order.succ b) = Set.Icc a b Set.Iio_succ_eq_Iic : ∀ {α : Type u_1} [inst : LinearOrder α] [inst_1 : SuccOrder α] [NoMaxOrder α] (b : α), Set.Iio (Order.succ b) = Set.Iic b Order.Iio_succ : ∀ {α : Type u_1} [inst : LinearOrder α] [inst_1 : SuccOrder α] [NoMaxOrder α] (a : α), Set.Iio (Order.succ a) = Set.Iic a Set.Ioi_pred_eq_Ici : ∀ {α : Type u_1} [inst : LinearOrder α] [inst_1 : PredOrder α] [NoMinOrder α] (a : α), Set.Ioi (Order.pred a) = Set.Ici a Order.Ioi_pred : ∀ {α : Type u_1} [inst : LinearOrder α] [inst_1 : PredOrder α] [NoMinOrder α] (a : α), Set.Ioi (Order.pred a) = Set.Ici a Set.Ioo_succ_right_eq_Ioc : ∀ {α : Type u_1} [inst : LinearOrder α] [inst_1 : SuccOrder α] [NoMaxOrder α] (a b : α), Set.Ioo a (Order.succ b) = Set.Ioc a b Order.Ioo_succ_right : ∀ {α : Type u_1} [inst : LinearOrder α] [inst_1 : SuccOrder α] [NoMaxOrder α] (a b : α), Set.Ioo a (Order.succ b) = Set.Ioc a b Set.Ioo_pred_left_eq_Ioc : ∀ {α : Type u_1} [inst : LinearOrder α] [inst_1 : PredOrder α] [NoMinOrder α] (a b : α), Set.Ioo (Order.pred a) b = Set.Ico a b Order.Ioo_pred_left : ∀ {α : Type u_1} [inst : LinearOrder α] [inst_1 : PredOrder α] [NoMinOrder α] (a b : α), Set.Ioo (Order.pred a) b = Set.Ico a b Set.Ioi_pred_eq_Ici_of_not_isMin : ∀ {α : Type u_1} [inst : LinearOrder α] [inst_1 : PredOrder α] {a : α}, ¬IsMin a → Set.Ioi (Order.pred a) = Set.Ici a Order.Ioi_pred_of_not_isMin : ∀ {α : Type u_1} [inst : LinearOrder α] [inst_1 : PredOrder α] {a : α}, ¬IsMin a → Set.Ioi (Order.pred a) = Set.Ici a Set.Iio_succ_eq_Iic_of_not_isMax : ∀ {α : Type u_1} [inst : LinearOrder α] [inst_1 : SuccOrder α] {b : α}, ¬IsMax b → Set.Iio (Order.succ b) = Set.Iic b Order.Iio_succ_of_not_isMax : ∀ {α : Type u_1} [inst : LinearOrder α] [inst_1 : SuccOrder α] {a : α}, ¬IsMax a → Set.Iio (Order.succ a) = Set.Iic a Set.Ioc_pred_left_eq_Icc : ∀ {α : Type u_1} [inst : LinearOrder α] [inst_1 : PredOrder α] [NoMinOrder α] (a b : α), Set.Ioc (Order.pred a) b = Set.Icc a b Order.Ioc_pred_left : ∀ {α : Type u_1} [inst : LinearOrder α] [inst_1 : PredOrder α] [NoMinOrder α] (a b : α), Set.Ioc (Order.pred a) b = Set.Icc a b Finset.nonempty_Ioi : ∀ {α : Type u_2} {a : α} [inst : Preorder α] [inst_1 : LocallyFiniteOrderTop α], (Finset.Ioi a).Nonempty ↔ ¬IsMax a Finset.Ioi_nonempty : ∀ {α : Type u_2} {a : α} [inst : Preorder α] [inst_1 : LocallyFiniteOrderTop α], (Finset.Ioi a).Nonempty ↔ ¬IsMax a Finset.nonempty_Iio : ∀ {α : Type u_2} {a : α} [inst : Preorder α] [inst_1 : LocallyFiniteOrderBot α], (Finset.Iio a).Nonempty ↔ ¬IsMin a Finset.Iio_nonempty : ∀ {α : Type u_2} {a : α} [inst : Preorder α] [inst_1 : LocallyFiniteOrderBot α], (Finset.Iio a).Nonempty ↔ ¬IsMin a Encodable.encodek₂ : ∀ {α : Type u_1} [inst : Encodable α] (a : α), Encodable.decode₂ α (Encodable.encode a) = some a Encodable.decode₂_encode : ∀ {α : Type u_1} [inst : Encodable α] (a : α), Encodable.decode₂ α (Encodable.encode a) = some a Part.pure_eq_some : ∀ {α : Type u_1} (a : α), pure a = Part.some a Part.ret_eq_some : ∀ {α : Type u_1} (a : α), pure a = Part.some a AddSubgroup.zmultiples_one_eq_top : AddSubgroup.zmultiples 1 = ⊤ Int.zmultiples_one : AddSubgroup.zmultiples 1 = ⊤ finprod_eq_prod_of_mulSupport_subset : ∀ {α : Type u_1} {M : Type u_5} [inst : CommMonoid M] (f : α → M) {s : Finset α}, Function.mulSupport f ⊆ ↑s → ∏ᶠ (i : α), f i = ∏ i ∈ s, f i finprod_eq_finset_prod_of_mulSupport_subset : ∀ {α : Type u_1} {M : Type u_5} [inst : CommMonoid M] (f : α → M) {s : Finset α}, Function.mulSupport f ⊆ ↑s → ∏ᶠ (i : α), f i = ∏ i ∈ s, f i finsum_eq_sum_of_support_subset : ∀ {α : Type u_1} {M : Type u_5} [inst : AddCommMonoid M] (f : α → M) {s : Finset α}, Function.support f ⊆ ↑s → ∑ᶠ (i : α), f i = ∑ i ∈ s, f i finsum_eq_finset_sum_of_support_subset : ∀ {α : Type u_1} {M : Type u_5} [inst : AddCommMonoid M] (f : α → M) {s : Finset α}, Function.support f ⊆ ↑s → ∑ᶠ (i : α), f i = ∑ i ∈ s, f i Nat.cast_prod : ∀ {α : Type u_3} {β : Type u_4} [inst : CommSemiring β] (f : α → ℕ) (s : Finset α), ↑(∏ i ∈ s, f i) = ∏ i ∈ s, ↑(f i) Finset.prod_natCast : ∀ {ι : Type u_1} {α : Type u_3} [inst : CommSemiring α] (s : Finset ι) (f : ι → ℕ), ↑(∏ i ∈ s, f i) = ∏ i ∈ s, ↑(f i) Sym.eq_replicate_iff : ∀ {α : Type u_1} {n : ℕ} {s : Sym α n} {a : α}, s = Sym.replicate n a ↔ ∀ b ∈ s, b = a Sym.eq_replicate : ∀ {α : Type u_1} {a : α} {n : ℕ} {s : Sym α n}, s = Sym.replicate n a ↔ ∀ b ∈ s, b = a LinearMap.coprod_map_prod : ∀ {R : Type u} {M : Type v} {M₂ : Type w} {M₃ : Type y} [inst : Semiring R] [inst_1 : AddCommMonoid M] [inst_2 : AddCommMonoid M₂] [inst_3 : AddCommMonoid M₃] [inst_4 : _root_.Module R M] [inst_5 : _root_.Module R M₂] [inst_6 : _root_.Module R M₃] (f : M →ₗ[R] M₃) (g : M₂ →ₗ[R] M₃) (S : Submodule R M) (S' : Submodule R M₂), Submodule.map (f.coprod g) (S.prod S') = Submodule.map f S ⊔ Submodule.map g S' LinearMap.map_coprod_prod : ∀ {R : Type u} {M : Type v} {M₂ : Type w} {M₃ : Type y} [inst : Semiring R] [inst_1 : AddCommMonoid M] [inst_2 : AddCommMonoid M₂] [inst_3 : AddCommMonoid M₃] [inst_4 : _root_.Module R M] [inst_5 : _root_.Module R M₂] [inst_6 : _root_.Module R M₃] (f : M →ₗ[R] M₃) (g : M₂ →ₗ[R] M₃) (p : Submodule R M) (q : Submodule R M₂), Submodule.map (f.coprod g) (p.prod q) = Submodule.map f p ⊔ Submodule.map g q Unitization.inrNonUnitalAlgHom_toFun : ∀ (R : Type u_1) (A : Type u_2) [inst : CommSemiring R] [inst_1 : NonUnitalSemiring A] [inst_2 : _root_.Module R A] (a : A), (Unitization.inrNonUnitalAlgHom R A) a = ↑a Unitization.inrNonUnitalAlgHom_apply : ∀ (R : Type u_1) (A : Type u_2) [inst : CommSemiring R] [inst_1 : NonUnitalSemiring A] [inst_2 : _root_.Module R A] (a : A), (Unitization.inrNonUnitalAlgHom R A) a = ↑a finFunctionFinEquiv_apply_val : ∀ {m n : ℕ} (f : Fin n → Fin m), ↑(finFunctionFinEquiv f) = ∑ i, ↑(f i) * m ^ ↑i finFunctionFinEquiv_apply : ∀ {m n : ℕ} (f : Fin n → Fin m), ↑(finFunctionFinEquiv f) = ∑ i, ↑(f i) * m ^ ↑i Quotient.ind_fintype_pi : ∀ {ι : Type u_1} [Fintype ι] [DecidableEq ι] {α : ι → Sort u_2} {S : (i : ι) → Setoid (α i)} {C : ((i : ι) → Quotient (S i)) → Prop}, (∀ (a : (i : ι) → α i), C fun x => ⟦a x⟧) → ∀ (q : (i : ι) → Quotient (S i)), C q Quotient.induction_on_fintype_pi : ∀ {ι : Type u_1} [Fintype ι] [DecidableEq ι] {α : ι → Sort u_2} {S : (i : ι) → Setoid (α i)} {C : ((i : ι) → Quotient (S i)) → Prop} (q : (i : ι) → Quotient (S i)), (∀ (a : (i : ι) → α i), C fun x => ⟦a x⟧) → C q AddLocalization.ind : ∀ {M : Type u_1} [inst : AddCommMonoid M] {S : AddSubmonoid M} {p : AddLocalization S → Prop}, (∀ (y : M × ↥S), p (AddLocalization.mk y.1 y.2)) → ∀ (x : AddLocalization S), p x AddLocalization.induction_on : ∀ {M : Type u_1} [inst : AddCommMonoid M] {S : AddSubmonoid M} {p : AddLocalization S → Prop} (x : AddLocalization S), (∀ (y : M × ↥S), p (AddLocalization.mk y.1 y.2)) → p x Localization.ind : ∀ {M : Type u_1} [inst : CommMonoid M] {S : Submonoid M} {p : Localization S → Prop}, (∀ (y : M × ↥S), p (Localization.mk y.1 y.2)) → ∀ (x : Localization S), p x Localization.induction_on : ∀ {M : Type u_1} [inst : CommMonoid M] {S : Submonoid M} {p : Localization S → Prop} (x : Localization S), (∀ (y : M × ↥S), p (Localization.mk y.1 y.2)) → p x Cardinal.mk_sigma_congr : ∀ {ι ι' : Type u} {f : ι → Type v} {g : ι' → Type v} (e : ι ≃ ι'), (∀ (i : ι), Cardinal.mk (f i) = Cardinal.mk (g (e i))) → Cardinal.mk ((i : ι) × f i) = Cardinal.mk ((i : ι') × g i) Cardinal.mk_sigma_congr' : ∀ {ι : Type u} {ι' : Type v} {f : ι → Type (max w u v)} {g : ι' → Type (max w u v)} (e : ι ≃ ι'), (∀ (i : ι), Cardinal.mk (f i) = Cardinal.mk (g (e i))) → Cardinal.mk ((i : ι) × f i) = Cardinal.mk ((i : ι') × g i) Cardinal.mk_pi_congr : ∀ {ι ι' : Type u} {f : ι → Type v} {g : ι' → Type v} (e : ι ≃ ι'), (∀ (i : ι), Cardinal.mk (f i) = Cardinal.mk (g (e i))) → Cardinal.mk ((i : ι) → f i) = Cardinal.mk ((i : ι') → g i) Cardinal.mk_pi_congr' : ∀ {ι : Type u} {ι' : Type v} {f : ι → Type (max w u v)} {g : ι' → Type (max w u v)} (e : ι ≃ ι'), (∀ (i : ι), Cardinal.mk (f i) = Cardinal.mk (g (e i))) → Cardinal.mk ((i : ι) → f i) = Cardinal.mk ((i : ι') → g i) Cardinal.mk_range_eq_lift : ∀ {α : Type u} {β : Type v} {f : α → β}, Function.Injective f → Cardinal.lift.{max u w, v} (Cardinal.mk ↑(Set.range f)) = Cardinal.lift.{max v w, u} (Cardinal.mk α) Cardinal.mk_range_eq_of_injective : ∀ {α : Type u} {β : Type v} {f : α → β}, Function.Injective f → Cardinal.lift.{u, v} (Cardinal.mk ↑(Set.range f)) = Cardinal.lift.{v, u} (Cardinal.mk α) Cardinal.lt_aleph0_iff_finite : ∀ {α : Type u}, Cardinal.mk α < Cardinal.aleph0 ↔ Finite α Cardinal.mk_lt_aleph0_iff : ∀ {α : Type u}, Cardinal.mk α < Cardinal.aleph0 ↔ Finite α Set.Infinite.encard_eq : ∀ {α : Type u_1} {s : Set α}, s.Infinite → s.encard = ⊤ Set.encard_eq_top : ∀ {α : Type u_1} {s : Set α}, s.Infinite → s.encard = ⊤ Finite.card_le_of_injective : ∀ {α : Type u_1} {β : Type u_2} [Finite β] (f : α → β), Function.Injective f → Nat.card α ≤ Nat.card β Nat.card_le_card_of_injective : ∀ {α : Type u} {β : Type v} [Finite β] (f : α → β), Function.Injective f → Nat.card α ≤ Nat.card β Finite.card_le_of_surjective : ∀ {α : Type u_1} {β : Type u_2} [Finite α] (f : α → β), Function.Surjective f → Nat.card β ≤ Nat.card α Nat.card_le_card_of_surjective : ∀ {α : Type u} {β : Type v} [Finite α] (f : α → β), Function.Surjective f → Nat.card β ≤ Nat.card α Finite.card_sum : ∀ {α : Type u_1} {β : Type u_2} [Finite α] [Finite β], Nat.card (α ⊕ β) = Nat.card α + Nat.card β Nat.card_sum : ∀ {α : Type u_1} {β : Type u_2} [Finite α] [Finite β], Nat.card (α ⊕ β) = Nat.card α + Nat.card β Finite.card_pos : ∀ {α : Type u_1} [Finite α] [h : Nonempty α], 0 < Nat.card α Nat.card_pos : ∀ {α : Type u_1} [Nonempty α] [Finite α], 0 < Nat.card α QuotientGroup.lift_mk' : ∀ {G : Type u} [inst : Group G] (N : Subgroup G) [nN : N.Normal] {M : Type x} [inst_1 : Monoid M] {φ : G →* M} (HN : N ≤ φ.ker) (g : G), (QuotientGroup.lift N φ HN) ↑g = φ g QuotientGroup.lift_mk : ∀ {G : Type u} [inst : Group G] (N : Subgroup G) [nN : N.Normal] {M : Type x} [inst_1 : Monoid M] {φ : G →* M} (HN : N ≤ φ.ker) (g : G), (QuotientGroup.lift N φ HN) ↑g = φ g QuotientAddGroup.lift_mk : ∀ {G : Type u} [inst : AddGroup G] (N : AddSubgroup G) [nN : N.Normal] {M : Type x} [inst_1 : AddMonoid M] {φ : G →+ M} (HN : N ≤ φ.ker) (g : G), (QuotientAddGroup.lift N φ HN) ↑g = φ g QuotientAddGroup.lift_mk' : ∀ {G : Type u} [inst : AddGroup G] (N : AddSubgroup G) [nN : N.Normal] {M : Type x} [inst_1 : AddMonoid M] {φ : G →+ M} (HN : N ≤ φ.ker) (g : G), (QuotientAddGroup.lift N φ HN) ↑g = φ g QuotientAddGroup.kerLift_mk' : ∀ {G : Type u} [inst : AddGroup G] {H : Type v} [inst_1 : AddGroup H] (φ : G →+ H) (g : G), (QuotientAddGroup.kerLift φ) ↑g = φ g QuotientAddGroup.kerLift_mk : ∀ {G : Type u} [inst : AddGroup G] {H : Type v} [inst_1 : AddGroup H] (φ : G →+ H) (g : G), (QuotientAddGroup.kerLift φ) ↑g = φ g QuotientGroup.kerLift_mk' : ∀ {G : Type u} [inst : Group G] {H : Type v} [inst_1 : Group H] (φ : G →* H) (g : G), (QuotientGroup.kerLift φ) ↑g = φ g QuotientGroup.kerLift_mk : ∀ {G : Type u} [inst : Group G] {H : Type v} [inst_1 : Group H] (φ : G →* H) (g : G), (QuotientGroup.kerLift φ) ↑g = φ g Set.EqOn.eventuallyEq_of_mem : ∀ {α : Type u_1} {β : Type u_2} {s : Set α} {l : Filter α} {f g : α → β}, Set.EqOn f g s → s ∈ l → f =ᶠ[l] g Filter.eventuallyEq_of_mem : ∀ {α : Type u} {β : Type v} {l : Filter α} {f g : α → β} {s : Set α}, s ∈ l → Set.EqOn f g s → f =ᶠ[l] g Filter.map_comap_setCoe_val : ∀ {β : Type u_2} (f : Filter β) (s : Set β), Filter.map Subtype.val (Filter.comap Subtype.val f) = f ⊓ Filter.principal s Filter.subtype_coe_map_comap : ∀ {α : Type u_1} (s : Set α) (f : Filter α), Filter.map Subtype.val (Filter.comap Subtype.val f) = f ⊓ Filter.principal s Ordinal.IsLimit.nat_lt : ∀ {o : Ordinal.{u_4}}, o.IsLimit → ∀ (n : ℕ), ↑n < o Ordinal.nat_lt_limit : ∀ {o : Ordinal.{u_4}}, o.IsLimit → ∀ (n : ℕ), ↑n < o Ordinal.deriv_id_of_nfp_id : ∀ {f : Ordinal.{u} → Ordinal.{u}}, Ordinal.nfp f = id → Ordinal.deriv f = id Ordinal.deriv_eq_id_of_nfp_eq_id : ∀ {f : Ordinal.{u} → Ordinal.{u}}, Ordinal.nfp f = id → Ordinal.deriv f = id Basis.mk_eq_rank' : ∀ {R : Type u} {M : Type v} [inst : Semiring R] [inst_1 : AddCommMonoid M] [inst_2 : _root_.Module R M] {ι : Type w} [StrongRankCondition R] (v : Basis ι R M), Cardinal.lift.{max v m, w} (Cardinal.mk ι) = Cardinal.lift.{max w m, v} (Module.rank R M) Basis.mk_eq_rank : ∀ {R : Type u} {M : Type v} [inst : Semiring R] [inst_1 : AddCommMonoid M] [inst_2 : _root_.Module R M] {ι : Type w} [StrongRankCondition R] (v : Basis ι R M), Cardinal.lift.{v, w} (Cardinal.mk ι) = Cardinal.lift.{w, v} (Module.rank R M) Finsupp.coe_mono : ∀ {ι : Type u_1} {α : Type u_3} [inst : Zero α] [inst_1 : Preorder α], Monotone Finsupp.toFun Finsupp.coe_strictMono : ∀ {ι : Type u_1} {α : Type u_3} [inst : Zero α] [inst_1 : Preorder α], Monotone Finsupp.toFun Module.finrank_pi : ∀ (R : Type u) [inst : Semiring R] [StrongRankCondition R] {ι : Type v} [inst_2 : Fintype ι], Module.finrank R (ι → R) = Fintype.card ι Module.finrank_fintype_fun_eq_card : ∀ (R : Type u) {η : Type u₁'} [inst : Semiring R] [StrongRankCondition R] [inst_2 : Fintype η], Module.finrank R (η → R) = Fintype.card η Polynomial.natDegree_eq_natDegree : ∀ {R : Type u} {S : Type v} [inst : Semiring R] [inst_1 : Semiring S] {p : Polynomial R} {q : Polynomial S}, p.degree = q.degree → p.natDegree = q.natDegree Polynomial.natDegree_eq_of_degree_eq : ∀ {R : Type u} {S : Type v} [inst : Semiring R] {p : Polynomial R} [inst_1 : Semiring S] {q : Polynomial S}, p.degree = q.degree → p.natDegree = q.natDegree Polynomial.nonempty_support_iff : ∀ {R : Type u} [inst : Semiring R] {p : Polynomial R}, p.support.Nonempty ↔ p ≠ 0 Polynomial.support_nonempty : ∀ {R : Type u} [inst : Semiring R] {p : Polynomial R}, p.support.Nonempty ↔ p ≠ 0 Polynomial.eval₂_hom : ∀ {R : Type u} {S : Type v} [inst : Semiring R] {p : Polynomial R} [inst_1 : Semiring S] (f : R →+* S) (x : R), Polynomial.eval₂ f (f x) p = f (Polynomial.eval x p) Polynomial.eval₂_at_apply : ∀ {R : Type u} [inst : Semiring R] {p : Polynomial R} {S : Type u_1} [inst_1 : Semiring S] (f : R →+* S) (r : R), Polynomial.eval₂ f (f r) p = f (Polynomial.eval r p) DFinsupp.coe_mono : ∀ {ι : Type u_1} {α : ι → Type u_2} [inst : (i : ι) → Zero (α i)] [inst_1 : (i : ι) → Preorder (α i)], Monotone DFunLike.coe DFinsupp.coe_strictMono : ∀ {ι : Type u_1} {α : ι → Type u_2} [inst : (i : ι) → Zero (α i)] [inst_1 : (i : ι) → Preorder (α i)], Monotone DFunLike.coe Polynomial.coeff_mul_of_natDegree_le : ∀ {R : Type u} {m n : ℕ} [inst : Semiring R] {p q : Polynomial R}, p.natDegree ≤ m → q.natDegree ≤ n → (p * q).coeff (m + n) = p.coeff m * q.coeff n Polynomial.coeff_mul_add_eq_of_natDegree_le : ∀ {R : Type u} [inst : Semiring R] {df dg : ℕ} {f g : Polynomial R}, f.natDegree ≤ df → g.natDegree ≤ dg → (f * g).coeff (df + dg) = f.coeff df * g.coeff dg MvPolynomial.support_coeff_finSuccEquiv : ∀ {R : Type u} [inst : CommSemiring R] {n : ℕ} {f : MvPolynomial (Fin (n + 1)) R} {i : ℕ} {m : Fin n →₀ ℕ}, m ∈ (((MvPolynomial.finSuccEquiv R n) f).coeff i).support ↔ Finsupp.cons i m ∈ f.support MvPolynomial.mem_support_coeff_finSuccEquiv : ∀ {R : Type u} [inst : CommSemiring R] {n : ℕ} {f : MvPolynomial (Fin (n + 1)) R} {i : ℕ} {x : Fin n →₀ ℕ}, x ∈ (((MvPolynomial.finSuccEquiv R n) f).coeff i).support ↔ Finsupp.cons i x ∈ f.support Polynomial.monic_of_degree_le : ∀ {R : Type u} [inst : Semiring R] {p : Polynomial R} (n : ℕ), p.degree ≤ ↑n → p.coeff n = 1 → p.Monic Polynomial.monic_of_degree_le_of_coeff_eq_one : ∀ {R : Type u} [inst : Semiring R] {p : Polynomial R} (n : ℕ), p.degree ≤ ↑n → p.coeff n = 1 → p.Monic Polynomial.Monic.natDegree_eq_zero_iff_eq_one : ∀ {R : Type u} [inst : Semiring R] {p : Polynomial R}, p.Monic → (p.natDegree = 0 ↔ p = 1) Polynomial.Monic.natDegree_eq_zero : ∀ {R : Type u} [inst : Semiring R] {p : Polynomial R}, p.Monic → (p.natDegree = 0 ↔ p = 1) Polynomial.leadingCoeff_map' : ∀ {R : Type u} {S : Type v} [inst : Semiring R] [inst_1 : Semiring S] {f : R →+* S}, Function.Injective ⇑f → ∀ (p : Polynomial R), (Polynomial.map f p).leadingCoeff = f p.leadingCoeff Polynomial.leadingCoeff_of_injective : ∀ {R : Type u} {S : Type v} [inst : Semiring R] [inst_1 : Semiring S] {f : R →+* S}, Function.Injective ⇑f → ∀ (p : Polynomial R), (Polynomial.map f p).leadingCoeff = f p.leadingCoeff Polynomial.coeff_restriction' : ∀ {R : Type u} [inst : Ring R] {p : Polynomial R} {n : ℕ}, ↑(p.restriction.coeff n) = p.coeff n Polynomial.coeff_restriction : ∀ {R : Type u} [inst : Ring R] {p : Polynomial R} {n : ℕ}, ↑(p.restriction.coeff n) = p.coeff n Polynomial.coeff_toSubring : ∀ {R : Type u} [inst : Ring R] (p : Polynomial R) (T : Subring R) (hp : ↑p.coeffs ⊆ ↑T) {n : ℕ}, ↑((p.toSubring T hp).coeff n) = p.coeff n Polynomial.coeff_toSubring' : ∀ {R : Type u} [inst : Ring R] (p : Polynomial R) (T : Subring R) (hp : ↑p.coeffs ⊆ ↑T) {n : ℕ}, ↑((p.toSubring T hp).coeff n) = p.coeff n RingHom.Finite.finiteType : ∀ {A : Type u_1} {B : Type u_2} [inst : CommRing A] [inst_1 : CommRing B] {f : A →+* B}, f.Finite → f.FiniteType RingHom.FiniteType.of_finite : ∀ {A : Type u_1} {B : Type u_2} [inst : CommRing A] [inst_1 : CommRing B] {f : A →+* B}, f.Finite → f.FiniteType AddAction.Quotient.mk_vadd_out : ∀ {α : Type u} {β : Type v} [inst : AddGroup α] [inst_1 : AddMonoid β] [inst_2 : AddAction β α] (H : AddSubgroup α) [inst_3 : AddAction.QuotientAction β H] (b : β) (q : α ⧸ H), ↑(b +ᵥ Quotient.out q) = b +ᵥ q AddAction.Quotient.coe_vadd_out : ∀ {α : Type u} {β : Type v} [inst : AddGroup α] [inst_1 : AddMonoid β] [inst_2 : AddAction β α] (H : AddSubgroup α) [inst_3 : AddAction.QuotientAction β H] (b : β) (q : α ⧸ H), ↑(b +ᵥ Quotient.out q) = b +ᵥ q MulAction.Quotient.smul_mk : ∀ {α : Type u} {β : Type v} [inst : Group α] [inst_1 : Monoid β] [inst_2 : MulAction β α] (H : Subgroup α) [inst_3 : MulAction.QuotientAction β H] (b : β) (a : α), b • ↑a = ↑(b • a) MulAction.Quotient.smul_coe : ∀ {α : Type u} {β : Type v} [inst : Group α] [inst_1 : Monoid β] [inst_2 : MulAction β α] (H : Subgroup α) [inst_3 : MulAction.QuotientAction β H] (b : β) (a : α), b • ↑a = ↑(b • a) AddAction.Quotient.vadd_mk : ∀ {α : Type u} {β : Type v} [inst : AddGroup α] [inst_1 : AddMonoid β] [inst_2 : AddAction β α] (H : AddSubgroup α) [inst_3 : AddAction.QuotientAction β H] (b : β) (a : α), b +ᵥ ↑a = ↑(b +ᵥ a) AddAction.Quotient.vadd_coe : ∀ {α : Type u} {β : Type v} [inst : AddGroup α] [inst_1 : AddMonoid β] [inst_2 : AddAction β α] (H : AddSubgroup α) [inst_3 : AddAction.QuotientAction β H] (b : β) (a : α), b +ᵥ ↑a = ↑(b +ᵥ a) MulAction.Quotient.mk_smul_out : ∀ {α : Type u} {β : Type v} [inst : Group α] [inst_1 : Monoid β] [inst_2 : MulAction β α] (H : Subgroup α) [inst_3 : MulAction.QuotientAction β H] (b : β) (q : α ⧸ H), ↑(b • Quotient.out q) = b • q MulAction.Quotient.coe_smul_out : ∀ {α : Type u} {β : Type v} [inst : Group α] [inst_1 : Monoid β] [inst_2 : MulAction β α] (H : Subgroup α) [inst_3 : MulAction.QuotientAction β H] (b : β) (q : α ⧸ H), ↑(b • Quotient.out q) = b • q ZMod.val_cast_of_lt : ∀ {n a : ℕ}, a < n → (↑a).val = a ZMod.val_natCast_of_lt : ∀ {n a : ℕ}, a < n → (↑a).val = a multiplicity_pos_of_dvd : ∀ {α : Type u_1} [inst : Monoid α] {a b : α}, a ∣ b → 0 < multiplicity a b Dvd.multiplicity_pos : ∀ {α : Type u_1} [inst : Monoid α] {a b : α}, a ∣ b → 0 < multiplicity a b Subfield.closure_preimage_le : ∀ {K : Type u} {L : Type v} [inst : DivisionRing K] [inst_1 : DivisionRing L] (f : K →+* L) (s : Set L), Subfield.closure (⇑f ⁻¹' s) ≤ Subfield.comap f (Subfield.closure s) RingHom.field_closure_preimage_le : ∀ {K : Type u} {L : Type v} [inst : DivisionRing K] [inst_1 : DivisionRing L] (f : K →+* L) (s : Set L), Subfield.closure (⇑f ⁻¹' s) ≤ Subfield.comap f (Subfield.closure s) Sym2.forall_mem_pair : ∀ {α : Type u_1} {P : α → Prop} {a b : α}, (∀ x ∈ s(a, b), P x) ↔ P a ∧ P b Sym2.ball : ∀ {α : Type u_1} {p : α → Prop} {a b : α}, (∀ c ∈ s(a, b), p c) ↔ p a ∧ p b Sym2.inductionOn : ∀ {α : Type u_1} {f : Sym2 α → Prop} (i : Sym2 α), (∀ (x y : α), f s(x, y)) → f i Sym2.ind : ∀ {α : Type u_1} {f : Sym2 α → Prop}, (∀ (x y : α), f s(x, y)) → ∀ (i : Sym2 α), f i CategoryTheory.eq_whisker' : ∀ {C : Type u_1} [inst : CategoryTheory.Category.{u_2, u_1} C] {X Y : C} {f g : X ⟶ Y}, f = g → ∀ {Z : C} (h : Y ⟶ Z), CategoryTheory.CategoryStruct.comp f h = CategoryTheory.CategoryStruct.comp g h CategoryTheory.eq_whisker : ∀ {C : Type u} [inst : CategoryTheory.Category.{v, u} C] {X Y Z : C} {f g : X ⟶ Y}, f = g → ∀ (h : Y ⟶ Z), CategoryTheory.CategoryStruct.comp f h = CategoryTheory.CategoryStruct.comp g h CategoryTheory.NatTrans.comp_app : ∀ {C : Type u₁} [inst : CategoryTheory.Category.{v₁, u₁} C] {D : Type u₂} [inst_1 : CategoryTheory.Category.{v₂, u₂} D] {F G H : CategoryTheory.Functor C D} (α : F ⟶ G) (β : G ⟶ H) (X : C), (CategoryTheory.CategoryStruct.comp α β).app X = CategoryTheory.CategoryStruct.comp (α.app X) (β.app X) CategoryTheory.NatTrans.vcomp_app' : ∀ {C : Type u₁} [inst : CategoryTheory.Category.{v₁, u₁} C] {D : Type u₂} [inst_1 : CategoryTheory.Category.{v₂, u₂} D] {F G H : CategoryTheory.Functor C D} (α : F ⟶ G) (β : G ⟶ H) (X : C), (CategoryTheory.CategoryStruct.comp α β).app X = CategoryTheory.CategoryStruct.comp (α.app X) (β.app X) CategoryTheory.ConcreteCategory.congr_hom : ∀ {C : Type u} [inst : CategoryTheory.Category.{v, u} C] [inst_1 : CategoryTheory.HasForget C] {X Y : C} {f g : X ⟶ Y}, f = g → ∀ (x : (CategoryTheory.forget C).obj X), f x = g x CategoryTheory.congr_hom : ∀ {C : Type u} [inst : CategoryTheory.Category.{v, u} C] [inst_1 : CategoryTheory.HasForget C] {X Y : C} {f g : X ⟶ Y}, f = g → ∀ (x : (CategoryTheory.forget C).obj X), f x = g x Tactic.Elementwise.hom_elementwise : ∀ {C : Type u_1} [inst : CategoryTheory.Category.{u_2, u_1} C] [inst_1 : CategoryTheory.HasForget C] {X Y : C} {f g : X ⟶ Y}, f = g → ∀ (x : (CategoryTheory.forget C).obj X), f x = g x CategoryTheory.congr_hom : ∀ {C : Type u} [inst : CategoryTheory.Category.{v, u} C] [inst_1 : CategoryTheory.HasForget C] {X Y : C} {f g : X ⟶ Y}, f = g → ∀ (x : (CategoryTheory.forget C).obj X), f x = g x CategoryTheory.CostructuredArrow.hom_ext : ∀ {C : Type u₁} [inst : CategoryTheory.Category.{v₁, u₁} C] {D : Type u₂} [inst_1 : CategoryTheory.Category.{v₂, u₂} D] {T : D} {S : CategoryTheory.Functor C D} {X Y : CategoryTheory.CostructuredArrow S T} (f g : X ⟶ Y), f.left = g.left → f = g CategoryTheory.CostructuredArrow.ext : ∀ {C : Type u₁} [inst : CategoryTheory.Category.{v₁, u₁} C] {D : Type u₂} [inst_1 : CategoryTheory.Category.{v₂, u₂} D] {T : D} {S : CategoryTheory.Functor C D} {A B : CategoryTheory.CostructuredArrow S T} (f g : A ⟶ B), f.left = g.left → f = g CategoryTheory.CostructuredArrow.ext_iff : ∀ {C : Type u₁} [inst : CategoryTheory.Category.{v₁, u₁} C] {D : Type u₂} [inst_1 : CategoryTheory.Category.{v₂, u₂} D] {T : D} {S : CategoryTheory.Functor C D} {A B : CategoryTheory.CostructuredArrow S T} (f g : A ⟶ B), f = g ↔ f.left = g.left CategoryTheory.CostructuredArrow.hom_eq_iff : ∀ {C : Type u₁} [inst : CategoryTheory.Category.{v₁, u₁} C] {D : Type u₂} [inst_1 : CategoryTheory.Category.{v₂, u₂} D] {T : D} {S : CategoryTheory.Functor C D} {X Y : CategoryTheory.CostructuredArrow S T} (f g : X ⟶ Y), f = g ↔ f.left = g.left CategoryTheory.StructuredArrow.ext_iff : ∀ {C : Type u₁} [inst : CategoryTheory.Category.{v₁, u₁} C] {D : Type u₂} [inst_1 : CategoryTheory.Category.{v₂, u₂} D] {S : D} {T : CategoryTheory.Functor C D} {A B : CategoryTheory.StructuredArrow S T} (f g : A ⟶ B), f = g ↔ f.right = g.right CategoryTheory.StructuredArrow.hom_eq_iff : ∀ {C : Type u₁} [inst : CategoryTheory.Category.{v₁, u₁} C] {D : Type u₂} [inst_1 : CategoryTheory.Category.{v₂, u₂} D] {S : D} {T : CategoryTheory.Functor C D} {X Y : CategoryTheory.StructuredArrow S T} (f g : X ⟶ Y), f = g ↔ f.right = g.right CategoryTheory.StructuredArrow.hom_ext : ∀ {C : Type u₁} [inst : CategoryTheory.Category.{v₁, u₁} C] {D : Type u₂} [inst_1 : CategoryTheory.Category.{v₂, u₂} D] {S : D} {T : CategoryTheory.Functor C D} {X Y : CategoryTheory.StructuredArrow S T} (f g : X ⟶ Y), f.right = g.right → f = g CategoryTheory.StructuredArrow.ext : ∀ {C : Type u₁} [inst : CategoryTheory.Category.{v₁, u₁} C] {D : Type u₂} [inst_1 : CategoryTheory.Category.{v₂, u₂} D] {S : D} {T : CategoryTheory.Functor C D} {A B : CategoryTheory.StructuredArrow S T} (f g : A ⟶ B), f.right = g.right → f = g AddCommGrp.hom_nsmul : ∀ {M N : AddCommGrp} (n : ℕ) (f : M ⟶ N), AddCommGrp.Hom.hom (n • f) = n • AddCommGrp.Hom.hom f AddCommGrp.hom_zsmul : ∀ {M N : AddCommGrp} (n : ℕ) (f : M ⟶ N), AddCommGrp.Hom.hom (n • f) = n • AddCommGrp.Hom.hom f ModuleCat.hom_zsmul : ∀ {R : Type u} [inst : Ring R] {M N : ModuleCat R} (n : ℕ) (f : M ⟶ N), ModuleCat.Hom.hom (n • f) = n • ModuleCat.Hom.hom f ModuleCat.hom_nsmul : ∀ {R : Type u} [inst : Ring R] {M N : ModuleCat R} (n : ℕ) (f : M ⟶ N), ModuleCat.Hom.hom (n • f) = n • ModuleCat.Hom.hom f Equiv.Perm.Disjoint.cycleType_mul : ∀ {α : Type u_1} [inst : Fintype α] [inst_1 : DecidableEq α] {f g : Equiv.Perm α}, f.Disjoint g → (f * g).cycleType = f.cycleType + g.cycleType Equiv.Perm.Disjoint.cycleType : ∀ {α : Type u_1} [inst : Fintype α] [inst_1 : DecidableEq α] {σ τ : Equiv.Perm α}, σ.Disjoint τ → (σ * τ).cycleType = σ.cycleType + τ.cycleType CoalgEquiv.coe_coe : ∀ {R : Type u_1} {A : Type u_2} {B : Type u_3} [inst : CommSemiring R] [inst_1 : AddCommMonoid A] [inst_2 : AddCommMonoid B] [inst_3 : _root_.Module R A] [inst_4 : _root_.Module R B] [inst_5 : CoalgebraStruct R A] [inst_6 : CoalgebraStruct R B] (e : A ≃ₗc[R] B), ⇑↑e = ⇑e CoalgEquiv.coe_toCoalgHom : ∀ {R : Type u_1} {A : Type u_2} {B : Type u_3} [inst : CommSemiring R] [inst_1 : AddCommMonoid A] [inst_2 : AddCommMonoid B] [inst_3 : _root_.Module R A] [inst_4 : _root_.Module R B] [inst_5 : CoalgebraStruct R A] [inst_6 : CoalgebraStruct R B] (e : A ≃ₗc[R] B), ⇑↑e = ⇑e BialgEquiv.coe_toCoalgEquiv : ∀ {R : Type u} {A : Type v} {B : Type w} [inst : CommSemiring R] [inst_1 : Semiring A] [inst_2 : Semiring B] [inst_3 : Algebra R A] [inst_4 : Algebra R B] [inst_5 : CoalgebraStruct R A] [inst_6 : CoalgebraStruct R B] (e : A ≃ₐc[R] B), ⇑↑e = ⇑e BialgEquiv.coe_toAlgEquiv : ∀ {R : Type u} {A : Type v} {B : Type w} [inst : CommSemiring R] [inst_1 : Semiring A] [inst_2 : Semiring B] [inst_3 : Algebra R A] [inst_4 : Algebra R B] [inst_5 : CoalgebraStruct R A] [inst_6 : CoalgebraStruct R B] (e : A ≃ₐc[R] B), ⇑↑e = ⇑e BialgEquiv.coe_coe : ∀ {R : Type u} {A : Type v} {B : Type w} [inst : CommSemiring R] [inst_1 : Semiring A] [inst_2 : Semiring B] [inst_3 : Algebra R A] [inst_4 : Algebra R B] [inst_5 : CoalgebraStruct R A] [inst_6 : CoalgebraStruct R B] (e : A ≃ₐc[R] B), ⇑↑e = ⇑e BialgEquiv.coe_toBialgHom : ∀ {R : Type u} {A : Type v} {B : Type w} [inst : CommSemiring R] [inst_1 : Semiring A] [inst_2 : Semiring B] [inst_3 : Algebra R A] [inst_4 : Algebra R B] [inst_5 : CoalgebraStruct R A] [inst_6 : CoalgebraStruct R B] (e : A ≃ₐc[R] B), ⇑↑e = ⇑e Mon_.tensorObj_mul : ∀ {C : Type u₁} [inst : CategoryTheory.Category.{v₁, u₁} C] [inst_1 : CategoryTheory.MonoidalCategory C] [inst_2 : CategoryTheory.BraidedCategory C] (X Y : Mon_ C), (CategoryTheory.MonoidalCategoryStruct.tensorObj X Y).mul = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.tensorμ X.X Y.X X.X Y.X) (CategoryTheory.MonoidalCategoryStruct.tensorHom X.mul Y.mul) Mon_.tensor_mul : ∀ {C : Type u₁} [inst : CategoryTheory.Category.{v₁, u₁} C] [inst_1 : CategoryTheory.MonoidalCategory C] [inst_2 : CategoryTheory.BraidedCategory C] (M N : Mon_ C), (CategoryTheory.MonoidalCategoryStruct.tensorObj M N).mul = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.tensorμ M.X N.X M.X N.X) (CategoryTheory.MonoidalCategoryStruct.tensorHom M.mul N.mul) Mon_.tensorObj_one : ∀ {C : Type u₁} [inst : CategoryTheory.Category.{v₁, u₁} C] [inst_1 : CategoryTheory.MonoidalCategory C] [inst_2 : CategoryTheory.BraidedCategory C] (X Y : Mon_ C), (CategoryTheory.MonoidalCategoryStruct.tensorObj X Y).one = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.leftUnitor (CategoryTheory.MonoidalCategoryStruct.tensorUnit C)).inv (CategoryTheory.MonoidalCategoryStruct.tensorHom X.one Y.one) Mon_.tensor_one : ∀ {C : Type u₁} [inst : CategoryTheory.Category.{v₁, u₁} C] [inst_1 : CategoryTheory.MonoidalCategory C] [inst_2 : CategoryTheory.BraidedCategory C] (M N : Mon_ C), (CategoryTheory.MonoidalCategoryStruct.tensorObj M N).one = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.leftUnitor (CategoryTheory.MonoidalCategoryStruct.tensorUnit C)).inv (CategoryTheory.MonoidalCategoryStruct.tensorHom M.one N.one) Comon_.tensorObj_X : ∀ (C : Type u₁) [inst : CategoryTheory.Category.{v₁, u₁} C] [inst_1 : CategoryTheory.MonoidalCategory C] [inst_2 : CategoryTheory.BraidedCategory C] (A B : Comon_ C), (CategoryTheory.MonoidalCategoryStruct.tensorObj A B).X = CategoryTheory.MonoidalCategoryStruct.tensorObj A.X B.X Comon_.monoidal_tensorObj_X : ∀ (C : Type u₁) [inst : CategoryTheory.Category.{v₁, u₁} C] [inst_1 : CategoryTheory.MonoidalCategory C] [inst_2 : CategoryTheory.BraidedCategory C] (X Y : Comon_ C), (CategoryTheory.MonoidalCategoryStruct.tensorObj X Y).X = CategoryTheory.MonoidalCategoryStruct.tensorObj X.X Y.X BddLat.hom_comp : ∀ {X Y Z : Lat} (f : X ⟶ Y) (g : Y ⟶ Z), Lat.Hom.hom (CategoryTheory.CategoryStruct.comp f g) = (Lat.Hom.hom g).comp (Lat.Hom.hom f) Lat.hom_comp : ∀ {X Y Z : Lat} (f : X ⟶ Y) (g : Y ⟶ Z), Lat.Hom.hom (CategoryTheory.CategoryStruct.comp f g) = (Lat.Hom.hom g).comp (Lat.Hom.hom f) BddLat.comp_apply : ∀ {X Y Z : Lat} (f : X ⟶ Y) (g : Y ⟶ Z) (x : ↑X), (CategoryTheory.ConcreteCategory.hom (CategoryTheory.CategoryStruct.comp f g)) x = (CategoryTheory.ConcreteCategory.hom g) ((CategoryTheory.ConcreteCategory.hom f) x) Lat.comp_apply : ∀ {X Y Z : Lat} (f : X ⟶ Y) (g : Y ⟶ Z) (x : ↑X), (CategoryTheory.ConcreteCategory.hom (CategoryTheory.CategoryStruct.comp f g)) x = (CategoryTheory.ConcreteCategory.hom g) ((CategoryTheory.ConcreteCategory.hom f) x) BddLat.id_apply : ∀ (X : Lat) (x : ↑X), (CategoryTheory.ConcreteCategory.hom (CategoryTheory.CategoryStruct.id X)) x = x Lat.id_apply : ∀ (X : Lat) (x : ↑X), (CategoryTheory.ConcreteCategory.hom (CategoryTheory.CategoryStruct.id X)) x = x BddLat.hom_id : ∀ {X : Lat}, Lat.Hom.hom (CategoryTheory.CategoryStruct.id X) = LatticeHom.id ↑X Lat.hom_id : ∀ {X : Lat}, Lat.Hom.hom (CategoryTheory.CategoryStruct.id X) = LatticeHom.id ↑X CategoryTheory.ObjectProperty.ι_ε : ∀ {C : Type u} [inst : CategoryTheory.Category.{v, u} C] [inst_1 : CategoryTheory.MonoidalCategory C] (P : CategoryTheory.ObjectProperty C) [inst_2 : P.IsMonoidal], CategoryTheory.Functor.LaxMonoidal.ε P.ι = CategoryTheory.CategoryStruct.id (CategoryTheory.MonoidalCategoryStruct.tensorUnit C) CategoryTheory.ObjectProperty.ι_η : ∀ {C : Type u} [inst : CategoryTheory.Category.{v, u} C] [inst_1 : CategoryTheory.MonoidalCategory C] (P : CategoryTheory.ObjectProperty C) [inst_2 : P.IsMonoidal], CategoryTheory.Functor.LaxMonoidal.ε P.ι = CategoryTheory.CategoryStruct.id (CategoryTheory.MonoidalCategoryStruct.tensorUnit C) Function.Exact.of_comp_eq_zero_of_ker_in_range : ∀ {M : Type u_2} {N : Type u_4} {P : Type u_6} {f : M → N} {g : N → P} [inst : Zero P], g ∘ f = 0 → (∀ (y : N), g y = 0 → y ∈ Set.range f) → Function.Exact f g Function.Exact.of_comp_of_mem_range : ∀ {M : Type u_2} {N : Type u_4} {P : Type u_6} {f : M → N} {g : N → P} [inst : Zero P], g ∘ f = 0 → (∀ (x : N), g x = 0 → x ∈ Set.range f) → Function.Exact f g CategoryTheory.ShortComplex.ShortExact.ab_exact_iff_function_exact : ∀ (S : CategoryTheory.ShortComplex Ab), S.Exact ↔ Function.Exact ⇑(CategoryTheory.ConcreteCategory.hom S.f) ⇑(CategoryTheory.ConcreteCategory.hom S.g) CategoryTheory.ShortComplex.ab_exact_iff_function_exact : ∀ (S : CategoryTheory.ShortComplex Ab), S.Exact ↔ Function.Exact ⇑(CategoryTheory.ConcreteCategory.hom S.f) ⇑(CategoryTheory.ConcreteCategory.hom S.g) CategoryTheory.Functor.ι_leftKanExtensionObjIsoColimit_hom : ∀ {C : Type u_1} {D : Type u_2} [inst : CategoryTheory.Category.{u_4, u_1} C] [inst_1 : CategoryTheory.Category.{u_5, u_2} D] (L : CategoryTheory.Functor C D) {H : Type u_3} [inst_2 : CategoryTheory.Category.{u_6, u_3} H] (F : CategoryTheory.Functor C H) [inst_3 : L.HasPointwiseLeftKanExtension F] (X : D) (f : CategoryTheory.CostructuredArrow L X), CategoryTheory.CategoryStruct.comp ((L.leftKanExtensionUnit F).app f.left) (CategoryTheory.CategoryStruct.comp ((L.leftKanExtension F).map f.hom) (L.leftKanExtensionObjIsoColimit F X).hom) = CategoryTheory.Limits.colimit.ι ((CategoryTheory.CostructuredArrow.proj L X).comp F) f CategoryTheory.Functor.leftKanExtensionUnit_leftKanExtension_map_leftKanExtensionObjIsoColimit_hom : ∀ {C : Type u_1} {D : Type u_2} [inst : CategoryTheory.Category.{u_4, u_1} C] [inst_1 : CategoryTheory.Category.{u_5, u_2} D] (L : CategoryTheory.Functor C D) {H : Type u_3} [inst_2 : CategoryTheory.Category.{u_6, u_3} H] (F : CategoryTheory.Functor C H) [inst_3 : L.HasPointwiseLeftKanExtension F] (X : D) (f : CategoryTheory.CostructuredArrow L X), CategoryTheory.CategoryStruct.comp ((L.leftKanExtensionUnit F).app f.left) (CategoryTheory.CategoryStruct.comp ((L.leftKanExtension F).map f.hom) (L.leftKanExtensionObjIsoColimit F X).hom) = CategoryTheory.Limits.colimit.ι ((CategoryTheory.CostructuredArrow.proj L X).comp F) f Finset.range_add : ∀ (a b : ℕ), Finset.range (a + b) = Finset.range a ∪ Finset.map (addLeftEmbedding a) (Finset.range b) Finset.range_add_eq_union : ∀ (a b : ℕ), Finset.range (a + b) = Finset.range a ∪ Finset.map (addLeftEmbedding a) (Finset.range b) RootableBy.surjective_pow : ∀ (A : Type u_4) (α : Type u_5) [inst : Monoid A] [inst_1 : Pow A α] [inst_2 : Zero α] [RootableBy A α] {n : α}, n ≠ 0 → Function.Surjective fun a => a ^ n pow_left_surj_of_rootableBy : ∀ (A : Type u_1) (α : Type u_2) [inst : Monoid A] [inst_1 : Pow A α] [inst_2 : Zero α] [RootableBy A α] {n : α}, n ≠ 0 → Function.Surjective fun a => a ^ n smul_right_surj_of_divisibleBy : ∀ (A : Type u_1) (α : Type u_2) [inst : AddMonoid A] [inst_1 : SMul α A] [inst_2 : Zero α] [DivisibleBy A α] {n : α}, n ≠ 0 → Function.Surjective fun a => n • a DivisibleBy.surjective_smul : ∀ (A : Type u_4) (α : Type u_5) [inst : AddMonoid A] [inst_1 : SMul α A] [inst_2 : Zero α] [DivisibleBy A α] {n : α}, n ≠ 0 → Function.Surjective fun a => n • a ContinuousOn.coeFun : ∀ {F : Type u_1} {α : Type u_2} {X : Type u_3} {Z : Type u_4} [inst : FunLike F α X] [inst_1 : TopologicalSpace F] [inst_2 : TopologicalSpace X] [ContinuousEvalConst F α X] [inst_4 : TopologicalSpace Z] {f : Z → F} {s : Set Z}, ContinuousOn f s → ∀ (x : α), ContinuousOn (fun x_1 => (f x_1) x) s ContinuousOn.eval_const : ∀ {F : Type u_1} {α : Type u_2} {X : Type u_3} {Z : Type u_4} [inst : FunLike F α X] [inst_1 : TopologicalSpace F] [inst_2 : TopologicalSpace X] [ContinuousEvalConst F α X] [inst_4 : TopologicalSpace Z] {f : Z → F} {s : Set Z}, ContinuousOn f s → ∀ (x : α), ContinuousOn (fun x_1 => (f x_1) x) s ENNReal.sup_eq_zero : ∀ {a b : ENNReal}, max a b = 0 ↔ a = 0 ∧ b = 0 ENNReal.max_eq_zero_iff : ∀ {a b : ENNReal}, max a b = 0 ↔ a = 0 ∧ b = 0 ENNReal.toReal_eq_toReal : ∀ {a b : ENNReal}, a ≠ ⊤ → b ≠ ⊤ → (a.toReal = b.toReal ↔ a = b) ENNReal.toReal_eq_toReal_iff' : ∀ {x y : ENNReal}, x ≠ ⊤ → y ≠ ⊤ → (x.toReal = y.toReal ↔ x = y) EReal.add_ne_top_iff_ne_top_left : ∀ {x y : EReal}, y ≠ ⊥ → y ≠ ⊤ → (x + y ≠ ⊤ ↔ x ≠ ⊤) EReal.add_ne_top_iff_of_ne_bot_of_ne_top : ∀ {x y : EReal}, y ≠ ⊥ → y ≠ ⊤ → (x + y ≠ ⊤ ↔ x ≠ ⊤) EReal.add_ne_top_iff_ne_top₂ : ∀ {x y : EReal}, x ≠ ⊥ → y ≠ ⊥ → (x + y ≠ ⊤ ↔ x ≠ ⊤ ∧ y ≠ ⊤) EReal.add_ne_top_iff_of_ne_bot : ∀ {x y : EReal}, x ≠ ⊥ → y ≠ ⊥ → (x + y ≠ ⊤ ↔ x ≠ ⊤ ∧ y ≠ ⊤) IsUniformInducing.of_comp_iff : ∀ {α : Type u} {β : Type v} {γ : Type w} [inst : UniformSpace α] [inst_1 : UniformSpace β] [inst_2 : UniformSpace γ] {g : β → γ}, IsUniformInducing g → ∀ {f : α → β}, IsUniformInducing (g ∘ f) ↔ IsUniformInducing f IsUniformInducing.isUniformInducing_comp_iff : ∀ {α : Type u} {β : Type v} {γ : Type w} [inst : UniformSpace α] [inst_1 : UniformSpace β] [inst_2 : UniformSpace γ] {f : α → β} {g : β → γ}, IsUniformInducing g → (IsUniformInducing (g ∘ f) ↔ IsUniformInducing f) Metric.emetric_ball_top : ∀ {α : Type u} [inst : PseudoMetricSpace α] (x : α), EMetric.ball x ⊤ = Set.univ Metric.eball_top_eq_univ : ∀ {α : Type u} [inst : PseudoMetricSpace α] (x : α), EMetric.ball x ⊤ = Set.univ BddBelow.isBounded : ∀ {α : Type u_1} {s : Set α} [inst : Bornology α] [inst_1 : Preorder α] [IsOrderBornology α], BddBelow s → BddAbove s → Bornology.IsBounded s BddAbove.isBounded : ∀ {α : Type u_1} {s : Set α} [inst : Bornology α] [inst_1 : Preorder α] [IsOrderBornology α], BddAbove s → BddBelow s → Bornology.IsBounded s PartialHomeomorph.toFun_eq_coe : ∀ {X : Type u_1} {Y : Type u_3} [inst : TopologicalSpace X] [inst_1 : TopologicalSpace Y] (e : PartialHomeomorph X Y), ↑e.toPartialEquiv = ↑e PartialHomeomorph.coe_coe : ∀ {X : Type u_1} {Y : Type u_3} [inst : TopologicalSpace X] [inst_1 : TopologicalSpace Y] (e : PartialHomeomorph X Y), ↑e.toPartialEquiv = ↑e Homeomorph.isLocalHomeomorph : ∀ {X : Type u_1} {Y : Type u_2} [inst : TopologicalSpace X] [inst_1 : TopologicalSpace Y] (f : X ≃ₜ Y), IsLocalHomeomorph ⇑f IsLocalHomeomorph.Homeomorph.isLocalHomeomorph : ∀ {X : Type u_1} {Y : Type u_2} [inst : TopologicalSpace X] [inst_1 : TopologicalSpace Y] (h : X ≃ₜ Y), IsLocalHomeomorph ⇑h CommGrp_.id_hom : ∀ {C : Type u₁} [inst : CategoryTheory.Category.{v₁, u₁} C] [inst_1 : CategoryTheory.CartesianMonoidalCategory C] (A : Grp_ C), (CategoryTheory.CategoryStruct.id A).hom = CategoryTheory.CategoryStruct.id A.X Grp_.id_hom : ∀ {C : Type u₁} [inst : CategoryTheory.Category.{v₁, u₁} C] [inst_1 : CategoryTheory.CartesianMonoidalCategory C] (A : Grp_ C), (CategoryTheory.CategoryStruct.id A).hom = CategoryTheory.CategoryStruct.id A.X Matrix.Nondegenerate.of_det_ne_zero : ∀ {n : Type u_1} [inst : Fintype n] {A : Type u_4} [inst_1 : DecidableEq n] [inst_2 : CommRing A] [IsDomain A] {M : Matrix n n A}, M.det ≠ 0 → M.Nondegenerate Matrix.nondegenerate_of_det_ne_zero : ∀ {m : Type u_1} {A : Type u_3} [inst : Fintype m] [inst_1 : CommRing A] [IsDomain A] [inst_3 : DecidableEq m] {M : Matrix m m A}, M.det ≠ 0 → M.Nondegenerate Subtype.ext_val_iff : ∀ {α : Sort u_1} {p : α → Prop} {a1 a2 : { x // p x }}, a1 = a2 ↔ ↑a1 = ↑a2 Subtype.ext_val_iff : ∀ {α : Sort u_1} {p : α → Prop} {a1 a2 : { x // p x }}, a1 = a2 ↔ ↑a1 = ↑a2 UniqueFactorizationMonoid.normalizedFactors_of_irreducible_pow : ∀ {α : Type u_1} [inst : CancelCommMonoidWithZero α] [inst_1 : NormalizationMonoid α] [inst_2 : UniqueFactorizationMonoid α] {p : α}, Irreducible p → ∀ (k : ℕ), UniqueFactorizationMonoid.normalizedFactors (p ^ k) = Multiset.replicate k (normalize p) Irreducible.normalizedFactors_pow : ∀ {α : Type u_1} [inst : CancelCommMonoidWithZero α] [inst_1 : NormalizationMonoid α] [inst_2 : UniqueFactorizationMonoid α] {p : α}, Irreducible p → ∀ (k : ℕ), UniqueFactorizationMonoid.normalizedFactors (p ^ k) = Multiset.replicate k (normalize p) Ne.eq_def : ∀ {α : Sort u} (a b : α), (a ≠ b) = ¬a = b Ne.eq_def : ∀ {α : Sort u} (a b : α), (a ≠ b) = ¬a = b MonoidHom.compAddChar_apply : ∀ {A : Type u_1} {M : Type u_3} {N : Type u_4} [inst : AddMonoid A] [inst_1 : Monoid M] [inst_2 : Monoid N] (f : M →* N) (φ : AddChar A M), ⇑(f.compAddChar φ) = ⇑f ∘ ⇑φ MonoidHom.coe_compAddChar : ∀ {A : Type u_1} {M : Type u_3} [inst : AddMonoid A] [inst_1 : Monoid M] {N : Type u_5} [inst_2 : Monoid N] (f : M →* N) (φ : AddChar A M), ⇑(f.compAddChar φ) = ⇑f ∘ ⇑φ QuaternionAlgebra.coe_commutes : ∀ {R : Type u_3} {c₁ c₂ c₃ : R} (r : R) (a : QuaternionAlgebra R c₁ c₂ c₃) [inst : CommRing R], ↑r * a = a * ↑r QuaternionAlgebra.comm : ∀ {R : Type u_3} {c₁ c₂ c₃ : R} [inst : CommRing R] (r : R) (x : QuaternionAlgebra R c₁ c₂ c₃), ↑r * x = x * ↑r FreeGroup.reduce.rev : ∀ {α : Type u_1} {L₁ L₂ : List (α × Bool)} [inst : DecidableEq α], FreeGroup.Red L₁ L₂ → FreeGroup.Red L₂ (FreeGroup.reduce L₁) FreeGroup.Red.reduce_left : ∀ {α : Type u_1} {L₁ L₂ : List (α × Bool)} [inst : DecidableEq α], FreeGroup.Red L₁ L₂ → FreeGroup.Red L₂ (FreeGroup.reduce L₁) FreeAddGroup.Red.reduce_left : ∀ {α : Type u_1} {L₁ L₂ : List (α × Bool)} [inst : DecidableEq α], FreeAddGroup.Red L₁ L₂ → FreeAddGroup.Red L₂ (FreeAddGroup.reduce L₁) FreeAddGroup.reduce.rev : ∀ {α : Type u_1} {L₁ L₂ : List (α × Bool)} [inst : DecidableEq α], FreeAddGroup.Red L₁ L₂ → FreeAddGroup.Red L₂ (FreeAddGroup.reduce L₁) ComplexShape.boundaryLE_embeddingUpIntLE_iff : ∀ (p : ℤ) (n : ℕ), (ComplexShape.embeddingUpIntGE p).BoundaryGE n ↔ n = 0 ComplexShape.boundaryGE_embeddingUpIntGE_iff : ∀ (p : ℤ) (n : ℕ), (ComplexShape.embeddingUpIntGE p).BoundaryGE n ↔ n = 0 LieModuleEquiv.coe_toLieModuleHom : ∀ {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [inst : CommRing R] [inst_1 : LieRing L] [inst_2 : AddCommGroup M] [inst_3 : AddCommGroup N] [inst_4 : _root_.Module R M] [inst_5 : _root_.Module R N] [inst_6 : LieRingModule L M] [inst_7 : LieRingModule L N] (e : M ≃ₗ⁅R,L⁆ N), ⇑e.toLieModuleHom = ⇑e LieModuleEquiv.coe_coe : ∀ {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [inst : CommRing R] [inst_1 : LieRing L] [inst_2 : AddCommGroup M] [inst_3 : AddCommGroup N] [inst_4 : _root_.Module R M] [inst_5 : _root_.Module R N] [inst_6 : LieRingModule L M] [inst_7 : LieRingModule L N] (e : M ≃ₗ⁅R,L⁆ N), ⇑e.toLieModuleHom = ⇑e MvPolynomial.sum_weightedHomogeneousComponent : ∀ {R : Type u_1} {M : Type u_2} [inst : CommSemiring R] {σ : Type u_3} [inst_1 : AddCommMonoid M] (w : σ → M) (φ : MvPolynomial σ R), ∑ᶠ (m : M), (MvPolynomial.weightedHomogeneousComponent w m) φ = φ MvPolynomial.finsum_weightedHomogeneousComponent : ∀ {R : Type u_1} {M : Type u_2} [inst : CommSemiring R] {σ : Type u_3} [inst_1 : AddCommMonoid M] (w : σ → M) (φ : MvPolynomial σ R), ∑ᶠ (m : M), (MvPolynomial.weightedHomogeneousComponent w m) φ = φ MvPolynomial.weightedHomogeneousComponent_of_isWeightedHomogeneous_same : ∀ {R : Type u_1} {M : Type u_2} [inst : CommSemiring R] {σ : Type u_3} [inst_1 : AddCommMonoid M] {w : σ → M} {m : M} {p : MvPolynomial σ R}, MvPolynomial.IsWeightedHomogeneous w p m → (MvPolynomial.weightedHomogeneousComponent w m) p = p MvPolynomial.IsWeightedHomogeneous.weightedHomogeneousComponent_same : ∀ {R : Type u_1} {M : Type u_2} [inst : CommSemiring R] {σ : Type u_3} [inst_1 : AddCommMonoid M] {w : σ → M} {m : M} {p : MvPolynomial σ R}, MvPolynomial.IsWeightedHomogeneous w p m → (MvPolynomial.weightedHomogeneousComponent w m) p = p LieHom.toNonUnitalAlgHom_toFun : ∀ {R : Type u} {L : Type v} [inst : CommRing R] [inst_1 : LieRing L] [inst_2 : LieAlgebra R L] {L₂ : Type w} [inst_3 : LieRing L₂] [inst_4 : LieAlgebra R L₂] (f : L →ₗ⁅R⁆ L₂) (a : L), f.toNonUnitalAlgHom a = f a LieHom.toNonUnitalAlgHom_apply : ∀ {R : Type u} {L : Type v} [inst : CommRing R] [inst_1 : LieRing L] [inst_2 : LieAlgebra R L] {L₂ : Type w} [inst_3 : LieRing L₂] [inst_4 : LieAlgebra R L₂] (f : L →ₗ⁅R⁆ L₂) (a : L), f.toNonUnitalAlgHom a = f a Associates.eq_of_prod_eq_prod : ∀ {α : Type u_1} [inst : CancelCommMonoidWithZero α] [UniqueFactorizationMonoid α] [Nontrivial α] {a b : Associates.FactorSet α}, a.prod = b.prod → a = b Associates.FactorSet.unique : ∀ {α : Type u_1} [inst : CancelCommMonoidWithZero α] [UniqueFactorizationMonoid α] [Nontrivial α] {p q : Associates.FactorSet α}, p.prod = q.prod → p = q squarefree_iff_no_irreducibles : ∀ {R : Type u_1} [inst : CommMonoidWithZero R] [WfDvdMonoid R] {x : R}, x ≠ 0 → (Squarefree x ↔ ∀ (p : R), Irreducible p → ¬p * p ∣ x) squarefree_iff_irreducible_sq_not_dvd_of_ne_zero : ∀ {R : Type u_1} [inst : CommMonoidWithZero R] [WfDvdMonoid R] {r : R}, r ≠ 0 → (Squarefree r ↔ ∀ (x : R), Irreducible x → ¬x * x ∣ r) PerfectPairing.restrict_apply_apply : ∀ {R : Type u_1} {M : Type u_2} {N : Type u_3} [inst : CommRing R] [inst_1 : AddCommGroup M] [inst_2 : _root_.Module R M] [inst_3 : AddCommGroup N] [inst_4 : _root_.Module R N] (p : PerfectPairing R M N) {M' : Type u_4} {N' : Type u_5} [inst_5 : AddCommGroup M'] [inst_6 : _root_.Module R M'] [inst_7 : AddCommGroup N'] [inst_8 : _root_.Module R N'] (i : M' →ₗ[R] M) (j : N' →ₗ[R] N) (hi : Function.Injective ⇑i) (hj : Function.Injective ⇑j) (hij : p.IsPerfectCompl (LinearMap.range i) (LinearMap.range j)) (x : M') (y : N'), ((p.restrict i j hi hj hij) x) y = (p (i x)) (j y) PerfectPairing.restrict_toFun_apply : ∀ {R : Type u_1} {M : Type u_2} {N : Type u_3} [inst : CommRing R] [inst_1 : AddCommGroup M] [inst_2 : _root_.Module R M] [inst_3 : AddCommGroup N] [inst_4 : _root_.Module R N] (p : PerfectPairing R M N) {M' : Type u_4} {N' : Type u_5} [inst_5 : AddCommGroup M'] [inst_6 : _root_.Module R M'] [inst_7 : AddCommGroup N'] [inst_8 : _root_.Module R N'] (i : M' →ₗ[R] M) (j : N' →ₗ[R] N) (hi : Function.Injective ⇑i) (hj : Function.Injective ⇑j) (hij : p.IsPerfectCompl (LinearMap.range i) (LinearMap.range j)) (a : M') (m : N'), ((p.restrict i j hi hj hij) a) m = (p (i a)) (j m) smul_pi₀ : ∀ {K : Type u_1} {ι : Type u_2} {R : ι → Type u_3} [inst : GroupWithZero K] [inst_1 : (i : ι) → MulAction K (R i)] {r : K} (S : Set ι) (t : (i : ι) → Set (R i)), r ≠ 0 → r • S.pi t = S.pi (r • t) Set.smul_set_pi₀ : ∀ {M : Type u_3} {ι : Type u_4} {α : ι → Type u_5} [inst : GroupWithZero M] [inst_1 : (i : ι) → MulAction M (α i)] {c : M}, c ≠ 0 → ∀ (I : Set ι) (s : (i : ι) → Set (α i)), c • I.pi s = I.pi (c • s) smul_pi : ∀ {K : Type u_1} {ι : Type u_2} {R : ι → Type u_3} [inst : Group K] [inst_1 : (i : ι) → MulAction K (R i)] (r : K) (S : Set ι) (t : (i : ι) → Set (R i)), r • S.pi t = S.pi (r • t) Set.smul_set_pi : ∀ {G : Type u_5} {ι : Type u_6} {α : ι → Type u_7} [inst : Group G] [inst_1 : (i : ι) → MulAction G (α i)] (c : G) (I : Set ι) (s : (i : ι) → Set (α i)), c • I.pi s = I.pi (c • s) smul_univ_pi : ∀ {K : Type u_1} {ι : Type u_2} {R : ι → Type u_3} [inst : (i : ι) → SMul K (R i)] (r : K) (t : (i : ι) → Set (R i)), r • Set.univ.pi t = Set.univ.pi (r • t) Set.smul_set_univ_pi : ∀ {M : Type u_5} {ι : Type u_6} {π : ι → Type u_7} [inst : (i : ι) → SMul M (π i)] (c : M) (s : (i : ι) → Set (π i)), c • Set.univ.pi s = Set.univ.pi (c • s) vadd_univ_pi : ∀ {K : Type u_1} {ι : Type u_2} {R : ι → Type u_3} [inst : (i : ι) → VAdd K (R i)] (r : K) (t : (i : ι) → Set (R i)), r +ᵥ Set.univ.pi t = Set.univ.pi (r +ᵥ t) Set.vadd_set_univ_pi : ∀ {M : Type u_5} {ι : Type u_6} {π : ι → Type u_7} [inst : (i : ι) → VAdd M (π i)] (c : M) (s : (i : ι) → Set (π i)), c +ᵥ Set.univ.pi s = Set.univ.pi (c +ᵥ s) vadd_pi : ∀ {K : Type u_1} {ι : Type u_2} {R : ι → Type u_3} [inst : AddGroup K] [inst_1 : (i : ι) → AddAction K (R i)] (r : K) (S : Set ι) (t : (i : ι) → Set (R i)), r +ᵥ S.pi t = S.pi (r +ᵥ t) Set.vadd_set_pi : ∀ {G : Type u_5} {ι : Type u_6} {α : ι → Type u_7} [inst : AddGroup G] [inst_1 : (i : ι) → AddAction G (α i)] (c : G) (I : Set ι) (s : (i : ι) → Set (α i)), c +ᵥ I.pi s = I.pi (c +ᵥ s) measurableSet_preimage : ∀ {α : Type u_1} {β : Type u_2} {f : α → β} {m : MeasurableSpace α} {mβ : MeasurableSpace β} {t : Set β}, Measurable f → MeasurableSet t → MeasurableSet (f ⁻¹' t) MeasurableSet.preimage : ∀ {α : Type u_1} {β : Type u_2} {f : α → β} {m : MeasurableSpace α} {mβ : MeasurableSpace β} {t : Set β}, MeasurableSet t → Measurable f → MeasurableSet (f ⁻¹' t) Summable.compl_add : ∀ {α : Type u_1} {β : Type u_2} [inst : AddCommMonoid α] [inst_1 : TopologicalSpace α] {f : β → α} [ContinuousAdd α] {s : Set β}, Summable (f ∘ Subtype.val) → Summable (f ∘ Subtype.val) → Summable f Summable.add_compl : ∀ {α : Type u_1} {β : Type u_2} [inst : AddCommMonoid α] [inst_1 : TopologicalSpace α] {f : β → α} [ContinuousAdd α] {s : Set β}, Summable (f ∘ Subtype.val) → Summable (f ∘ Subtype.val) → Summable f Multipliable.compl_add : ∀ {α : Type u_1} {β : Type u_2} [inst : CommMonoid α] [inst_1 : TopologicalSpace α] {f : β → α} [ContinuousMul α] {s : Set β}, Multipliable (f ∘ Subtype.val) → Multipliable (f ∘ Subtype.val) → Multipliable f Multipliable.mul_compl : ∀ {α : Type u_1} {β : Type u_2} [inst : CommMonoid α] [inst_1 : TopologicalSpace α] {f : β → α} [ContinuousMul α] {s : Set β}, Multipliable (f ∘ Subtype.val) → Multipliable (f ∘ Subtype.val) → Multipliable f tendsto_real_toNNReal_atTop : Filter.Tendsto Real.toNNReal Filter.atTop Filter.atTop Real.tendsto_toNNReal_atTop : Filter.Tendsto Real.toNNReal Filter.atTop Filter.atTop uniformity_basis_dist_pow_of_lt_one : ∀ {α : Type u_4} [inst : PseudoMetricSpace α] {r : ℝ}, 0 < r → r < 1 → (uniformity α).HasBasis (fun x => True) fun k => {p | dist p.1 p.2 < r ^ k} Metric.uniformity_basis_dist_pow : ∀ {α : Type u} [inst : PseudoMetricSpace α] {r : ℝ}, 0 < r → r < 1 → (uniformity α).HasBasis (fun x => True) fun n => {p | dist p.1 p.2 < r ^ n} edist_zero_right : ∀ {E : Type u_5} [inst : SeminormedAddGroup E] (a : E), edist a 0 = ‖a‖ₑ edist_zero_eq_enorm : ∀ {E : Type u_5} [inst : SeminormedAddGroup E] (x : E), edist x 0 = ‖x‖ₑ ofReal_norm : ∀ {E : Type u_5} [inst : SeminormedAddGroup E] (x : E), ENNReal.ofReal ‖x‖ = ‖x‖ₑ ofReal_norm_eq_enorm : ∀ {E : Type u_5} [inst : SeminormedAddGroup E] (a : E), ENNReal.ofReal ‖a‖ = ‖a‖ₑ Real.enorm_eq_ofReal : ∀ {r : ℝ}, 0 ≤ r → ‖r‖ₑ = ENNReal.ofReal r Real.enorm_of_nonneg : ∀ {r : ℝ}, 0 ≤ r → ‖r‖ₑ = ENNReal.ofReal r ofReal_norm_eq_enorm' : ∀ {E : Type u_5} [inst : SeminormedGroup E] (a : E), ENNReal.ofReal ‖a‖ = ‖a‖ₑ ofReal_norm' : ∀ {E : Type u_5} [inst : SeminormedGroup E] (x : E), ENNReal.ofReal ‖x‖ = ‖x‖ₑ edist_one_eq_enorm : ∀ {E : Type u_5} [inst : SeminormedGroup E] (x : E), edist x 1 = ‖x‖ₑ edist_one_right : ∀ {E : Type u_5} [inst : SeminormedGroup E] (a : E), edist a 1 = ‖a‖ₑ Inseparable.enorm_eq_enorm : ∀ {E : Type u_8} [inst : TopologicalSpace E] [inst_1 : ContinuousENorm E] {u v : E}, Inseparable u v → ‖u‖ₑ = ‖v‖ₑ Inseparable.enorm_eq_enorm' : ∀ {E : Type u_8} [inst : TopologicalSpace E] [inst_1 : ContinuousENorm E] {u v : E}, Inseparable u v → ‖u‖ₑ = ‖v‖ₑ IsCompact.closedBall_mul : ∀ {E : Type u_1} [inst : SeminormedCommGroup E] {δ : ℝ} {s : Set E}, IsCompact s → 0 ≤ δ → ∀ (x : E), Metric.closedBall x δ * s = x • Metric.cthickening δ s IsCompact.closedBall_div : ∀ {E : Type u_1} [inst : SeminormedCommGroup E] {δ : ℝ} {s : Set E}, IsCompact s → 0 ≤ δ → ∀ (x : E), Metric.closedBall x δ * s = x • Metric.cthickening δ s IsCompact.closedBall_sub : ∀ {E : Type u_1} [inst : SeminormedAddCommGroup E] {δ : ℝ} {s : Set E}, IsCompact s → 0 ≤ δ → ∀ (x : E), Metric.closedBall x δ + s = x +ᵥ Metric.cthickening δ s IsCompact.closedBall_add : ∀ {E : Type u_1} [inst : SeminormedAddCommGroup E] {δ : ℝ} {s : Set E}, IsCompact s → 0 ≤ δ → ∀ (x : E), Metric.closedBall x δ + s = x +ᵥ Metric.cthickening δ s Real.pow_lt_of_lt_log : ∀ {x y : ℝ} {n : ℕ}, 0 < y → Real.log x < ↑n * Real.log y → x < y ^ n Real.lt_pow_of_log_lt : ∀ {x y : ℝ} {n : ℕ}, 0 < y → Real.log x < ↑n * Real.log y → x < y ^ n Real.rpow_lt_of_lt_log : ∀ {x y z : ℝ}, 0 < y → Real.log x < z * Real.log y → x < y ^ z Real.lt_rpow_of_log_lt : ∀ {x y z : ℝ}, 0 < y → Real.log x < z * Real.log y → x < y ^ z Real.zpow_lt_of_lt_log : ∀ {x y : ℝ} {n : ℤ}, 0 < y → Real.log x < ↑n * Real.log y → x < y ^ n Real.lt_zpow_of_log_lt : ∀ {x y : ℝ} {n : ℤ}, 0 < y → Real.log x < ↑n * Real.log y → x < y ^ n Real.rpow_le_of_le_log : ∀ {x y z : ℝ}, 0 < y → Real.log x ≤ z * Real.log y → x ≤ y ^ z Real.le_rpow_of_log_le : ∀ {x y z : ℝ}, 0 < y → Real.log x ≤ z * Real.log y → x ≤ y ^ z Real.le_pow_of_log_le : ∀ {x y : ℝ} {n : ℕ}, 0 < y → Real.log x ≤ ↑n * Real.log y → x ≤ y ^ n Real.pow_le_of_le_log : ∀ {x y : ℝ} {n : ℕ}, 0 < y → Real.log x ≤ ↑n * Real.log y → x ≤ y ^ n Real.zpow_le_of_le_log : ∀ {x y : ℝ} {n : ℤ}, 0 < y → Real.log x ≤ ↑n * Real.log y → x ≤ y ^ n Real.le_zpow_of_log_le : ∀ {x y : ℝ} {n : ℤ}, 0 < y → Real.log x ≤ ↑n * Real.log y → x ≤ y ^ n NNReal.rpow_sub_natCast : ∀ {x : NNReal}, x ≠ 0 → ∀ (y : ℝ) (n : ℕ), x ^ (y - ↑n) = x ^ y / x ^ n NNReal.rpow_sub_intCast : ∀ {x : NNReal}, x ≠ 0 → ∀ (y : ℝ) (n : ℕ), x ^ (y - ↑n) = x ^ y / x ^ n tendsto_rpow_atTop_of_base_gt_one : ∀ (b : ℝ), 1 < b → Filter.Tendsto (fun x => b ^ x) Filter.atBot (nhds 0) tendsto_rpow_atBot_of_base_gt_one : ∀ (b : ℝ), 1 < b → Filter.Tendsto (fun x => b ^ x) Filter.atBot (nhds 0) AffineEquiv.coe_linear : ∀ {k : Type u_1} {P₁ : Type u_2} {P₂ : Type u_3} {V₁ : Type u_6} {V₂ : Type u_7} [inst : Ring k] [inst_1 : AddCommGroup V₁] [inst_2 : AddCommGroup V₂] [inst_3 : _root_.Module k V₁] [inst_4 : _root_.Module k V₂] [inst_5 : AddTorsor V₁ P₁] [inst_6 : AddTorsor V₂ P₂] (e : P₁ ≃ᵃ[k] P₂), (↑e).linear = ↑e.linear AffineEquiv.linear_toAffineMap : ∀ {k : Type u_1} {P₁ : Type u_2} {P₂ : Type u_3} {V₁ : Type u_6} {V₂ : Type u_7} [inst : Ring k] [inst_1 : AddCommGroup V₁] [inst_2 : AddCommGroup V₂] [inst_3 : _root_.Module k V₁] [inst_4 : _root_.Module k V₂] [inst_5 : AddTorsor V₁ P₁] [inst_6 : AddTorsor V₂ P₂] (e : P₁ ≃ᵃ[k] P₂), (↑e).linear = ↑e.linear AffineEquiv.equivUnitsAffineMap_symm_apply_apply : ∀ {k : Type u_1} {P₁ : Type u_2} {V₁ : Type u_6} [inst : Ring k] [inst_1 : AddCommGroup V₁] [inst_2 : _root_.Module k V₁] [inst_3 : AddTorsor V₁ P₁] (u : (P₁ →ᵃ[k] P₁)ˣ) (a : P₁), (AffineEquiv.equivUnitsAffineMap.symm u) a = ↑u a AffineEquiv.equivUnitsAffineMap_symm_apply_toFun : ∀ {k : Type u_1} {P₁ : Type u_2} {V₁ : Type u_6} [inst : Ring k] [inst_1 : AddCommGroup V₁] [inst_2 : _root_.Module k V₁] [inst_3 : AddTorsor V₁ P₁] (u : (P₁ →ᵃ[k] P₁)ˣ) (a : P₁), (AffineEquiv.equivUnitsAffineMap.symm u) a = ↑u a AffineEquiv.coe_toAffineMap : ∀ {k : Type u_1} {P₁ : Type u_2} {P₂ : Type u_3} {V₁ : Type u_6} {V₂ : Type u_7} [inst : Ring k] [inst_1 : AddCommGroup V₁] [inst_2 : AddCommGroup V₂] [inst_3 : _root_.Module k V₁] [inst_4 : _root_.Module k V₂] [inst_5 : AddTorsor V₁ P₁] [inst_6 : AddTorsor V₂ P₂] (e : P₁ ≃ᵃ[k] P₂), ⇑↑e = ⇑e AffineEquiv.coe_coe : ∀ {k : Type u_1} {P₁ : Type u_2} {P₂ : Type u_3} {V₁ : Type u_6} {V₂ : Type u_7} [inst : Ring k] [inst_1 : AddCommGroup V₁] [inst_2 : AddCommGroup V₂] [inst_3 : _root_.Module k V₁] [inst_4 : _root_.Module k V₂] [inst_5 : AddTorsor V₁ P₁] [inst_6 : AddTorsor V₂ P₂] (e : P₁ ≃ᵃ[k] P₂), ⇑↑e = ⇑e Monotone.convex_gt : ∀ {𝕜 : Type u_1} {E : Type u_2} {β : Type u_4} [inst : Semiring 𝕜] [inst_1 : PartialOrder 𝕜] [inst_2 : AddCommMonoid E] [inst_3 : LinearOrder E] [IsOrderedAddMonoid E] [inst_5 : PartialOrder β] [inst_6 : _root_.Module 𝕜 E] [OrderedSMul 𝕜 E] {f : E → β}, Monotone f → ∀ (r : β), Convex 𝕜 {x | f x ≤ r} Monotone.convex_le : ∀ {𝕜 : Type u_1} {E : Type u_2} {β : Type u_4} [inst : Semiring 𝕜] [inst_1 : PartialOrder 𝕜] [inst_2 : AddCommMonoid E] [inst_3 : LinearOrder E] [IsOrderedAddMonoid E] [inst_5 : PartialOrder β] [inst_6 : _root_.Module 𝕜 E] [OrderedSMul 𝕜 E] {f : E → β}, Monotone f → ∀ (r : β), Convex 𝕜 {x | f x ≤ r} Monotone.convex_lt : ∀ {𝕜 : Type u_1} {E : Type u_2} {β : Type u_4} [inst : Semiring 𝕜] [inst_1 : PartialOrder 𝕜] [inst_2 : AddCommMonoid E] [inst_3 : LinearOrder E] [IsOrderedAddMonoid E] [inst_5 : PartialOrder β] [inst_6 : _root_.Module 𝕜 E] [OrderedSMul 𝕜 E] {f : E → β}, Monotone f → ∀ (r : β), Convex 𝕜 {x | f x ≤ r} Monotone.convex_le : ∀ {𝕜 : Type u_1} {E : Type u_2} {β : Type u_4} [inst : Semiring 𝕜] [inst_1 : PartialOrder 𝕜] [inst_2 : AddCommMonoid E] [inst_3 : LinearOrder E] [IsOrderedAddMonoid E] [inst_5 : PartialOrder β] [inst_6 : _root_.Module 𝕜 E] [OrderedSMul 𝕜 E] {f : E → β}, Monotone f → ∀ (r : β), Convex 𝕜 {x | f x ≤ r} ContinuousLinearMap.le_opENorm : ∀ {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [inst : SeminormedAddCommGroup E] [inst_1 : SeminormedAddCommGroup F] [inst_2 : NontriviallyNormedField 𝕜] [inst_3 : NontriviallyNormedField 𝕜₂] [inst_4 : NormedSpace 𝕜 E] [inst_5 : NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [inst_6 : RingHomIsometric σ₁₂] (f : E →SL[σ₁₂] F) (x : E), ‖f x‖ₑ ≤ ‖f‖ₑ * ‖x‖ₑ ContinuousLinearMap.le_opNorm_enorm : ∀ {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_5} [inst : SeminormedAddCommGroup E] [inst_1 : SeminormedAddCommGroup F] [inst_2 : NontriviallyNormedField 𝕜] [inst_3 : NontriviallyNormedField 𝕜₂] [inst_4 : NormedSpace 𝕜 E] [inst_5 : NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [inst_6 : RingHomIsometric σ₁₂] (f : E →SL[σ₁₂] F) (x : E), ‖f x‖ₑ ≤ ‖f‖ₑ * ‖x‖ₑ Filter.Germ.const_nsmul : ∀ {α : Type u_1} {l : Filter α} {M : Type u_5} {G : Type u_6} [inst : SMul M G] (a : G) (n : M), ↑(n • a) = n • ↑a Filter.Germ.const_smul : ∀ {α : Type u_1} {l : Filter α} {M : Type u_5} {G : Type u_6} [inst : SMul M G] (n : M) (a : G), ↑(n • a) = n • ↑a MeasureTheory.MemLp.of_le_mul' : ∀ {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} {ε : Type u_7} {ε' : Type u_8} [inst : TopologicalSpace ε] [inst_1 : ContinuousENorm ε] [inst_2 : TopologicalSpace ε'] [inst_3 : ContinuousENorm ε'] {f : α → ε} {g : α → ε'} {c : NNReal}, MeasureTheory.MemLp g p μ → MeasureTheory.AEStronglyMeasurable f μ → (∀ᵐ (x : α) ∂μ, ‖f x‖ₑ ≤ ↑c * ‖g x‖ₑ) → MeasureTheory.MemLp f p μ MeasureTheory.MemLp.of_enorm_le_mul : ∀ {α : Type u_1} {m0 : MeasurableSpace α} {p : ENNReal} {μ : MeasureTheory.Measure α} {ε : Type u_7} {ε' : Type u_8} [inst : TopologicalSpace ε] [inst_1 : ContinuousENorm ε] [inst_2 : TopologicalSpace ε'] [inst_3 : ContinuousENorm ε'] {f : α → ε} {g : α → ε'} {c : NNReal}, MeasureTheory.MemLp g p μ → MeasureTheory.AEStronglyMeasurable f μ → (∀ᵐ (x : α) ∂μ, ‖f x‖ₑ ≤ ↑c * ‖g x‖ₑ) → MeasureTheory.MemLp f p μ MeasureTheory.measureReal_restrict_apply₀' : ∀ {α : Type u_1} {x : MeasurableSpace α} {μ : MeasureTheory.Measure α} {s t : Set α}, MeasureTheory.NullMeasurableSet s μ → (μ.restrict s) t = μ (t ∩ s) MeasureTheory.Measure.restrict_apply₀' : ∀ {α : Type u_2} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} {s t : Set α}, MeasureTheory.NullMeasurableSet s μ → (μ.restrict s) t = μ (t ∩ s) MeasureTheory.Content.innerContent_mono' : ∀ {G : Type w} [inst : TopologicalSpace G] (μ : MeasureTheory.Content G) ⦃U V : Set G⦄ (hU : IsOpen U) (hV : IsOpen V), U ⊆ V → μ.innerContent { carrier := U, is_open' := hU } ≤ μ.innerContent { carrier := V, is_open' := hV } MeasureTheory.Content.innerContent_mono : ∀ {G : Type w} [inst : TopologicalSpace G] (μ : MeasureTheory.Content G) ⦃U V : Set G⦄ (hU : IsOpen U) (hV : IsOpen V), U ⊆ V → μ.innerContent { carrier := U, is_open' := hU } ≤ μ.innerContent { carrier := V, is_open' := hV } Asymptotics.IsEquivalent.congr_right : ∀ {α : Type u_1} {β : Type u_2} [inst : NormedAddCommGroup β] {u v w : α → β} {l : Filter α}, Asymptotics.IsEquivalent l u v → v =ᶠ[l] w → Asymptotics.IsEquivalent l u w Asymptotics.IsEquivalent.trans_eventuallyEq : ∀ {α : Type u_1} {β : Type u_2} [inst : NormedAddCommGroup β] {l : Filter α} {f g₁ g₂ : α → β}, Asymptotics.IsEquivalent l f g₁ → g₁ =ᶠ[l] g₂ → Asymptotics.IsEquivalent l f g₂ Matrix.UnitaryGroup.inv_val : ∀ {n : Type u} [inst : DecidableEq n] [inst_1 : Fintype n] {α : Type v} [inst_2 : CommRing α] [inst_3 : StarRing α] (A : ↥(Matrix.unitaryGroup n α)), ↑A⁻¹ = star ↑A Matrix.UnitaryGroup.inv_apply : ∀ {n : Type u} [inst : DecidableEq n] [inst_1 : Fintype n] {α : Type v} [inst_2 : CommRing α] [inst_3 : StarRing α] (A : ↥(Matrix.unitaryGroup n α)), ↑A⁻¹ = star ↑A Matrix.UnitaryGroup.one_val : ∀ {n : Type u} [inst : DecidableEq n] [inst_1 : Fintype n] {α : Type v} [inst_2 : CommRing α] [inst_3 : StarRing α], ↑1 = 1 Matrix.UnitaryGroup.one_apply : ∀ {n : Type u} [inst : DecidableEq n] [inst_1 : Fintype n] {α : Type v} [inst_2 : CommRing α] [inst_3 : StarRing α], ↑1 = 1 Matrix.UnitaryGroup.mul_val : ∀ {n : Type u} [inst : DecidableEq n] [inst_1 : Fintype n] {α : Type v} [inst_2 : CommRing α] [inst_3 : StarRing α] (A B : ↥(Matrix.unitaryGroup n α)), ↑(A * B) = ↑A * ↑B Matrix.UnitaryGroup.mul_apply : ∀ {n : Type u} [inst : DecidableEq n] [inst_1 : Fintype n] {α : Type v} [inst_2 : CommRing α] [inst_3 : StarRing α] (A B : ↥(Matrix.unitaryGroup n α)), ↑(A * B) = ↑A * ↑B finSuccAboveOrderIso_symm_apply_ne_last : ∀ {n : ℕ} {p : Fin (n + 1)} (h : p ≠ Fin.last n) (x : { x // x ≠ p }), (finSuccAboveEquiv p).symm x = (p.castLT ⋯).predAbove ↑x finSuccAboveEquiv_symm_apply_ne_last : ∀ {n : ℕ} {p : Fin (n + 1)} (h : p ≠ Fin.last n) (x : { x // x ≠ p }), (finSuccAboveEquiv p).symm x = (p.castLT ⋯).predAbove ↑x Finset.prod_eq_prod_Ico_succ_bot : ∀ {M : Type u_2} [inst : CommMonoid M] {a b : ℕ}, a < b → ∀ (f : ℕ → M), ∏ k ∈ Finset.Ico a b, f k = f a * ∏ k ∈ Finset.Ico (a + 1) b, f k Finset.prod_eq_prod_Ico_succ_bot : ∀ {M : Type u_2} [inst : CommMonoid M] {a b : ℕ}, a < b → ∀ (f : ℕ → M), ∏ k ∈ Finset.Ico a b, f k = f a * ∏ k ∈ Finset.Ico (a + 1) b, f k Finset.sum_eq_sum_Ico_succ_bot : ∀ {M : Type u_2} [inst : AddCommMonoid M] {a b : ℕ}, a < b → ∀ (f : ℕ → M), ∑ k ∈ Finset.Ico a b, f k = f a + ∑ k ∈ Finset.Ico (a + 1) b, f k Finset.sum_eq_sum_Ico_succ_bot : ∀ {M : Type u_2} [inst : AddCommMonoid M] {a b : ℕ}, a < b → ∀ (f : ℕ → M), ∑ k ∈ Finset.Ico a b, f k = f a + ∑ k ∈ Finset.Ico (a + 1) b, f k Polynomial.smeval_def : ∀ {R : Type u_3} [inst : Semiring R] (p : Polynomial R) {S : Type u_4} [inst_1 : AddCommMonoid S] [inst_2 : Pow S ℕ] [inst_3 : MulActionWithZero R S] (x : S), p.smeval x = p.sum (Polynomial.smul_pow x) Polynomial.smeval_eq_sum : ∀ {R : Type u_1} [inst : Semiring R] (p : Polynomial R) {S : Type u_2} [inst_1 : AddCommMonoid S] [inst_2 : Pow S ℕ] [inst_3 : MulActionWithZero R S] (x : S), p.smeval x = p.sum (Polynomial.smul_pow x) SkewMonoidAlgebra.single_zero_right : ∀ {k : Type u_1} {G : Type u_2} [inst : AddCommMonoid k] (a : G), SkewMonoidAlgebra.single a 0 = 0 SkewMonoidAlgebra.single_zero : ∀ {k : Type u_1} {G : Type u_2} [inst : AddCommMonoid k] (a : G), SkewMonoidAlgebra.single a 0 = 0 Tropical.injective_trop : ∀ {R : Type u}, Function.Injective Tropical.trop Tropical.trop_injective : ∀ {R : Type u}, Function.Injective Tropical.trop Tropical.untrop_max : ∀ {R : Type u} [inst : LinearOrder R] (x y : Tropical R), Tropical.untrop (max x y) = max (Tropical.untrop x) (Tropical.untrop y) Tropical.untrop_sup : ∀ {R : Type u} [inst : LinearOrder R] (x y : Tropical R), Tropical.untrop (max x y) = max (Tropical.untrop x) (Tropical.untrop y) Tropical.trop_inf : ∀ {R : Type u} [inst : LinearOrder R] (x y : R), Tropical.trop (min x y) = Tropical.trop x + Tropical.trop y Tropical.trop_min : ∀ {R : Type u} [inst : LinearOrder R] (x y : R), Tropical.trop (min x y) = Tropical.trop x + Tropical.trop y Tropical.trop_max_def : ∀ {R : Type u} [inst : LinearOrder R] (x y : Tropical R), max x y = Tropical.trop (max (Tropical.untrop x) (Tropical.untrop y)) Tropical.trop_sup_def : ∀ {R : Type u} [inst : LinearOrder R] (x y : Tropical R), max x y = Tropical.trop (max (Tropical.untrop x) (Tropical.untrop y)) Tropical.injective_untrop : ∀ {R : Type u}, Function.Injective Tropical.untrop Tropical.untrop_injective : ∀ {R : Type u}, Function.Injective Tropical.untrop HahnSeries.orderTop_add_le_mul : ∀ {R : Type u_3} {Γ : Type u_6} [inst : AddCommMonoid Γ] [inst_1 : LinearOrder Γ] [inst_2 : IsOrderedCancelAddMonoid Γ] [inst_3 : NonUnitalNonAssocSemiring R] {x y : HahnSeries Γ R}, x.orderTop + y.orderTop ≤ (x * y).orderTop HahnSeries.orderTop_add_orderTop_le_orderTop_mul : ∀ {R : Type u_3} {Γ : Type u_6} [inst : AddCommMonoid Γ] [inst_1 : LinearOrder Γ] [inst_2 : IsOrderedCancelAddMonoid Γ] [inst_3 : NonUnitalNonAssocSemiring R] {x y : HahnSeries Γ R}, x.orderTop + y.orderTop ≤ (x * y).orderTop AlgebraicGeometry.Scheme.comp_base : ∀ {X Y Z : AlgebraicGeometry.Scheme} (f : X ⟶ Y) (g : Y ⟶ Z), (CategoryTheory.CategoryStruct.comp f g).base = CategoryTheory.CategoryStruct.comp f.base g.base AlgebraicGeometry.Scheme.comp_coeBase : ∀ {X Y Z : AlgebraicGeometry.Scheme} (f : X ⟶ Y) (g : Y ⟶ Z), (CategoryTheory.CategoryStruct.comp f g).base = CategoryTheory.CategoryStruct.comp f.base g.base AlgebraicGeometry.Scheme.comp_coeBase_assoc : ∀ {X Y Z : AlgebraicGeometry.Scheme} (f : X ⟶ Y) (g : Y ⟶ Z) {Z_1 : TopCat} (h : ↑Z.toPresheafedSpace ⟶ Z_1), CategoryTheory.CategoryStruct.comp (CategoryTheory.CategoryStruct.comp f g).base h = CategoryTheory.CategoryStruct.comp f.base (CategoryTheory.CategoryStruct.comp g.base h) AlgebraicGeometry.Scheme.comp_base_assoc : ∀ {X Y Z : AlgebraicGeometry.Scheme} (f : X ⟶ Y) (g : Y ⟶ Z) {Z_1 : TopCat} (h : ↑Z.toPresheafedSpace ⟶ Z_1), CategoryTheory.CategoryStruct.comp (CategoryTheory.CategoryStruct.comp f g).base h = CategoryTheory.CategoryStruct.comp f.base (CategoryTheory.CategoryStruct.comp g.base h) CategoryTheory.Functor.Final.exists_coeq : ∀ {C : Type u₁} [inst : CategoryTheory.Category.{v₁, u₁} C] {D : Type u₂} [inst_1 : CategoryTheory.Category.{v₂, u₂} D] (F : CategoryTheory.Functor C D) [CategoryTheory.IsFilteredOrEmpty C] [F.Final] {d : D} {c : C} (s s' : d ⟶ F.obj c), ∃ c' t, CategoryTheory.CategoryStruct.comp s (F.map t) = CategoryTheory.CategoryStruct.comp s' (F.map t) CategoryTheory.Functor.Final.exists_coeq_of_locally_small : ∀ {C : Type v₁} [inst : CategoryTheory.Category.{v₁, v₁} C] {D : Type u₂} [inst_1 : CategoryTheory.Category.{v₁, u₂} D] (F : CategoryTheory.Functor C D) [CategoryTheory.IsFilteredOrEmpty C] [F.Final] {d : D} {c : C} (s s' : d ⟶ F.obj c), ∃ c' t, CategoryTheory.CategoryStruct.comp s (F.map t) = CategoryTheory.CategoryStruct.comp s' (F.map t) WeierstrassCurve.Projective.fin3_def : ∀ {R : Type r} (P : Fin 3 → R), ![P 0, P 1, P 2] = P WeierstrassCurve.Jacobian.fin3_def : ∀ {R : Type r} (P : Fin 3 → R), ![P 0, P 1, P 2] = P WeierstrassCurve.Projective.comp_fin3 : ∀ {R : Type r} {S : Type s} (f : R → S) (X Y Z : R), f ∘ ![X, Y, Z] = ![f X, f Y, f Z] WeierstrassCurve.Jacobian.comp_fin3 : ∀ {R : Type r} {S : Type s} (f : R → S) (X Y Z : R), f ∘ ![X, Y, Z] = ![f X, f Y, f Z] WeierstrassCurve.Projective.fin3_def_ext : ∀ {R : Type r} (X Y Z : R), ![X, Y, Z] 0 = X ∧ ![X, Y, Z] 1 = Y ∧ ![X, Y, Z] 2 = Z WeierstrassCurve.Jacobian.fin3_def_ext : ∀ {R : Type r} (X Y Z : R), ![X, Y, Z] 0 = X ∧ ![X, Y, Z] 1 = Y ∧ ![X, Y, Z] 2 = Z Fin.orderSucc_eq : ∀ {n : ℕ}, Order.succ = fun i => Fin.lastCases (Fin.last n) Fin.succ i Fin.orderPred_eq : ∀ {n : ℕ}, Order.succ = fun i => Fin.lastCases (Fin.last n) Fin.succ i CategoryTheory.ReflPrefunctor.congr_map : ∀ {U : Type u_1} {V : Type u_2} [inst : Quiver U] [inst_1 : Quiver V] (F : U ⥤q V) {X Y : U} {f g : X ⟶ Y}, f = g → F.map f = F.map g Prefunctor.congr_map : ∀ {U : Type u_1} {V : Type u_2} [inst : Quiver U] [inst_1 : Quiver V] (F : U ⥤q V) {X Y : U} {f g : X ⟶ Y}, f = g → F.map f = F.map g FormalMultilinearSeries.le_radius_of_summable : ∀ {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [inst : NontriviallyNormedField 𝕜] [inst_1 : NormedAddCommGroup E] [inst_2 : NormedSpace 𝕜 E] [inst_3 : NormedAddCommGroup F] [inst_4 : NormedSpace 𝕜 F] (p : FormalMultilinearSeries 𝕜 E F) {r : NNReal}, (Summable fun n => ‖p n‖ * ↑r ^ n) → ↑r ≤ p.radius FormalMultilinearSeries.le_radius_of_summable_norm : ∀ {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [inst : NontriviallyNormedField 𝕜] [inst_1 : NormedAddCommGroup E] [inst_2 : NormedSpace 𝕜 E] [inst_3 : NormedAddCommGroup F] [inst_4 : NormedSpace 𝕜 F] {r : NNReal} (p : FormalMultilinearSeries 𝕜 E F), (Summable fun n => ‖p n‖ * ↑r ^ n) → ↑r ≤ p.radius ContinuousLinearMap.analyticWithinAt : ∀ {𝕜 : Type u_1} [inst : NontriviallyNormedField 𝕜] {E : Type u_2} [inst_1 : NormedAddCommGroup E] [inst_2 : NormedSpace 𝕜 E] {F : Type u_3} [inst_3 : NormedAddCommGroup F] [inst_4 : NormedSpace 𝕜 F] (f : E →L[𝕜] F) (s : Set E) (x : E), AnalyticWithinAt 𝕜 (⇑f) s x ContinuousLinearEquiv.analyticWithinAt : ∀ {𝕜 : Type u_1} [inst : NontriviallyNormedField 𝕜] {E : Type u_2} [inst_1 : NormedAddCommGroup E] [inst_2 : NormedSpace 𝕜 E] {F : Type u_3} [inst_3 : NormedAddCommGroup F] [inst_4 : NormedSpace 𝕜 F] (f : E →L[𝕜] F) (s : Set E) (x : E), AnalyticWithinAt 𝕜 (⇑f) s x LinearIsometryEquiv.analyticWithinAt : ∀ {𝕜 : Type u_1} [inst : NontriviallyNormedField 𝕜] {E : Type u_2} [inst_1 : NormedAddCommGroup E] [inst_2 : NormedSpace 𝕜 E] {F : Type u_3} [inst_3 : NormedAddCommGroup F] [inst_4 : NormedSpace 𝕜 F] (f : E →L[𝕜] F) (s : Set E) (x : E), AnalyticWithinAt 𝕜 (⇑f) s x ContinuousLinearEquiv.analyticWithinAt : ∀ {𝕜 : Type u_1} [inst : NontriviallyNormedField 𝕜] {E : Type u_2} [inst_1 : NormedAddCommGroup E] [inst_2 : NormedSpace 𝕜 E] {F : Type u_3} [inst_3 : NormedAddCommGroup F] [inst_4 : NormedSpace 𝕜 F] (f : E →L[𝕜] F) (s : Set E) (x : E), AnalyticWithinAt 𝕜 (⇑f) s x DifferentiableAt.fderivWithin : ∀ {𝕜 : Type u_1} [inst : NontriviallyNormedField 𝕜] {E : Type u_2} [inst_1 : NormedAddCommGroup E] [inst_2 : NormedSpace 𝕜 E] {F : Type u_3} [inst_3 : NormedAddCommGroup F] [inst_4 : NormedSpace 𝕜 F] {f : E → F} {x : E} {s : Set E}, DifferentiableAt 𝕜 f x → UniqueDiffWithinAt 𝕜 s x → fderivWithin 𝕜 f s x = fderiv 𝕜 f x fderivWithin_eq_fderiv : ∀ {𝕜 : Type u_1} [inst : NontriviallyNormedField 𝕜] {E : Type u_2} [inst_1 : NormedAddCommGroup E] [inst_2 : NormedSpace 𝕜 E] {F : Type u_3} [inst_3 : NormedAddCommGroup F] [inst_4 : NormedSpace 𝕜 F] {f : E → F} {x : E} {s : Set E}, UniqueDiffWithinAt 𝕜 s x → DifferentiableAt 𝕜 f x → fderivWithin 𝕜 f s x = fderiv 𝕜 f x CStarMatrix.map_map : ∀ {m : Type u_1} {n : Type u_2} {A : Type u_5} {B : Type u_6} {C : Type u_7} {M : Matrix m n A} {f : A → B} {g : B → C}, (M.map f).map g = M.map (g ∘ f) Matrix.map_map : ∀ {m : Type u_2} {n : Type u_3} {α : Type v} {M : Matrix m n α} {β : Type u_10} {γ : Type u_11} {f : α → β} {g : β → γ}, (M.map f).map g = M.map (g ∘ f) exists_hasDerivWithinAt_eq_of_ge_of_le : ∀ {a b : ℝ} {f f' : ℝ → ℝ}, a ≤ b → (∀ x ∈ Set.Icc a b, HasDerivWithinAt f (f' x) (Set.Icc a b) x) → ∀ {m : ℝ}, f' a ≤ m → m ≤ f' b → m ∈ f' '' Set.Icc a b exists_hasDerivWithinAt_eq_of_le_of_ge : ∀ {a b : ℝ} {f f' : ℝ → ℝ}, a ≤ b → (∀ x ∈ Set.Icc a b, HasDerivWithinAt f (f' x) (Set.Icc a b) x) → ∀ {m : ℝ}, f' a ≤ m → m ≤ f' b → m ∈ f' '' Set.Icc a b achart_val : ∀ (H : Type u) {M : Type u_2} [inst : TopologicalSpace H] [inst_1 : TopologicalSpace M] [inst_2 : ChartedSpace H M] (x : M), ↑(achart H x) = chartAt H x coe_achart : ∀ (H : Type u) {M : Type u_2} [inst : TopologicalSpace H] [inst_1 : TopologicalSpace M] [inst_2 : ChartedSpace H M] (x : M), ↑(achart H x) = chartAt H x MDifferentiable.mfderivWithin : ∀ {𝕜 : Type u_1} [inst : NontriviallyNormedField 𝕜] {E : Type u_2} [inst_1 : NormedAddCommGroup E] [inst_2 : NormedSpace 𝕜 E] {H : Type u_3} [inst_3 : TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [inst_4 : TopologicalSpace M] [inst_5 : ChartedSpace H M] {E' : Type u_5} [inst_6 : NormedAddCommGroup E'] [inst_7 : NormedSpace 𝕜 E'] {H' : Type u_6} [inst_8 : TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [inst_9 : TopologicalSpace M'] [inst_10 : ChartedSpace H' M'] {f : M → M'} {x : M} {s : Set M}, MDifferentiableAt I I' f x → UniqueMDiffWithinAt I s x → mfderivWithin I I' f s x = mfderiv I I' f x mfderivWithin_eq_mfderiv : ∀ {𝕜 : Type u_1} [inst : NontriviallyNormedField 𝕜] {E : Type u_2} [inst_1 : NormedAddCommGroup E] [inst_2 : NormedSpace 𝕜 E] {H : Type u_3} [inst_3 : TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [inst_4 : TopologicalSpace M] [inst_5 : ChartedSpace H M] {E' : Type u_5} [inst_6 : NormedAddCommGroup E'] [inst_7 : NormedSpace 𝕜 E'] {H' : Type u_6} [inst_8 : TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M' : Type u_7} [inst_9 : TopologicalSpace M'] [inst_10 : ChartedSpace H' M'] {f : M → M'} {x : M} {s : Set M}, UniqueMDiffWithinAt I s x → MDifferentiableAt I I' f x → mfderivWithin I I' f s x = mfderiv I I' f x contMDiffAt_finset_sum : ∀ {ι : Type u_1} {𝕜 : Type u_2} [inst : NontriviallyNormedField 𝕜] {n : WithTop ℕ∞} {H : Type u_3} [inst_1 : TopologicalSpace H] {E : Type u_4} [inst_2 : NormedAddCommGroup E] [inst_3 : NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_5} [inst_4 : AddCommMonoid G] [inst_5 : TopologicalSpace G] [inst_6 : ChartedSpace H G] [ContMDiffAdd I n G] {E' : Type u_6} [inst_8 : NormedAddCommGroup E'] [inst_9 : NormedSpace 𝕜 E'] {H' : Type u_7} [inst_10 : TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_8} [inst_11 : TopologicalSpace M] [inst_12 : ChartedSpace H' M] {x : M} {t : Finset ι} {f : ι → M → G}, (∀ i ∈ t, ContMDiffAt I' I n (f i) x) → ContMDiffAt I' I n (fun x => ∑ i ∈ t, f i x) x ContMDiffAt.sum : ∀ {ι : Type u_1} {𝕜 : Type u_2} [inst : NontriviallyNormedField 𝕜] {n : WithTop ℕ∞} {H : Type u_3} [inst_1 : TopologicalSpace H] {E : Type u_4} [inst_2 : NormedAddCommGroup E] [inst_3 : NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_5} [inst_4 : AddCommMonoid G] [inst_5 : TopologicalSpace G] [inst_6 : ChartedSpace H G] [ContMDiffAdd I n G] {E' : Type u_6} [inst_8 : NormedAddCommGroup E'] [inst_9 : NormedSpace 𝕜 E'] {H' : Type u_7} [inst_10 : TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_8} [inst_11 : TopologicalSpace M] [inst_12 : ChartedSpace H' M] {x₀ : M} {t : Finset ι} {f : ι → M → G}, (∀ i ∈ t, ContMDiffAt I' I n (f i) x₀) → ContMDiffAt I' I n (fun x => ∑ i ∈ t, f i x) x₀ ContMDiffWithinAt.sum : ∀ {ι : Type u_1} {𝕜 : Type u_2} [inst : NontriviallyNormedField 𝕜] {n : WithTop ℕ∞} {H : Type u_3} [inst_1 : TopologicalSpace H] {E : Type u_4} [inst_2 : NormedAddCommGroup E] [inst_3 : NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_5} [inst_4 : AddCommMonoid G] [inst_5 : TopologicalSpace G] [inst_6 : ChartedSpace H G] [ContMDiffAdd I n G] {E' : Type u_6} [inst_8 : NormedAddCommGroup E'] [inst_9 : NormedSpace 𝕜 E'] {H' : Type u_7} [inst_10 : TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_8} [inst_11 : TopologicalSpace M] [inst_12 : ChartedSpace H' M] {s : Set M} {x₀ : M} {t : Finset ι} {f : ι → M → G}, (∀ i ∈ t, ContMDiffWithinAt I' I n (f i) s x₀) → ContMDiffWithinAt I' I n (fun x => ∑ i ∈ t, f i x) s x₀ contMDiffWithinAt_finset_sum : ∀ {ι : Type u_1} {𝕜 : Type u_2} [inst : NontriviallyNormedField 𝕜] {n : WithTop ℕ∞} {H : Type u_3} [inst_1 : TopologicalSpace H] {E : Type u_4} [inst_2 : NormedAddCommGroup E] [inst_3 : NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_5} [inst_4 : AddCommMonoid G] [inst_5 : TopologicalSpace G] [inst_6 : ChartedSpace H G] [ContMDiffAdd I n G] {E' : Type u_6} [inst_8 : NormedAddCommGroup E'] [inst_9 : NormedSpace 𝕜 E'] {H' : Type u_7} [inst_10 : TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_8} [inst_11 : TopologicalSpace M] [inst_12 : ChartedSpace H' M] {s : Set M} {x : M} {t : Finset ι} {f : ι → M → G}, (∀ i ∈ t, ContMDiffWithinAt I' I n (f i) s x) → ContMDiffWithinAt I' I n (fun x => ∑ i ∈ t, f i x) s x contMDiff_finset_prod : ∀ {ι : Type u_1} {𝕜 : Type u_2} [inst : NontriviallyNormedField 𝕜] {n : WithTop ℕ∞} {H : Type u_3} [inst_1 : TopologicalSpace H] {E : Type u_4} [inst_2 : NormedAddCommGroup E] [inst_3 : NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_5} [inst_4 : CommMonoid G] [inst_5 : TopologicalSpace G] [inst_6 : ChartedSpace H G] [ContMDiffMul I n G] {E' : Type u_6} [inst_8 : NormedAddCommGroup E'] [inst_9 : NormedSpace 𝕜 E'] {H' : Type u_7} [inst_10 : TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_8} [inst_11 : TopologicalSpace M] [inst_12 : ChartedSpace H' M] {t : Finset ι} {f : ι → M → G}, (∀ i ∈ t, ContMDiff I' I n (f i)) → ContMDiff I' I n fun x => ∏ i ∈ t, f i x ContMDiff.prod : ∀ {ι : Type u_1} {𝕜 : Type u_2} [inst : NontriviallyNormedField 𝕜] {n : WithTop ℕ∞} {H : Type u_3} [inst_1 : TopologicalSpace H] {E : Type u_4} [inst_2 : NormedAddCommGroup E] [inst_3 : NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_5} [inst_4 : CommMonoid G] [inst_5 : TopologicalSpace G] [inst_6 : ChartedSpace H G] [ContMDiffMul I n G] {E' : Type u_6} [inst_8 : NormedAddCommGroup E'] [inst_9 : NormedSpace 𝕜 E'] {H' : Type u_7} [inst_10 : TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_8} [inst_11 : TopologicalSpace M] [inst_12 : ChartedSpace H' M] {t : Finset ι} {f : ι → M → G}, (∀ i ∈ t, ContMDiff I' I n (f i)) → ContMDiff I' I n fun x => ∏ i ∈ t, f i x contMDiffWithinAt_finset_prod : ∀ {ι : Type u_1} {𝕜 : Type u_2} [inst : NontriviallyNormedField 𝕜] {n : WithTop ℕ∞} {H : Type u_3} [inst_1 : TopologicalSpace H] {E : Type u_4} [inst_2 : NormedAddCommGroup E] [inst_3 : NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_5} [inst_4 : CommMonoid G] [inst_5 : TopologicalSpace G] [inst_6 : ChartedSpace H G] [ContMDiffMul I n G] {E' : Type u_6} [inst_8 : NormedAddCommGroup E'] [inst_9 : NormedSpace 𝕜 E'] {H' : Type u_7} [inst_10 : TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_8} [inst_11 : TopologicalSpace M] [inst_12 : ChartedSpace H' M] {s : Set M} {x : M} {t : Finset ι} {f : ι → M → G}, (∀ i ∈ t, ContMDiffWithinAt I' I n (f i) s x) → ContMDiffWithinAt I' I n (fun x => ∏ i ∈ t, f i x) s x ContMDiffWithinAt.prod : ∀ {ι : Type u_1} {𝕜 : Type u_2} [inst : NontriviallyNormedField 𝕜] {n : WithTop ℕ∞} {H : Type u_3} [inst_1 : TopologicalSpace H] {E : Type u_4} [inst_2 : NormedAddCommGroup E] [inst_3 : NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_5} [inst_4 : CommMonoid G] [inst_5 : TopologicalSpace G] [inst_6 : ChartedSpace H G] [ContMDiffMul I n G] {E' : Type u_6} [inst_8 : NormedAddCommGroup E'] [inst_9 : NormedSpace 𝕜 E'] {H' : Type u_7} [inst_10 : TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_8} [inst_11 : TopologicalSpace M] [inst_12 : ChartedSpace H' M] {s : Set M} {x₀ : M} {t : Finset ι} {f : ι → M → G}, (∀ i ∈ t, ContMDiffWithinAt I' I n (f i) s x₀) → ContMDiffWithinAt I' I n (fun x => ∏ i ∈ t, f i x) s x₀ ContMDiffAt.prod : ∀ {ι : Type u_1} {𝕜 : Type u_2} [inst : NontriviallyNormedField 𝕜] {n : WithTop ℕ∞} {H : Type u_3} [inst_1 : TopologicalSpace H] {E : Type u_4} [inst_2 : NormedAddCommGroup E] [inst_3 : NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_5} [inst_4 : CommMonoid G] [inst_5 : TopologicalSpace G] [inst_6 : ChartedSpace H G] [ContMDiffMul I n G] {E' : Type u_6} [inst_8 : NormedAddCommGroup E'] [inst_9 : NormedSpace 𝕜 E'] {H' : Type u_7} [inst_10 : TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_8} [inst_11 : TopologicalSpace M] [inst_12 : ChartedSpace H' M] {x₀ : M} {t : Finset ι} {f : ι → M → G}, (∀ i ∈ t, ContMDiffAt I' I n (f i) x₀) → ContMDiffAt I' I n (fun x => ∏ i ∈ t, f i x) x₀ contMDiffAt_finset_prod : ∀ {ι : Type u_1} {𝕜 : Type u_2} [inst : NontriviallyNormedField 𝕜] {n : WithTop ℕ∞} {H : Type u_3} [inst_1 : TopologicalSpace H] {E : Type u_4} [inst_2 : NormedAddCommGroup E] [inst_3 : NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_5} [inst_4 : CommMonoid G] [inst_5 : TopologicalSpace G] [inst_6 : ChartedSpace H G] [ContMDiffMul I n G] {E' : Type u_6} [inst_8 : NormedAddCommGroup E'] [inst_9 : NormedSpace 𝕜 E'] {H' : Type u_7} [inst_10 : TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_8} [inst_11 : TopologicalSpace M] [inst_12 : ChartedSpace H' M] {x : M} {t : Finset ι} {f : ι → M → G}, (∀ i ∈ t, ContMDiffAt I' I n (f i) x) → ContMDiffAt I' I n (fun x => ∏ i ∈ t, f i x) x contMDiff_finset_sum : ∀ {ι : Type u_1} {𝕜 : Type u_2} [inst : NontriviallyNormedField 𝕜] {n : WithTop ℕ∞} {H : Type u_3} [inst_1 : TopologicalSpace H] {E : Type u_4} [inst_2 : NormedAddCommGroup E] [inst_3 : NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_5} [inst_4 : AddCommMonoid G] [inst_5 : TopologicalSpace G] [inst_6 : ChartedSpace H G] [ContMDiffAdd I n G] {E' : Type u_6} [inst_8 : NormedAddCommGroup E'] [inst_9 : NormedSpace 𝕜 E'] {H' : Type u_7} [inst_10 : TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_8} [inst_11 : TopologicalSpace M] [inst_12 : ChartedSpace H' M] {t : Finset ι} {f : ι → M → G}, (∀ i ∈ t, ContMDiff I' I n (f i)) → ContMDiff I' I n fun x => ∑ i ∈ t, f i x ContMDiff.sum : ∀ {ι : Type u_1} {𝕜 : Type u_2} [inst : NontriviallyNormedField 𝕜] {n : WithTop ℕ∞} {H : Type u_3} [inst_1 : TopologicalSpace H] {E : Type u_4} [inst_2 : NormedAddCommGroup E] [inst_3 : NormedSpace 𝕜 E] {I : ModelWithCorners 𝕜 E H} {G : Type u_5} [inst_4 : AddCommMonoid G] [inst_5 : TopologicalSpace G] [inst_6 : ChartedSpace H G] [ContMDiffAdd I n G] {E' : Type u_6} [inst_8 : NormedAddCommGroup E'] [inst_9 : NormedSpace 𝕜 E'] {H' : Type u_7} [inst_10 : TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_8} [inst_11 : TopologicalSpace M] [inst_12 : ChartedSpace H' M] {t : Finset ι} {f : ι → M → G}, (∀ i ∈ t, ContMDiff I' I n (f i)) → ContMDiff I' I n fun x => ∑ i ∈ t, f i x UpperHalfPlane.lt_dist_iff_lt_dist_coe_center : ∀ {z w : UpperHalfPlane} {r : ℝ}, r < dist z w ↔ w.im * Real.sinh r < dist ↑z ↑(w.center r) UpperHalfPlane.le_dist_iff_le_dist_coe_center : ∀ {z w : UpperHalfPlane} {r : ℝ}, r < dist z w ↔ w.im * Real.sinh r < dist ↑z ↑(w.center r) Cardinal.mk_subtype_le_of_countable_eventually_mem_aux : ∀ {α ι : Type u} {a : Cardinal.{u}} [Countable ι] {f : ι → Set α} {l : Filter ι} [l.NeBot] {t : Set α}, (∀ x ∈ t, ∀ᶠ (i : ι) in l, x ∈ f i) → (∀ (i : ι), Cardinal.mk ↑(f i) ≤ a) → Cardinal.mk ↑t ≤ a Cardinal.mk_subtype_le_of_countable_eventually_mem : ∀ {α : Type u} {ι : Type v} {a : Cardinal.{u}} [Countable ι] {f : ι → Set α} {l : Filter ι} [l.NeBot] {t : Set α}, (∀ x ∈ t, ∀ᶠ (i : ι) in l, x ∈ f i) → (∀ (i : ι), Cardinal.mk ↑(f i) ≤ a) → Cardinal.mk ↑t ≤ a ContinuousAffineEquiv.coe_injective : ∀ {k : Type u_1} {P₁ : Type u_2} {P₂ : Type u_3} {V₁ : Type u_6} {V₂ : Type u_7} [inst : Ring k] [inst_1 : AddCommGroup V₁] [inst_2 : _root_.Module k V₁] [inst_3 : AddTorsor V₁ P₁] [inst_4 : TopologicalSpace P₁] [inst_5 : AddCommGroup V₂] [inst_6 : _root_.Module k V₂] [inst_7 : AddTorsor V₂ P₂] [inst_8 : TopologicalSpace P₂], Function.Injective ContinuousAffineEquiv.toAffineEquiv ContinuousAffineEquiv.toAffineEquiv_injective : ∀ {k : Type u_1} {P₁ : Type u_2} {P₂ : Type u_3} {V₁ : Type u_6} {V₂ : Type u_7} [inst : Ring k] [inst_1 : AddCommGroup V₁] [inst_2 : _root_.Module k V₁] [inst_3 : AddTorsor V₁ P₁] [inst_4 : TopologicalSpace P₁] [inst_5 : AddCommGroup V₂] [inst_6 : _root_.Module k V₂] [inst_7 : AddTorsor V₂ P₂] [inst_8 : TopologicalSpace P₂], Function.Injective ContinuousAffineEquiv.toAffineEquiv ContinuousAffineEquiv.image_symm_eq_preimage : ∀ {k : Type u_1} {P₁ : Type u_2} {P₂ : Type u_3} {V₁ : Type u_6} {V₂ : Type u_7} [inst : Ring k] [inst_1 : AddCommGroup V₁] [inst_2 : _root_.Module k V₁] [inst_3 : AddTorsor V₁ P₁] [inst_4 : TopologicalSpace P₁] [inst_5 : AddCommGroup V₂] [inst_6 : _root_.Module k V₂] [inst_7 : AddTorsor V₂ P₂] [inst_8 : TopologicalSpace P₂] (e : P₁ ≃ᴬ[k] P₂) (s : Set P₂), ⇑e.symm '' s = ⇑e ⁻¹' s ContinuousAffineEquiv.image_symm : ∀ {k : Type u_1} {P₁ : Type u_2} {P₂ : Type u_3} {V₁ : Type u_6} {V₂ : Type u_7} [inst : Ring k] [inst_1 : AddCommGroup V₁] [inst_2 : _root_.Module k V₁] [inst_3 : AddTorsor V₁ P₁] [inst_4 : TopologicalSpace P₁] [inst_5 : AddCommGroup V₂] [inst_6 : _root_.Module k V₂] [inst_7 : AddTorsor V₂ P₂] [inst_8 : TopologicalSpace P₂] (f : P₁ ≃ᴬ[k] P₂) (s : Set P₂), ⇑f.symm '' s = ⇑f ⁻¹' s ContinuousAffineEquiv.symm_refl : ∀ {k : Type u_1} {P₁ : Type u_2} {V₁ : Type u_6} [inst : Ring k] [inst_1 : AddCommGroup V₁] [inst_2 : _root_.Module k V₁] [inst_3 : AddTorsor V₁ P₁] [inst_4 : TopologicalSpace P₁], (ContinuousAffineEquiv.refl k P₁).symm = ContinuousAffineEquiv.refl k P₁ ContinuousAffineEquiv.refl_symm : ∀ {k : Type u_1} {P₁ : Type u_2} {V₁ : Type u_6} [inst : Ring k] [inst_1 : AddCommGroup V₁] [inst_2 : _root_.Module k V₁] [inst_3 : AddTorsor V₁ P₁] [inst_4 : TopologicalSpace P₁], (ContinuousAffineEquiv.refl k P₁).symm = ContinuousAffineEquiv.refl k P₁ SchwartzMap.coeFn_zero : ∀ {E : Type u_4} {F : Type u_5} [inst : NormedAddCommGroup E] [inst_1 : NormedSpace ℝ E] [inst_2 : NormedAddCommGroup F] [inst_3 : NormedSpace ℝ F], ⇑0 = 0 SchwartzMap.coe_zero : ∀ {E : Type u_4} {F : Type u_5} [inst : NormedAddCommGroup E] [inst_1 : NormedSpace ℝ E] [inst_2 : NormedAddCommGroup F] [inst_3 : NormedSpace ℝ F], ⇑0 = 0 mem_pairSelfAdjointMatricesSubmodule' : ∀ {R₂ : Type u_3} [inst : CommRing R₂] {n : Type u_5} [inst_1 : Fintype n] (J J₃ A : Matrix n n R₂) [inst_2 : DecidableEq n], A ∈ pairSelfAdjointMatricesSubmodule J J₃ ↔ J.IsAdjointPair J₃ A A mem_pairSelfAdjointMatricesSubmodule : ∀ {R : Type u_1} {n : Type u_11} [inst : CommRing R] [inst_1 : Fintype n] (J J₂ A₁ : Matrix n n R) [inst_2 : DecidableEq n], A₁ ∈ pairSelfAdjointMatricesSubmodule J J₂ ↔ J.IsAdjointPair J₂ A₁ A₁ mem_skewAdjointMatricesSubmodule' : ∀ {R₂ : Type u_3} [inst : CommRing R₂] {n : Type u_5} [inst_1 : Fintype n] (J A : Matrix n n R₂) [inst_2 : DecidableEq n], A ∈ skewAdjointMatricesSubmodule J ↔ J.IsSkewAdjoint A mem_skewAdjointMatricesSubmodule : ∀ {R : Type u_1} {n : Type u_11} [inst : CommRing R] [inst_1 : Fintype n] (J A₁ : Matrix n n R) [inst_2 : DecidableEq n], A₁ ∈ skewAdjointMatricesSubmodule J ↔ J.IsSkewAdjoint A₁ mem_selfAdjointMatricesSubmodule' : ∀ {R₂ : Type u_3} [inst : CommRing R₂] {n : Type u_5} [inst_1 : Fintype n] (J A : Matrix n n R₂) [inst_2 : DecidableEq n], A ∈ selfAdjointMatricesSubmodule J ↔ J.IsSelfAdjoint A mem_selfAdjointMatricesSubmodule : ∀ {R : Type u_1} {n : Type u_11} [inst : CommRing R] [inst_1 : Fintype n] (J A₁ : Matrix n n R) [inst_2 : DecidableEq n], A₁ ∈ selfAdjointMatricesSubmodule J ↔ J.IsSelfAdjoint A₁ IsDedekindDomain.HeightOneSpectrum.intValuationDef_zero : ∀ {R : Type u_1} [inst : CommRing R] [inst_1 : IsDedekindDomain R] (v : IsDedekindDomain.HeightOneSpectrum R), v.intValuationDef 0 = 0 IsDedekindDomain.HeightOneSpectrum.intValuation.map_zero' : ∀ {R : Type u_1} [inst : CommRing R] [inst_1 : IsDedekindDomain R] (v : IsDedekindDomain.HeightOneSpectrum R), v.intValuationDef 0 = 0 PiTensorProduct.tprodL_apply : ∀ {ι : Type uι} [inst : Fintype ι] (𝕜 : Type u𝕜) [inst_1 : NontriviallyNormedField 𝕜] {E : ι → Type uE} [inst_2 : (i : ι) → SeminormedAddCommGroup (E i)] [inst_3 : (i : ι) → NormedSpace 𝕜 (E i)] (a : (i : ι) → E i), (PiTensorProduct.tprodL 𝕜) a = (PiTensorProduct.tprod 𝕜) a PiTensorProduct.tprodL_toFun : ∀ {ι : Type uι} [inst : Fintype ι] (𝕜 : Type u𝕜) [inst_1 : NontriviallyNormedField 𝕜] {E : ι → Type uE} [inst_2 : (i : ι) → SeminormedAddCommGroup (E i)] [inst_3 : (i : ι) → NormedSpace 𝕜 (E i)] (a : (i : ι) → E i), (PiTensorProduct.tprodL 𝕜) a = (PiTensorProduct.tprod 𝕜) a PiTensorProduct.mapLMultilinear_apply_apply : ∀ {ι : Type uι} [inst : Fintype ι] (𝕜 : Type u𝕜) [inst_1 : NontriviallyNormedField 𝕜] (E : ι → Type uE) [inst_2 : (i : ι) → SeminormedAddCommGroup (E i)] [inst_3 : (i : ι) → NormedSpace 𝕜 (E i)] (E' : ι → Type u_1) [inst_4 : (i : ι) → SeminormedAddCommGroup (E' i)] [inst_5 : (i : ι) → NormedSpace 𝕜 (E' i)] (f : (i : ι) → E i →L[𝕜] E' i) (a : PiTensorProduct 𝕜 fun i => E i), ((PiTensorProduct.mapLMultilinear 𝕜 E E') f) a = (PiTensorProduct.liftAux ((PiTensorProduct.tprodL 𝕜).compContinuousLinearMap f).toMultilinearMap) a PiTensorProduct.mapLMultilinear_toFun_apply : ∀ {ι : Type uι} [inst : Fintype ι] (𝕜 : Type u𝕜) [inst_1 : NontriviallyNormedField 𝕜] (E : ι → Type uE) [inst_2 : (i : ι) → SeminormedAddCommGroup (E i)] [inst_3 : (i : ι) → NormedSpace 𝕜 (E i)] (E' : ι → Type u_1) [inst_4 : (i : ι) → SeminormedAddCommGroup (E' i)] [inst_5 : (i : ι) → NormedSpace 𝕜 (E' i)] (f : (i : ι) → E i →L[𝕜] E' i) (a : PiTensorProduct 𝕜 fun i => E i), ((PiTensorProduct.mapLMultilinear 𝕜 E E') f) a = (PiTensorProduct.liftAux ((PiTensorProduct.tprodL 𝕜).compContinuousLinearMap f).toMultilinearMap) a Subgroup.IsComplement.card_mul_card : ∀ {G : Type u_1} [inst : Group G] {S T : Set G}, Subgroup.IsComplement S T → Nat.card ↑S * Nat.card ↑T = Nat.card G Subgroup.IsComplement.card_mul : ∀ {G : Type u_1} [inst : Group G] {S T : Set G}, Subgroup.IsComplement S T → Nat.card ↑S * Nat.card ↑T = Nat.card G Action.forget_ε : ∀ (V : Type u_1) [inst : CategoryTheory.Category.{u_3, u_1} V] (G : Type u_2) [inst_1 : Monoid G] [inst_2 : CategoryTheory.MonoidalCategory V], CategoryTheory.Functor.LaxMonoidal.ε (Action.forget V G) = CategoryTheory.CategoryStruct.id (CategoryTheory.MonoidalCategoryStruct.tensorUnit V) Action.forget_η : ∀ (V : Type u_1) [inst : CategoryTheory.Category.{u_3, u_1} V] (G : Type u_2) [inst_1 : Monoid G] [inst_2 : CategoryTheory.MonoidalCategory V], CategoryTheory.Functor.LaxMonoidal.ε (Action.forget V G) = CategoryTheory.CategoryStruct.id (CategoryTheory.MonoidalCategoryStruct.tensorUnit V) Mathlib.Tactic.Bicategory.eval_bicategoricalComp : ∀ {B : Type u} [inst : CategoryTheory.Bicategory B] {a b : B} {f g h i : a ⟶ b} {η η' : f ⟶ g} {α : g ≅ h} {θ θ' : h ⟶ i} {αθ : g ⟶ i} {ηαθ : f ⟶ i}, η = η' → θ = θ' → CategoryTheory.CategoryStruct.comp α.hom θ' = αθ → CategoryTheory.CategoryStruct.comp η' αθ = ηαθ → CategoryTheory.CategoryStruct.comp η (CategoryTheory.CategoryStruct.comp α.hom θ) = ηαθ Mathlib.Tactic.Bicategory.eval_monoidalComp : ∀ {B : Type u} [inst : CategoryTheory.Bicategory B] {a b : B} {f g h i : a ⟶ b} {η η' : f ⟶ g} {α : g ≅ h} {θ θ' : h ⟶ i} {αθ : g ⟶ i} {ηαθ : f ⟶ i}, η = η' → θ = θ' → CategoryTheory.CategoryStruct.comp α.hom θ' = αθ → CategoryTheory.CategoryStruct.comp η' αθ = ηαθ → CategoryTheory.CategoryStruct.comp η (CategoryTheory.CategoryStruct.comp α.hom θ) = ηαθ SimpleGraph.Walk.tail_cons_eq : ∀ {V : Type u} {G : SimpleGraph V} {u v w : V} (h : G.Adj u v) (p : G.Walk v w), (SimpleGraph.Walk.cons h p).tail = p.copy ⋯ ⋯ SimpleGraph.Walk.tail_cons : ∀ {V : Type u} {G : SimpleGraph V} {t u v : V} (p : G.Walk u v) (h : G.Adj t u), (SimpleGraph.Walk.cons h p).tail = p.copy ⋯ ⋯ IncidenceAlgebra.zeta_mul_kappa : ∀ {𝕜 : Type u_2} {α : Type u_5} [inst : NonAssocSemiring 𝕜] [inst_1 : Preorder α] [inst_2 : LocallyFiniteOrder α] [inst_3 : DecidableLE α] (a b : α), (IncidenceAlgebra.zeta 𝕜 * IncidenceAlgebra.zeta 𝕜) a b = ↑(Finset.Icc a b).card IncidenceAlgebra.zeta_mul_zeta : ∀ {𝕜 : Type u_2} {α : Type u_5} [inst : NonAssocSemiring 𝕜] [inst_1 : Preorder α] [inst_2 : LocallyFiniteOrder α] [inst_3 : DecidableLE α] (a b : α), (IncidenceAlgebra.zeta 𝕜 * IncidenceAlgebra.zeta 𝕜) a b = ↑(Finset.Icc a b).card Combinatorics.Subspace.coe_apply : ∀ {η : Type u_5} {α : Type u_6} {ι : Type u_7} (l : Combinatorics.Subspace η α ι) (x : η → α) (i : ι), ↑l x i = Sum.elim id x (l.idxFun i) Combinatorics.Subspace.apply_def : ∀ {η : Type u_5} {α : Type u_6} {ι : Type u_7} (l : Combinatorics.Subspace η α ι) (x : η → α) (i : ι), ↑l x i = Sum.elim id x (l.idxFun i) ultrafilter_pure_injective : ∀ {α : Type u}, Function.Injective pure Ultrafilter.pure_injective : ∀ {α : Type u}, Function.Injective pure TypeVec.subtypeVal_diagSub : ∀ {n : ℕ} {α : TypeVec.{u_1} n}, TypeVec.comp (TypeVec.subtypeVal α.repeatEq) TypeVec.diagSub = TypeVec.prod.diag TypeVec.diag_sub_val : ∀ {n : ℕ} {α : TypeVec.{u} n}, TypeVec.comp (TypeVec.subtypeVal α.repeatEq) TypeVec.diagSub = TypeVec.prod.diag TypeVec.prod_id : ∀ {n : ℕ} {α β : TypeVec.{u} n}, TypeVec.prod.map TypeVec.id TypeVec.id = TypeVec.id TypeVec.prod_map_id : ∀ {n : ℕ} {α β : TypeVec.{u_1} n}, TypeVec.prod.map TypeVec.id TypeVec.id = TypeVec.id Matroid.ext_iff_indep : ∀ {α : Type u_1} {M₁ M₂ : Matroid α}, M₁ = M₂ ↔ M₁.E = M₂.E ∧ ∀ ⦃I : Set α⦄, I ⊆ M₁.E → (M₁.Indep I ↔ M₂.Indep I) Matroid.ext_indep_iff : ∀ {α : Type u_1} {M₁ M₂ : Matroid α}, M₁ = M₂ ↔ M₁.E = M₂.E ∧ ∀ ⦃I : Set α⦄, I ⊆ M₁.E → (M₁.Indep I ↔ M₂.Indep I) Matroid.IsBasis.restrict_isBase : ∀ {α : Type u_1} {M : Matroid α} {I X : Set α}, M.IsBasis I X → (M.restrict X).IsBase I Matroid.IsBasis.isBase_restrict : ∀ {α : Type u_1} {M : Matroid α} {I X : Set α}, M.IsBasis I X → (M.restrict X).IsBase I Matroid.eq_loopyOn_iff_loops_eq : ∀ {α : Type u_1} {M : Matroid α} {E : Set α}, M = Matroid.loopyOn E ↔ M.loops = E ∧ M.E = E Matroid.eq_loopyOn_iff_loops : ∀ {α : Type u_1} {M : Matroid α} {E : Set α}, M = Matroid.loopyOn E ↔ M.loops = E ∧ M.E = E Matroid.IsBase.mem_of_isColoop : ∀ {α : Type u_1} {M : Matroid α} {e : α} {B : Set α}, M.IsBase B → M.IsColoop e → e ∈ B Matroid.IsColoop.mem_of_isBase : ∀ {α : Type u_1} {M : Matroid α} {e : α} {B : Set α}, M.IsColoop e → M.IsBase B → e ∈ B Matroid.IsBasis'.finite_of_isRkFinite : ∀ {α : Type u_1} {M : Matroid α} {X I : Set α}, M.IsBasis' I X → M.IsRkFinite X → I.Finite Matroid.IsRkFinite.finite_of_isBasis' : ∀ {α : Type u_1} {M : Matroid α} {X I : Set α}, M.IsRkFinite X → M.IsBasis' I X → I.Finite Matroid.IsRkFinite.finite_of_isBasis : ∀ {α : Type u_1} {M : Matroid α} {X I : Set α}, M.IsRkFinite X → M.IsBasis I X → I.Finite Matroid.IsBasis.finite_of_isRkFinite : ∀ {α : Type u_1} {M : Matroid α} {X I : Set α}, M.IsBasis I X → M.IsRkFinite X → I.Finite PartENat.toWithTop_natCast : ∀ (n : ℕ) {x : Decidable (↑n).Dom}, (↑n).toWithTop = ↑n PartENat.toWithTop_natCast' : ∀ (n : ℕ) {x : Decidable (↑n).Dom}, (↑n).toWithTop = ↑n PFunctor.M.bisim : ∀ {P : PFunctor.{u}} (R : P.M → P.M → Prop), (∀ (x y : P.M), R x y → ∃ a f f', x.dest = ⟨a, f⟩ ∧ y.dest = ⟨a, f'⟩ ∧ ∀ (i : P.B a), R (f i) (f' i)) → ∀ (x y : P.M), R x y → x = y PFunctor.M.bisim_equiv : ∀ {P : PFunctor.{u}} (R : P.M → P.M → Prop), (∀ (x y : P.M), R x y → ∃ a f f', x.dest = ⟨a, f⟩ ∧ y.dest = ⟨a, f'⟩ ∧ ∀ (i : P.B a), R (f i) (f' i)) → ∀ (x y : P.M), R x y → x = y AlgebraicIndependent.to_subtype_range : ∀ {ι : Type u} {R : Type u_2} {A : Type v} {x : ι → A} [inst : CommRing R] [inst_1 : CommRing A] [inst_2 : Algebra R A], AlgebraicIndependent R x → AlgebraicIndependent R Subtype.val AlgebraicIndependent.coe_range : ∀ {ι : Type u_1} {R : Type u_3} {A : Type u_5} {x : ι → A} [inst : CommRing R] [inst_1 : CommRing A] [inst_2 : Algebra R A], AlgebraicIndependent R x → AlgebraicIndependent R Subtype.val Pretrivialization.linearMapAt_eq_zero : ∀ {R : Type u_1} {B : Type u_2} {F : Type u_3} {E : B → Type u_4} [inst : Semiring R] [inst_1 : TopologicalSpace F] [inst_2 : TopologicalSpace B] [inst_3 : AddCommMonoid F] [inst_4 : _root_.Module R F] [inst_5 : (x : B) → AddCommMonoid (E x)] [inst_6 : (x : B) → _root_.Module R (E x)] (e : Pretrivialization F Bundle.TotalSpace.proj) [inst_7 : Pretrivialization.IsLinear R e] {b : B}, b ∉ e.baseSet → Pretrivialization.linearMapAt R e b = 0 Pretrivialization.linearMapAt_def_of_not_mem : ∀ {R : Type u_1} {B : Type u_2} {F : Type u_3} {E : B → Type u_4} [inst : Semiring R] [inst_1 : TopologicalSpace F] [inst_2 : TopologicalSpace B] [inst_3 : AddCommMonoid F] [inst_4 : _root_.Module R F] [inst_5 : (x : B) → AddCommMonoid (E x)] [inst_6 : (x : B) → _root_.Module R (E x)] (e : Pretrivialization F Bundle.TotalSpace.proj) [inst_7 : Pretrivialization.IsLinear R e] {b : B}, b ∉ e.baseSet → Pretrivialization.linearMapAt R e b = 0 IsLocalDiffeomorphAt.localInverse_contMDiffOn : ∀ {𝕜 : Type u_1} [inst : NontriviallyNormedField 𝕜] {E : Type u_2} [inst_1 : NormedAddCommGroup E] [inst_2 : NormedSpace 𝕜 E] {F : Type u_3} [inst_3 : NormedAddCommGroup F] [inst_4 : NormedSpace 𝕜 F] {H : Type u_4} [inst_5 : TopologicalSpace H] {G : Type u_5} [inst_6 : TopologicalSpace G] {I : ModelWithCorners 𝕜 E H} {J : ModelWithCorners 𝕜 F G} {M : Type u_6} [inst_7 : TopologicalSpace M] [inst_8 : ChartedSpace H M] {N : Type u_7} [inst_9 : TopologicalSpace N] [inst_10 : ChartedSpace G N] {n : WithTop ℕ∞} {f : M → N} {x : M} (hf : IsLocalDiffeomorphAt I J n f x), ContMDiffOn J I n (↑hf.localInverse.toPartialEquiv) hf.localInverse.source IsLocalDiffeomorphAt.contmdiffOn_localInverse : ∀ {𝕜 : Type u_1} [inst : NontriviallyNormedField 𝕜] {E : Type u_2} [inst_1 : NormedAddCommGroup E] [inst_2 : NormedSpace 𝕜 E] {F : Type u_3} [inst_3 : NormedAddCommGroup F] [inst_4 : NormedSpace 𝕜 F] {H : Type u_4} [inst_5 : TopologicalSpace H] {G : Type u_5} [inst_6 : TopologicalSpace G] {I : ModelWithCorners 𝕜 E H} {J : ModelWithCorners 𝕜 F G} {M : Type u_6} [inst_7 : TopologicalSpace M] [inst_8 : ChartedSpace H M] {N : Type u_7} [inst_9 : TopologicalSpace N] [inst_10 : ChartedSpace G N] {n : WithTop ℕ∞} {f : M → N} {x : M} (hf : IsLocalDiffeomorphAt I J n f x), ContMDiffOn J I n (↑hf.localInverse.toPartialEquiv) hf.localInverse.source MeasureTheory.measurable_uniqueElim_cylinderEvents : ∀ {ι : Type u_2} {X : ι → Type u_3} [m : (i : ι) → MeasurableSpace (X i)] [inst : Unique ι], Measurable uniqueElim measurable_uniqueElim : ∀ {δ : Type u_4} {X : δ → Type u_6} [inst : (a : δ) → MeasurableSpace (X a)] [inst_1 : Unique δ], Measurable uniqueElim MeasureTheory.ProbabilityMeasure.coeFn_comp_toFiniteMeasure_eq_coeFn : ∀ {Ω : Type u_1} [inst : MeasurableSpace Ω] (ν : MeasureTheory.ProbabilityMeasure Ω), ⇑ν.toFiniteMeasure = ⇑ν MeasureTheory.ProbabilityMeasure.coeFn_toFiniteMeasure : ∀ {Ω : Type u_1} [inst : MeasurableSpace Ω] (μ : MeasureTheory.ProbabilityMeasure Ω), ⇑μ.toFiniteMeasure = ⇑μ MeasureTheory.ProbabilityMeasure.toFiniteMeasure_apply : ∀ {Ω : Type u_1} [inst : MeasurableSpace Ω] (μ : MeasureTheory.ProbabilityMeasure Ω) (s : Set Ω), μ.toFiniteMeasure s = μ s MeasureTheory.ProbabilityMeasure.toFiniteMeasure_apply_eq_apply : ∀ {Ω : Type u_1} [inst : MeasurableSpace Ω] (ν : MeasureTheory.ProbabilityMeasure Ω) (s : Set Ω), ν.toFiniteMeasure s = ν s MvPowerSeries.eq_zero_iff_forall_coeff_eq_zero_and : ∀ {σ : Type u_1} {R : Type u_2} [inst : Semiring R] {f : MvPowerSeries σ R}, f = 0 ↔ ∀ (d : σ →₀ ℕ), (MvPowerSeries.coeff R d) f = 0 MvPowerSeries.eq_zero_iff_forall_coeff_zero : ∀ {σ : Type u_1} {R : Type u_2} [inst : Semiring R] {f : MvPowerSeries σ R}, f = 0 ↔ ∀ (d : σ →₀ ℕ), (MvPowerSeries.coeff R d) f = 0 Ring.choose_eq_nat_choose : ∀ {R : Type u_1} [inst : NonAssocRing R] [inst_1 : Pow R ℕ] [inst_2 : BinomialRing R] [NatPowAssoc R] (n k : ℕ), Ring.choose (↑n) k = ↑(n.choose k) Ring.choose_natCast : ∀ {R : Type u_1} [inst : NonAssocRing R] [inst_1 : Pow R ℕ] [inst_2 : BinomialRing R] [NatPowAssoc R] (n k : ℕ), Ring.choose (↑n) k = ↑(n.choose k) HahnSeries.SummableFamily.coeff_def : ∀ {Γ : Type u_1} {R : Type u_3} {α : Type u_5} [inst : PartialOrder Γ] [inst_1 : AddCommMonoid R] (s : HahnSeries.SummableFamily Γ R α) (a : α) (g : Γ), (s.coeff g) a = (s a).coeff g HahnSeries.SummableFamily.coeff_toFun : ∀ {Γ : Type u_1} {R : Type u_3} {α : Type u_5} [inst : PartialOrder Γ] [inst_1 : AddCommMonoid R] (s : HahnSeries.SummableFamily Γ R α) (g : Γ) (a : α), (s.coeff g) a = (s a).coeff g AlgebraicGeometry.Polynomial.isOpenMap_comap_C : ∀ {R : Type u_1} [inst : CommRing R], IsOpenMap ⇑(PrimeSpectrum.comap Polynomial.C) Polynomial.isOpenMap_comap_C : ∀ {R : Type u_1} [inst : CommRing R], IsOpenMap ⇑(PrimeSpectrum.comap Polynomial.C) Nimber.bot_eq_zero : ⊥ = 0 Nat.bot_eq_zero : ⊥ = 0 Mathlib.Tactic.LinearCombination'.pf_div_c : ∀ {α : Type u_1} {a b : α} [inst : Div α], a = b → ∀ (c : α), a / c = b / c Mathlib.Tactic.LinearCombination.div_eq_const : ∀ {α : Type u_1} {a b : α} [inst : Div α], a = b → ∀ (c : α), a / c = b / c Mathlib.Tactic.LinearCombination'.c_mul_pf : ∀ {α : Type u_1} {b c : α} [inst : Mul α], b = c → ∀ (a : α), a * b = a * c Mathlib.Tactic.LinearCombination.mul_const_eq : ∀ {α : Type u_1} {b c : α} [inst : Mul α], b = c → ∀ (a : α), a * b = a * c Mathlib.Tactic.LinearCombination'.pf_mul_c : ∀ {α : Type u_1} {a b : α} [inst : Mul α], a = b → ∀ (c : α), a * c = b * c Mathlib.Tactic.LinearCombination.mul_eq_const : ∀ {α : Type u_1} {a b : α} [inst : Mul α], a = b → ∀ (c : α), a * c = b * c Mathlib.Tactic.LinearCombination'.add_pf : ∀ {α : Type u_1} {a₁ a₂ b₁ b₂ : α} [inst : Add α], a₁ = b₁ → a₂ = b₂ → a₁ + a₂ = b₁ + b₂ Mathlib.Tactic.LinearCombination.add_eq_eq : ∀ {α : Type u_1} {a₁ a₂ b₁ b₂ : α} [inst : Add α], a₁ = b₁ → a₂ = b₂ → a₁ + a₂ = b₁ + b₂ Mathlib.Tactic.LinearCombination'.eq_of_add_pow : ∀ {α : Type u_1} {a a' b b' : α} [inst : Ring α] [NoZeroDivisors α] (n : ℕ), a = b → (a' - b') ^ n - (a - b) = 0 → a' = b' Mathlib.Tactic.LinearCombination.eq_of_add_pow : ∀ {α : Type u_1} {a a' b b' : α} [inst : Ring α] [NoZeroDivisors α] (n : ℕ), a = b → (a' - b') ^ n - (a - b) = 0 → a' = b' Mathlib.Meta.Multiset.insert_eq_cons : ∀ {α : Type u_1} (a : α) (s : Multiset α), insert a s = a ::ₘ s Multiset.insert_eq_cons : ∀ {α : Type u_1} (a : α) (s : Multiset α), insert a s = a ::ₘ s CpltSepUniformSpace.hom_ofHom : ∀ {X Y : Type u} [inst : UniformSpace X] [inst_1 : UniformSpace Y] (f : { f // UniformContinuous f }), UniformSpaceCat.Hom.hom (UniformSpaceCat.ofHom f) = f UniformSpaceCat.hom_ofHom : ∀ {X Y : Type u} [inst : UniformSpace X] [inst_1 : UniformSpace Y] (f : { f // UniformContinuous f }), UniformSpaceCat.Hom.hom (UniformSpaceCat.ofHom f) = f