✖ [7030/7059] Building Mathlib.Probability.Independence.Kernel trace: .> LEAN_PATH=/home/lean/actions-runner/_work/mathlib4/mathlib4/pr-branch/.lake/packages/Cli/.lake/build/lib/lean:/home/lean/actions-runner/_work/mathlib4/mathlib4/pr-branch/.lake/packages/batteries/.lake/build/lib/lean:/home/lean/actions-runner/_work/mathlib4/mathlib4/pr-branch/.lake/packages/Qq/.lake/build/lib/lean:/home/lean/actions-runner/_work/mathlib4/mathlib4/pr-branch/.lake/packages/aesop/.lake/build/lib/lean:/home/lean/actions-runner/_work/mathlib4/mathlib4/pr-branch/.lake/packages/proofwidgets/.lake/build/lib/lean:/home/lean/actions-runner/_work/mathlib4/mathlib4/pr-branch/.lake/packages/importGraph/.lake/build/lib/lean:/home/lean/actions-runner/_work/mathlib4/mathlib4/pr-branch/.lake/packages/LeanSearchClient/.lake/build/lib/lean:/home/lean/actions-runner/_work/mathlib4/mathlib4/pr-branch/.lake/packages/plausible/.lake/build/lib/lean:/home/lean/actions-runner/_work/mathlib4/mathlib4/pr-branch/.lake/build/lib/lean /home/lean/.elan/toolchains/leanprover--lean4---v4.22.0-rc4/bin/lean /home/lean/actions-runner/_work/mathlib4/mathlib4/pr-branch/Mathlib/Probability/Independence/Kernel.lean -o /home/lean/actions-runner/_work/mathlib4/mathlib4/pr-branch/.lake/build/lib/lean/Mathlib/Probability/Independence/Kernel.olean -i /home/lean/actions-runner/_work/mathlib4/mathlib4/pr-branch/.lake/build/lib/lean/Mathlib/Probability/Independence/Kernel.ilean -c /home/lean/actions-runner/_work/mathlib4/mathlib4/pr-branch/.lake/build/ir/Mathlib/Probability/Independence/Kernel.c --setup /home/lean/actions-runner/_work/mathlib4/mathlib4/pr-branch/.lake/build/ir/Mathlib/Probability/Independence/Kernel.setup.json --json Error: error: Mathlib/Probability/Independence/Kernel.lean:1074:6: `grind` failed case grind.1.1.1.1.1.1 α : Type u_1 Ω : Type u_2 ι : Type u_3 _mα : MeasurableSpace α _mΩ : MeasurableSpace Ω κ : Kernel α Ω μ : Measure α β : ι → Type u_8 m : (i : ι) → MeasurableSpace (β i) f : (i : ι) → Ω → β i S T : Finset ι hST : Disjoint S T hf_Indep : iIndepFun f κ μ hf_meas : ∀ (i : ι), Measurable (f i) hμ : ¬μ = 0 η : Kernel α Ω η_eq : ⇑κ =ᶠ[ae μ] ⇑η hη : IsMarkovKernel η hπS_pi : IsPiSystem {s | ∃ t ∈ univ.pi '' univ.pi fun i ↦ {s | MeasurableSet s}, (fun a i ↦ f (↑i) a) ⁻¹' t = s} hπS_gen : MeasurableSpace.comap (fun a i ↦ f (↑i) a) MeasurableSpace.pi = generateFrom {s | ∃ t ∈ univ.pi '' univ.pi fun i ↦ {s | MeasurableSet s}, (fun a i ↦ f (↑i) a) ⁻¹' t = s} hπT_pi : IsPiSystem {s | ∃ t ∈ univ.pi '' univ.pi fun i ↦ {s | MeasurableSet s}, (fun a i ↦ f (↑i) a) ⁻¹' t = s} hπT_gen : MeasurableSpace.comap (fun a i ↦ f (↑i) a) MeasurableSpace.pi = generateFrom {s | ∃ t ∈ univ.pi '' univ.pi fun i ↦ {s | MeasurableSet s}, (fun a i ↦ f (↑i) a) ⁻¹' t = s} s : Set ((i : ↥S) → β i.1) sets_s : (i : ↥S) → Set (β i.1) hs2 : univ.pi sets_s = s t : Set ((i : ↥T) → β i.1) sets_t : (i : ↥T) → Set (β i.1) ht2 : univ.pi sets_t = t hs1 : ∀ (i : ↥S), MeasurableSet (sets_s i) ht1 : ∀ (i : ↥T), MeasurableSet (sets_t i) h_sets_s'_eq : ∀ {i : ι} (hi : i ∈ S), (if hi : i ∈ S then sets_s ⟨i, hi⟩ else univ) = sets_s ⟨i, hi⟩ h_sets_s'_univ : ∀ {i : ι}, i ∈ T → (if hi : i ∈ S then sets_s ⟨i, hi⟩ else univ) = univ h_sets_t'_univ : ∀ {i : ι}, i ∈ S → (if hi : i ∈ T then sets_t ⟨i, hi⟩ else univ) = univ h_meas_s' : ∀ i ∈ S, MeasurableSet (if hi : i ∈ S then sets_s ⟨i, hi⟩ else univ) h_meas_t' : ∀ i ∈ T, MeasurableSet (if hi : i ∈ T then sets_t ⟨i, hi⟩ else univ) h_eq_inter_S : (fun a i ↦ f (↑i) a) ⁻¹' univ.pi sets_s = ⋂ i ∈ S, f i ⁻¹' if hi : i ∈ S then sets_s ⟨i, hi⟩ else univ x : Ω h : ∀ i ∈ T, f i x ∈ if hi : i ∈ T then sets_t ⟨i, hi⟩ else univ val : ι property : val ∈ T h_1 : f val x ∉ sets_t ⟨val, ⋯⟩ h_2 : (fun s ↦ ∃ t ∈ univ.pi '' univ.pi fun i ↦ {s | MeasurableSet s}, (fun a i ↦ f (↑i) a) ⁻¹' t = s) = fun s ↦ ∃ t ∈ univ.pi '' univ.pi fun i ↦ {s | MeasurableSet s}, (fun a i ↦ f (↑i) a) ⁻¹' t = s h_3 : {_a | False} = fun s ↦ ∃ t ∈ univ.pi '' univ.pi fun i ↦ {s | MeasurableSet s}, (fun a i ↦ f (↑i) a) ⁻¹' t = s h_4 : {_a | False} = univ h_5 : univ = fun s ↦ ∃ t ∈ univ.pi '' univ.pi fun i ↦ {s | MeasurableSet s}, (fun a i ↦ f (↑i) a) ⁻¹' t = s h_6 : univ = fun s ↦ ∃ t ∈ univ.pi '' univ.pi fun i ↦ {s | MeasurableSet s}, (fun a i ↦ f (↑i) a) ⁻¹' t = s h_7 : {_a | False} = fun s ↦ ∃ t ∈ univ.pi '' univ.pi fun i ↦ {s | MeasurableSet s}, (fun a i ↦ f (↑i) a) ⁻¹' t = s ⊢ False [grind] Goal diagnostics [facts] Asserted facts [prop] Disjoint S T [prop] iIndepFun f κ μ [prop] ∀ (i : ι), Measurable (f i) [prop] ¬μ = 0 [prop] ⇑κ =ᶠ[ae μ] ⇑η [prop] IsMarkovKernel η [prop] IsPiSystem {s | ∃ t ∈ univ.pi '' univ.pi fun i ↦ {s | MeasurableSet s}, (fun a i ↦ f (↑i) a) ⁻¹' t = s} [prop] MeasurableSpace.comap (fun a i ↦ f (↑i) a) MeasurableSpace.pi = generateFrom {s | ∃ t ∈ univ.pi '' univ.pi fun i ↦ {s | MeasurableSet s}, (fun a i ↦ f (↑i) a) ⁻¹' t = s} [prop] IsPiSystem {s | ∃ t ∈ univ.pi '' univ.pi fun i ↦ {s | MeasurableSet s}, (fun a i ↦ f (↑i) a) ⁻¹' t = s} [prop] MeasurableSpace.comap (fun a i ↦ f (↑i) a) MeasurableSpace.pi = generateFrom {s | ∃ t ∈ univ.pi '' univ.pi fun i ↦ {s | MeasurableSet s}, (fun a i ↦ f (↑i) a) ⁻¹' t = s} [prop] univ.pi sets_s = s [prop] univ.pi sets_t = t [prop] ∀ (i : ↥S), MeasurableSet (sets_s i) [prop] ∀ (i : ↥T), MeasurableSet (sets_t i) [prop] ∀ {i : ι} (hi : i ∈ S), (if hi : i ∈ S then sets_s ⟨i, hi⟩ else univ) = sets_s ⟨i, hi⟩ [prop] ∀ {i : ι}, i ∈ T → (if hi : i ∈ S then sets_s ⟨i, hi⟩ else univ) = univ [prop] ∀ {i : ι}, i ∈ S → (if hi : i ∈ T then sets_t ⟨i, hi⟩ else univ) = univ [prop] ∀ i ∈ S, MeasurableSet (if hi : i ∈ S then sets_s ⟨i, hi⟩ else univ) [prop] ∀ i ∈ T, MeasurableSet (if hi : i ∈ T then sets_t ⟨i, hi⟩ else univ) [prop] (fun a i ↦ f (↑i) a) ⁻¹' univ.pi sets_s = ⋂ i ∈ S, f i ⁻¹' if hi : i ∈ S then sets_s ⟨i, hi⟩ else univ [prop] ∀ i ∈ T, f i x ∈ if hi : i ∈ T then sets_t ⟨i, hi⟩ else univ [prop] val ∈ T [prop] f val x ∉ sets_t ⟨val, ⋯⟩ [prop] Measurable (f val) [prop] {_x | True} = univ [prop] {_a | False} = ∅ [prop] MeasurableSet (sets_t ⟨val, ⋯⟩) [prop] (fun s ↦ ∃ t ∈ univ.pi '' univ.pi fun i ↦ {s | MeasurableSet s}, (fun a i ↦ f (↑i) a) ⁻¹' t = s) = fun s ↦ ∃ t ∈ univ.pi '' univ.pi fun i ↦ {s | MeasurableSet s}, (fun a i ↦ f (↑i) a) ⁻¹' t = s [prop] {_a | False} = fun s ↦ ∃ t ∈ univ.pi '' univ.pi fun i ↦ {s | MeasurableSet s}, (fun a i ↦ f (↑i) a) ⁻¹' t = s [prop] {_a | False} = univ [prop] univ = fun s ↦ ∃ t ∈ univ.pi '' univ.pi fun i ↦ {s | MeasurableSet s}, (fun a i ↦ f (↑i) a) ⁻¹' t = s [prop] univ = fun s ↦ ∃ t ∈ univ.pi '' univ.pi fun i ↦ {s | MeasurableSet s}, (fun a i ↦ f (↑i) a) ⁻¹' t = s [prop] {_a | False} = fun s ↦ ∃ t ∈ univ.pi '' univ.pi fun i ↦ {s | MeasurableSet s}, (fun a i ↦ f (↑i) a) ⁻¹' t = s [eqc] True propositions [prop] IsPiSystem {s | ∃ t ∈ univ.pi '' univ.pi fun i ↦ {s | MeasurableSet s}, (fun a i ↦ f (↑i) a) ⁻¹' t = s} [prop] IsPiSystem {s | ∃ t ∈ univ.pi '' univ.pi fun i ↦ {s | MeasurableSet s}, (fun a i ↦ f (↑i) a) ⁻¹' t = s} [prop] (fun s ↦ ∃ t ∈ univ.pi '' univ.pi fun i ↦ {s | MeasurableSet s}, (fun a i ↦ f (↑i) a) ⁻¹' t = s) = fun s ↦ ∃ t ∈ univ.pi '' univ.pi fun i ↦ {s | MeasurableSet s}, (fun a i ↦ f (↑i) a) ⁻¹' t = s [prop] OuterMeasureClass (Measure α) α [prop] Disjoint S T [prop] ⇑κ =ᶠ[ae μ] ⇑η [prop] val ∈ T [prop] IsMarkovKernel η [prop] iIndepFun f κ μ [prop] ∀ (i : ι), Measurable (f i) [prop] ∀ {i : ι} (hi : i ∈ S), (if hi : i ∈ S then sets_s ⟨i, hi⟩ else univ) = sets_s ⟨i, hi⟩ [prop] ∀ {i : ι}, i ∈ S → (if hi : i ∈ T then sets_t ⟨i, hi⟩ else univ) = univ [prop] ∀ i ∈ S, MeasurableSet (if hi : i ∈ S then sets_s ⟨i, hi⟩ else univ) [prop] ∀ {i : ι}, i ∈ T → (if hi : i ∈ S then sets_s ⟨i, hi⟩ else univ) = univ [prop] ∀ i ∈ T, MeasurableSet (if hi : i ∈ T then sets_t ⟨i, hi⟩ else univ) [prop] ∀ i ∈ T, f i x ∈ if hi : i ∈ T then sets_t ⟨i, hi⟩ else univ [prop] ∀ (i : ↥S), MeasurableSet (sets_s i) [prop] ∀ (i : ↥T), MeasurableSet (sets_t i) [prop] MeasurableSet (sets_t ⟨val, ⋯⟩) [prop] Measurable (f val) [eqc] False propositions [prop] μ = 0 [prop] f val x ∈ sets_t ⟨val, ⋯⟩ [eqc] Equivalence classes [eqc] {s, univ.pi sets_s} [eqc] {t, univ.pi sets_t} [eqc] {generateFrom {s | ∃ t ∈ univ.pi '' univ.pi fun i ↦ {s | MeasurableSet s}, (fun a i ↦ f (↑i) a) ⁻¹' t = s}, generateFrom {s | ∃ t ∈ univ.pi '' univ.pi fun i ↦ {s | MeasurableSet s}, (fun a i ↦ f (↑i) a) ⁻¹' t = s}, MeasurableSpace.comap (fun a i ↦ f (↑i) a) MeasurableSpace.pi, MeasurableSpace.comap (fun a i ↦ f (↑i) a) MeasurableSpace.pi} [eqc] {{s | ∃ t ∈ univ.pi '' univ.pi fun i ↦ {s | MeasurableSet s}, (fun a i ↦ f (↑i) a) ⁻¹' t = s}, {s | ∃ t ∈ univ.pi '' univ.pi fun i ↦ {s | MeasurableSet s}, (fun a i ↦ f (↑i) a) ⁻¹' t = s}} [eqc] {⋂ i ∈ S, f i ⁻¹' if hi : i ∈ S then sets_s ⟨i, hi⟩ else univ, (fun a i ↦ f (↑i) a) ⁻¹' univ.pi sets_s} [eqc] {Membership.mem S, fun x ↦ x ∈ S} [eqc] {Membership.mem T, fun x ↦ x ∈ T} [eqc] {fun s ↦ ∃ t ∈ univ.pi '' univ.pi fun i ↦ {s | MeasurableSet s}, (fun a i ↦ f (↑i) a) ⁻¹' t = s, fun s ↦ ∃ t ∈ univ.pi '' univ.pi fun i ↦ {s | MeasurableSet s}, (fun a i ↦ f (↑i) a) ⁻¹' t = s, univ, ∅, {_a | False}, {_x | True}} [eqc] {(fun _a ↦ False) = fun s ↦ ∃ t ∈ univ.pi '' univ.pi fun i ↦ {s | MeasurableSet s}, (fun a i ↦ f (↑i) a) ⁻¹' t = s, (fun _a ↦ False) = fun s ↦ ∃ t ∈ univ.pi '' univ.pi fun i ↦ {s | MeasurableSet s}, (fun a i ↦ f (↑i) a) ⁻¹' t = s} [eqc] {(fun _x ↦ True) = fun s ↦ ∃ t ∈ univ.pi '' univ.pi fun i ↦ {s | MeasurableSet s}, (fun a i ↦ f (↑i) a) ⁻¹' t = s, (fun _x ↦ True) = fun s ↦ ∃ t ∈ univ.pi '' univ.pi fun i ↦ {s | MeasurableSet s}, (fun a i ↦ f (↑i) a) ⁻¹' t = s} [cases] Case analyses [cases] [1/2]: (fun s ↦ ∃ t ∈ univ.pi '' univ.pi fun i ↦ {s | MeasurableSet s}, (fun a i ↦ f (↑i) a) ⁻¹' t = s) = fun s ↦ ∃ t ∈ univ.pi '' univ.pi fun i ↦ {s | MeasurableSet s}, (fun a i ↦ f (↑i) a) ⁻¹' t = s [cases] source: Initial goal [cases] [1/2]: (fun _a ↦ False) = fun s ↦ ∃ t ∈ univ.pi '' univ.pi fun i ↦ {s | MeasurableSet s}, (fun a i ↦ f (↑i) a) ⁻¹' t = s [cases] source: E-matching setOf_false [cases] [1/2]: (fun _a ↦ False) = fun _x ↦ True [cases] source: E-matching setOf_false [cases] [1/2]: (fun _x ↦ True) = fun s ↦ ∃ t ∈ univ.pi '' univ.pi fun i ↦ {s | MeasurableSet s}, (fun a i ↦ f (↑i) a) ⁻¹' t = s [cases] source: E-matching setOf_true [cases] [1/2]: (fun _x ↦ True) = fun s ↦ ∃ t ∈ univ.pi '' univ.pi fun i ↦ {s | MeasurableSet s}, (fun a i ↦ f (↑i) a) ⁻¹' t = s [cases] source: E-matching setOf_true [cases] [1/2]: (fun _a ↦ False) = fun s ↦ ∃ t ∈ univ.pi '' univ.pi fun i ↦ {s | MeasurableSet s}, (fun a i ↦ f (↑i) a) ⁻¹' t = s [cases] source: E-matching setOf_false [ematch] E-matching patterns [thm] hf_meas: [f #0] [thm] hf_meas: [f #0] [thm] setOf_true: [@setOf #0 _] [thm] setOf_false: [@setOf #0 _] [thm] Multiset.notMem_zero: [@Membership.mem #1 _ _ (@OfNat.ofNat _ `[0] _) #0] [thm] mem_pi: [@Membership.mem _ _ _ (@Set.pi #4 #3 #2 #1) #0] [thm] mem_univ: [@Membership.mem #1 _ _ (@univ _) #0] [thm] hs1: [sets_s #0] [thm] hs1: [sets_s #0] [thm] ht1: [sets_t #0] [thm] ht1: [sets_t #0] [thm] h_sets_s'_eq: [@Membership.mem `[ι] `[Finset ι] `[Finset.instMembership] `[S] #1] [thm] h_sets_s'_eq: [@Membership.mem `[ι] `[Finset ι] `[Finset.instMembership] `[S] #1] [thm] h_sets_s'_univ: [@Membership.mem `[ι] `[Finset ι] `[Finset.instMembership] `[T] #1] [thm] h_sets_s'_univ: [@Membership.mem `[ι] `[Finset ι] `[Finset.instMembership] `[S] #1] [thm] h_sets_t'_univ: [@Membership.mem `[ι] `[Finset ι] `[Finset.instMembership] `[S] #1] [thm] h_sets_t'_univ: [@Membership.mem `[ι] `[Finset ι] `[Finset.instMembership] `[T] #1] [thm] h_meas_s': [@Membership.mem `[ι] `[Finset ι] `[Finset.instMembership] `[S] #1] [thm] h_meas_s': [@Membership.mem `[ι] `[Finset ι] `[Finset.instMembership] `[S] #1] [thm] h_meas_t': [@Membership.mem `[ι] `[Finset ι] `[Finset.instMembership] `[T] #1] [thm] h_meas_t': [@Membership.mem `[ι] `[Finset ι] `[Finset.instMembership] `[T] #1] [thm] mem_preimage: [@Membership.mem #4 _ _ (@preimage _ #3 #2 #1) #0] [thm] h: [@Membership.mem `[ι] `[Finset ι] `[Finset.instMembership] `[T] #1] [thm] h: [@Membership.mem `[ι] `[Finset ι] `[Finset.instMembership] `[T] #1] [thm] mem_empty_iff_false: [@Membership.mem #1 _ _ (@EmptyCollection.emptyCollection _ _) #0] [thm] Finset.notMem_empty: [@Membership.mem #1 (Finset _) _ (@EmptyCollection.emptyCollection (Finset _) _) #0] [grind] Diagnostics [thm] E-Matching instances [thm] setOf_false ↦ 1 [thm] setOf_true ↦ 1 [cases] Cases instances [cases] Subtype ↦ 1