1. 1516 does not imply 1489

This proof is very similar to the one that handled Obelix. I'll thus be somewhat brief. The functional equation for 1516 is

$$f(f^{2}(h)h^{-1}f(1)^{-1}) = h^{-1}f(1)^{-1}$$

Throughout, we'll take (1, 1) for simplicity. Think of this functional equation as saying that if $(a, b), (b, c) \in f$, then we must have $(ca^{-1}, a^{-1}) \in f$.

Define \mathscr{E} as the collection of sets $E \subseteq G^2$ satisfying the following properties.

(1) E is finite.

(2) E is a function.

(3) $(1,1) \in E$.

(4) If $(a, b), (b, c) \in E$, then $(ca^{-1}, a^{-1}) \in E$.

- (5) If $(a, b), (a', b), (a^{-1}, d), (a'^{-1}, d') \in E$ and da = d'a', then a = a'.
- (6) If $(a, a^{-1}) \in E$, then a = 1.

(7) If $(a, b), (a', b), (a^{-1}, d) \in E$, then $ad \neq a'$.

(8) If $(a, 1) \in E$, then a = 1.

Lemma 1.1. For any $E \in \mathscr{E}$ and any $a \in G$, there is an extension $E \subseteq E' \in \mathscr{E}$ where the functional equation holds for a.

Proof. Do a case analysis as in my other files. The main case is when $(a, b) \in E$ but $b \notin \operatorname{dom}(E)$. In that case $a, b \neq 1$.

Fix the finite list of first coordinates a_1, a_2, \ldots, a_n that map to b in E. Also, fix the set S to consist of the indices j where $(a_j^{-1}, d_j) \in E$ for some $d_j \in G$. Taking c to be a new generator of the (countably-generated free) group G, fix

$$E' := E \cup \{(b,c)\} \cup \{(ca_i^{-1}, a_i^{-1}\}_{i \in [1,n]} \cup \{d_j a_j c^{-1}, a_j c^{-1}\}_{j \in S}.$$

The last four conditions defining \mathscr{E} help make the case analysis work.

The functional equation for 1489 is $f(f(h^{-1})h)f(h)^{-1}) = hf(h)^{-1}$. Taking the seed

$$\{(1,1), (x_1, x_2), (x_1^{-1}, x_3), (x_3 x_1, x_4), (x_4 x_2^{-1}, x_5)\} \in \mathscr{E}$$

works to contradict this equation.