1. HANDLING EQUATION 63

Equation 63 is $x = y \diamond (x \diamond (x \diamond y))$. Work with a carrier set G that is the free group on countably many letters x_1, x_2, \ldots (If easier, the free abelian group will also work. I just personally found it easier to work multiplicatively, and so kept track of orders of products.) Setting y = hx and $a \diamond b = f(ba^{-1})a$, where $f: G \to G$ is a function, we are led to the functional equation

$$f(f^2(h)h^{-1}) = h^{-1}.$$

Think of this as saying that if $(a, b), (b, c) \in f$, then we must have $(ca^{-1}, a^{-1}) \in f$.

An important initial seed is the following:

$$E_0 := \{(1, x_1), (x_1, x_2), (x_2, 1), (x_1^{-1}, x_1^{-1}), (x_1 x_2^{-1}, x_2^{-1}), (x_2^{-1}, x_3), (x_3 x_2 x_1^{-1}, x_2 x_1^{-1}), (x_3, x_1 x_2^{-1}), (x_2^{-1} x_3^{-1}, x_3^{-1})\}.$$

Define \mathscr{E} as the collection of sets $E \subseteq G^2$ satisfying the following properties.

- (1) E is finite.
- (2) E is a function.
- (3) $E_0 \subseteq E$.
- (4) If $(a, 1) \in E$, then $a = x_2$.
- (5) If $(a, b), (b, c) \in E$, then $(ca^{-1}, a^{-1}) \in E$.
- (6) If $(a, b), (a', b), (a^{-1}, d) \in E$, then $da \neq a'$.
- (7) If $(a, b), (a', b), (a^{-1}, d), (a'^{-1}, d') \in E$, and da = d'a', then a = a'.
- (8) If $(a, b), (a', b), (a^{-1}, d), (a'^{-1}, d) \in E$, then a = a'.

Lemma 1.1. For any $E \in \mathscr{E}$ and any $a \in G$, there is an extension $E \subseteq E' \in \mathscr{E}$ where the functional equation holds for a.

Proof. Case 1: Assume $(a, b) \in E$ for some $b \in G$.

If $b \in \text{dom}(E)$, then by condition (5) we are already done. So reduce to the case when $b \notin \text{dom}(E)$. Let a_1, a_2, \ldots, a_n be the finite list of first coordinates in E that map to b. In particular, note that this means $a_i \neq 1$ and $a_i \neq q^{-1}$ (for each i) by condition (3). (This, plus the closure condition (5), is the reason we need so many pairs in E_0 .)

Let S be the subset of indices j where $(a_j^{-1}, d_j) \in E$ for some $d_j \in G$. Note that $d_j \neq 1$, since $a_j \neq x_2^{-1}$, using condition (4). Also note that if $j, k \in S$ are distinct, then $d_j \neq d_k$ by condition (8), and also by condition (7) we know $d_j a_j \neq d_k a_k$.

Fix c to be the least generator of G that does not appear anywhere in the reduced forms for the coordinates in E. We then take

$$E' := E \cup \{(b,c), (ca_i^{-1}, a_i^{-1})\}_{i \in [1,n]} \cup \{(d_j a_j c^{-1}, a_j c^{-1}\}_{j \in S}.$$

Conditions (1) and (3) for E' are clear. For (2), use $d_j a_j \neq d_k a_k$ when $j, k \in S$ are distinct. Next, (4) holds since none of the new pairs ends in 1 (because $a_i \neq 1$). A finite check also shows that condition (5) holds (here, we need to use the fact that (6) holds for E to get $da_j \neq a_i$ for any $j \in S$ and $i \in [1, n]$).

Next, (6) holds by considering cases, noting that c is a new generator, and again using $da_i \neq a_i$ (so that $a_i c^{-1} \notin \text{dom}(E')$), and similarly for (7) and (8).

Case 2: Assume $a \notin \text{dom}(E)$. If $(y, a) \in E$ for some $y \in G$, then applying Case 1 to y, we reduce to the situation when $a \in \text{dom}(E)$ after all. Thus, we may assume $a \notin \text{im}(E)$. Using $E \cup \{(a, b)\}$, where b is the least generator of G not appearing in the reduced forms for the coefficients of E, nor of a, we reduce to Case 1 again.

Equation 1692 is $x = (y \diamond x) \diamond ((y \diamond x) \diamond y)$. The corresponding functional equation is $hf(h)^{-1} = f^2(f(h)^{-1}).$

The seed $E_0 \cup \{(x_4, x_5), (x_5^{-1}, x_6), (x_6, x_7), (x_7x_5, x_5)\}$ is in \mathscr{E} (by a finite check) and fails this new equation. After extending to a full function, we are done.