
Formalising Lie algebras

Oliver Nash

August 6, 2021

Abstract

Lie algebras are an important class of algebras arising throughout
mathematics and physics. We report on the formalisation of Lie
algebras in Lean’s Mathlib library [16]. Particular emphasis is paid
to the construction of the exceptional Lie algebras. Thanks to this
construction, it is possible to state the classification theorem for finite-
dimensional semisimple Lie algebras over an algebraically closed field
of characteristic zero.

1 Introduction

1.1 Skew-symmetric matrices

At least as far back at the 19th Century, it was observed that if A is a skew-
symmetric matrix and ε ∈ R is small then I + εA is almost a rotation. Indeed
since At = −A, we have

(I + εA)t(I + εA) = I − ε2A2.

That is, the inverse of I + εA is its transpose, if we neglect terms order ε2.
Better yet, the exponential eεA is truly a rotation (no terms neglected)

and for another such matrix B, the Baker–Campbell–Hausdorff formula
quantifies how the composition of the rotations eεA, eεB behaves in terms of
skew-symmetric matrices:

eεAeεB = eε(A+B)+
ε2

2
[A,B]+O(ε3). (1.1)

The term [A,B] appearing in (1.1) is defined as:

[A,B] = AB −BA (1.2)

1

and is an instance of a Lie bracket. It defines a natural product: if A and B
are skew-symmetric then1 so is [A,B].

The Lie bracket is skew-commutative:

[A,B] = −[B,A],

and in general non-associative, but by way of compensation it satisfies the
Jacobi identity:

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0. (1.3)

1.2 Abstract Lie algebras and their ubiquity

Recognising skew-symmetric matrices merely as an example, one can consider
the study of abstract Lie algebras. These are modules carrying a bilinear,
skew-commutative product which satisfies the Jacobi identity (1.3).

The study of abstract Lie algebras was initiated by Lie and independently
by Killing more than 140 years ago [13], [10, 11, 12], [8] and the subject now
pervades much of modern mathematics and physics.

In classical physics, both linear and angular momentum are best un-
derstood as taking values in the dual of a Lie algebra. More importantly,
recognising that the space of classical observables forms a Lie algebra2 under
the Poisson bracket is an important step in quantisation. Furthermore, in
particle physics, elementary particles such as the electron are essentially basis
vectors of irreducible representations of Lie groups [3] and thus of Lie algebras.

In number theory, automorphic forms, central objects of study in the
Langlands programme, satisfy a differential equation defined in terms of a
reductive Lie algebra. In differential geometry, the tangent bundle is special
amongst vector bundles because its sections carry a natural Lie algebra
structure; moreover with just this structure one can define the De Rham
cohomology, thus connecting with algebraic topology. In Riemannian geometry
and gauge theory, the curvature 2-form takes values in a Lie algebra. In
symplectic geometry, the moment map takes values in the dual of a Lie
algebra.

Of course the lists above hardly scratch the surface. The unifying theme
is that a great many types of symmetry are naturally Lie groups or algebraic
groups, and thus have associated Lie algebras which are essential for their
study. Understanding symmetry thus requires understanding Lie algebras and
for this reason the classification of semisimple Lie algebras is rightly regarded
as a landmark result of early 20th Century mathematics.

1If this is the first time you have seen this then check it: it’s a fun calculation.
2In fact a Poisson algebra.

2

1.3 Lie algebras in Lean

Here is the definition of a Lie algebra in Lean’s Mathlib [16] library:

class lie_ring (L : Type v)
extends add_comm_group L, has_bracket L L :=

(add_lie : ∀ (x y z : L), [x + y,z] = [x,z] + [y,z])
(lie_add : ∀ (x y z : L), [x,y + z] = [x,y] + [x,z])
(lie_self : ∀ (x : L), [x,x] = 0)
(leibniz_lie : ∀ (x y z : L), [x,[y,z]] = [[x,y],z] + [y,[x,z]])

class lie_algebra (R : Type u) (L : Type v)
[comm_ring R] [lie_ring L] extends module R L :=

(lie_smul : ∀ (t : R) (x y : L), [x,t ⋅ y] = t ⋅ [x,y])

The skew-commutative property follows from the lie_self axiom and the
Jacobi identity is equivalent to the leibniz_lie axiom3.

There exist computer algebra systems such as GAP and MAGMA as well
as a Mathematica package available at http://katlas.org, that are capable of
performing calculations involving Lie algebras. However to the best of our
knowledge, there is no previous work formalising the theory of Lie algebras.

As of August 2021, Mathlib contains over 6,000 lines of code about
Lie algebras and their representations, broadly following Bourbaki [5, 6, 7].
Material covered includes:

• Lie algebras and Lie modules

• Morphisms and equivalences of Lie algebras and Lie modules

• Lie subalgebras, Lie submodules, Lie ideals, and quotients

• Extension and restriction of scalars

• Direct sums of Lie modules and Lie algebras

• Tensor product of Lie modules

• Lie ideal operations, the lower central series, the derived series, and
derived length

• Nilpotent, solvable, simple, semisimple Lie algebras, the radical, and
the centre of a Lie algebra

• Cartan subalgebras

• Weight spaces of a Lie module, and thus root spaces of a Lie algebra

3We comment on the choice of axioms in section 2.

3

http://katlas.org

• The universal enveloping algebra (and its universal property)

• The free Lie algebra (and its universal property)

• Definition of the classical Lie algebras

• Definition of the exceptional Lie algebras

The final item is worth highlighting. There is no easy route to the definition of
the exceptional Lie algebras (section 5) and it is an important milestone since
it allows us to state the classification of semisimple Lie algebras (section 6). A
proof of this classification within Mathlib would be a significant undertaking
but now looks achievable.

2 Design choices: Leibniz vs. Jacobi

The choice of the axiom leibniz_lie in the definition exhibited in section
1.3 deserves explanation, if only because it serves as a simple example of the
sorts of choices that repeatedly came up in the course of formalisation.

In the presence of the other Lie algebra axioms, each of the following are
equivalent:

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0, (2.1)

[[x, y], z] = [x, [y, z]] − [y, [x, z]], (2.2)

[x, [y, z]] = [[x, y], z] + [y, [x, z]]. (2.3)

Note that (2.3) is the axiom leibniz_lie and that given x ∶ L, if we define
Dx ∶ L→ L by:

Dxy = [x, y]

then (2.3) says that Dx satisfies the Leibniz product rule:

Dx[y, z] = [Dxy, z] + [y,Dxz],

i.e., it says that Dx is a derivation.
One might think that the Jacobi identity (2.1) is the best choice since it

looks the most symmetric; in fact it is the worst choice. This becomes clear
when one considers that we also need a theory of Lie modules.

Informally, if a Lie algebra L acts linearly on a module M , and if we
denote the action of x ∶ L on m ∶M by [x,m] ∶M then this action turns M
into a Lie module for L iff:

[x, [y,m]] = [[x, y],m] + [y, [x,m]],

4

for all x, y ∶ L and m ∶M .
Now consider the case L =M and observe that any Lie algebra is thus a

module over itself. This so-called adjoint action is extremely important in
Lie theory. Observe also that if we replace z ∶ L in equations (2.1) – (2.3)
by m ∶M then the terms [y, [z, x]], [z, [x, y]] do not make sense since there
is no action of M on L. Thus (2.1) can never be used as an axiom for Lie
modules.

By choosing to define Lie algebras using the leibniz_lie axiom (2.3)
we thus obtain a theory where Lie algebras and Lie modules definitionally
satisfy the same axiom. This is a desirable convenience that we exploit. For
example, here is the code that defines the adjoint action:

instance lie_ring_self_module : lie_ring_module L L :=
{ .. (infer_instance : lie_ring L) }

One might ask why to choose (2.3) over (2.2). This is of lesser importance
but (2.3) is still the better choice. This is because (2.2) requires using
subtraction which is often a secondary operation defined via addition and
inverses. This means that when constructing Lie algebras downstream, it is
likely there will be more direct proof of (2.3).

On the other hand, as a simplification lemma (rather than a definition)
(2.2) is excellent since it can be used to push Lie brackets right-most in nested
expressions. Indeed the following simp lemma establishes this as the normal
form in Mathlib:

@[simp] lemma lie_lie : [[x,y],m] = [x,[y,m]] - [y,[x,m]] := . . .

And of course we could never register (2.3) as simp lemma since we would
get a simp loop: the term [y, [x,m]] on the right hand side of (2.3) is of the
same form as the term [x, [y,m]] on the left.

Notwithstanding the words above, the choice of axiom here is of minor im-
portance. However there are many such choices and en mass they accumulate
to have non-trivial impact.

3 Case study: the radical is solvable

Whenever possible, we strove to work at the greatest reasonable level of
generality. At times the unified nature of Mathlib made it possible to establish
results at a level of generality beyond that of the standard references, including
Bourbaki. A good example is the basic result that finite-dimensional Lie
algebras possess a maximal solvable ideal.

Like groups, Lie algebras admit a notion of being solvable. For the
purposes of this discussion, the precise meaning is unimportant. What is

5

important is that if I, J are ideals of a Lie algebra and if, regarding them as
Lie algebras in their own right, they are both solvable, then their sum I + J
is solvable. Mathlib knows this fact. Indeed here is the statement and proof
for a Lie algebra L over a commutative ring R:

instance is_solvable_add {I J : lie_ideal R L}
[hI : is_solvable R I] [hJ : is_solvable R J] :
is_solvable R ↥(I + J) :=

begin
tactic.unfreeze_local_instances,

obtain ⟨k, hk⟩ := hI,

obtain ⟨l, hl⟩ := hJ,

exact ⟨⟨k+l, lie_ideal.derived_series_add_eq_bot hk hl⟩⟩,
end

The (solvable) radical of a Lie algebra is the sum of all solvable ideals, or
more precisely, the supremum of the subset of solvable ideals in the complete
lattice of ideals of a Lie algebra. Here is the definition in Mathlib:

def radical := Sup { I : lie_ideal R L | is_solvable R I }

It is clear that if R is a field and L is finite-dimensional then the radical
itself is finite-dimensional and can thus be represented as a sum of finitely-
many solvable ideals. By iterating is_solvable_add we thus see the radical
is solvable. This was the greatest level of generality in which this fact was
established in any reference the author could find.

However it is not necessary to make such strong assumptions. Indeed the
result is true over any commutative ring as long as L is Noetherian, as can
be seen from the following proof in Mathlib, in which R is any commutative
ring:

instance radical_is_solvable [is_noetherian R L] :
is_solvable R (radical R L) :=

begin
have h := lie_submodule.well_founded_of_noetherian R L L,
rw ←complete_lattice.is_sup_closed_compact_iff_well_founded at h,
refine h { I : lie_ideal R L | is_solvable R I } _ _,
{ use ⊥, exact lie_algebra.is_solvable_bot R L, },
{ intros I J hI hJ,
apply lie_algebra.is_solvable_add R L;
[exact hI, exact hJ], },

end

The key lemma is complete_lattice.is_sup_closed_compact_iff_-

well_founded which the author added to Mathlib’s lattice theory library
for the purposes of proving radical_is_solvable. This addition was only
possible because Mathlib already contained a superb lattice theory library

6

and numerous key results about well-founded relations. Furthermore the
lemma lie_submodule.well_founded_of_noetherian ultimately depends
upon results which were originally introduced to Mathlib for the purposes of
formalising results about Noetherian modules over commutative rings with a
view toward algebraic geometry.

Different people with different aims in different corners of Mathlib are
enabling each other to push boundaries into new territory.

4 General non-associative algebra and the free

Lie algebra

As part of this work we formalised a construction of the free Lie algebra on a
type X with coefficients in a commutative ring R. Here is the statement of
the universal property (i.e., left adjointness) as stated in Mathlib with respect
to a Lie algebra L:

def lift : (X → L) ≃ (free_lie_algebra R X →l[R] L) :=

This definition, and the proof of its universality, was hard-won and is worth
comment.

The construction is to take a quotient of the free non-unital, non-associative
algebra4 on X with coefficients in R. We thus needed to define free_non_-

unital_non_assoc_algebra and prove its universal property:

def lift : (X → A) ≃

non_unital_alg_hom R (free_non_unital_non_assoc_algebra R X) A :=

In the above, A is a general non-unital, non-associative algebra and non_-

unital_alg_hom is the type of morphisms of such algebras.
Establishing the above result while adhering to the standards of Mathlib

was not straightforward. The problem was that Mathlib’s theories of rings
and algebras were entirely specialised to the unital, associative setting. To
handle this without fragmenting the algebraic hierarchy, it was necessary to
insert new classes, notably non_unital_non_assoc_semiring, low down in
the hierarchy. In a library as large as Mathlib, such changes are significant
undertakings.

Eric Wieser generously took on this challenge5 and also showed how to
encode a general non-unital, non-associative algebra:

4Strictly speaking we should say ‘not-necessarily-unital’ and ‘not-necessarily-associative’
but it is common and easier to say simply ‘non-unital’ and ‘non-associative’.

5This pull request shows what was required after all other preparatory work had been
completed.

7

https://github.com/leanprover-community/mathlib/pull/6786

variables {R A : Type∗}
[comm_ring R] [non_unital_non_assoc_semiring A]
[module R A] [is_scalar_tower R A A] [smul_comm_class R A A]

After Wieser’s work (see also [19]) it was essentially straightforward to con-
struct free_non_unital_non_assoc_algebra by relaxing the associativity
assumption in the existing monoid algebra construction and proving the
corresponding universal property with respect to a magma M :

def lift_magma [has_mul M] :
mul_hom M A ≃ non_unital_alg_hom R (monoid_algebra R M) A :=

With this in hand, the author was able to make the key definition:

def free_non_unital_non_assoc_algebra :=
monoid_algebra R (free_magma X)

and the corresponding universal property followed trivially.
Finally the free Lie algebra was constructed as a quotient using the

following relation:

local notation ‵lib‵ := free_non_unital_non_assoc_algebra

inductive rel : lib R X → lib R X → Prop
| lie_self (a : lib R X) : rel (a∗a) 0
| leibniz_lie (a b c : lib R X) :

rel (a∗(b∗c)) (((a∗b)∗c) + (b∗(a∗c)))
| smul (t : R) (a b : lib R X) : rel a b → rel (t⋅a) (t⋅b)
| add_right (a b c : lib R X) : rel a b → rel (a+c) (b+c)
| mul_left (a b c : lib R X) : rel b c → rel (a∗b) (a∗c)
| mul_right (a b c : lib R X) : rel a b → rel (a∗c) (b∗c)

and its universal property followed easily.
It should be noted that the use of inductive above was necessary because

Mathlib does not yet contain a theory of ideals and their quotients for general
non-associative algebras. Filling this gap would improve the construction
even further, though the benefit would be slight.

We should say that it would have been easy to establish what we needed
without any of the above work by ignoring most Mathlib’s of algebra library
and taking a quotient of an inductively-defined type with a constructor for
every term of X as well as separate constructors corresponding to the scalar
action, additive law, and Lie bracket. We rejected this low-level approach
because it would require a significant quantity of single-use code, because
it would be harder to maintain, because the alternative approach was a
opportunity to start developing a general theory of non-associative rings
and algebras, and because this is very unlikely to be the approach that a
mathematician would take in informal mathematics.

8

We should also say that we rejected an approach that constructs the
free Lie algebra as the smallest Lie subalgebra of the free unital, associative
algebra containing the generating type X. This can be expressed in Lean as:

lie_subalgebra.lie_span R
(free_algebra R X) (set.range (free_algebra.ι R))

This approach is mathematically appealing but the proof that this construction
satisfies the universal property appears to need a powerful version of the
Poincaré-Birkhoff-Witt theorem (see [14] as well as [5] I §2.7, §3.1).

5 The exceptional Lie algebras

We assume for now that the coefficients R form an algebraically closed field of
characteristic zero. The work under discussion does not make this assumption
but it will simplify the discussion here if we do.

There are numerous beautiful ways to construct the five exceptional Lie
algebras g2, f4, e6, e7, e8 (e.g., [1], [17], [18], [9]) but the most useful construction
from the point of view of proving the classification theorem (see section 6)
is an approach due to Serre [15]. This approach takes a square matrix of
integers as input and yields a Lie algebra. When the matrix is the Cartan
matrix of a semisimple Lie algebra, we recover the corresponding Lie algebra,
together with a splitting Cartan subalgebra.

If A is an l × l Cartan matrix, the corresponding Lie algebra is defined
to be the quotient of the free Lie algebra on 3l generators: H1,H2, . . .Hl,
E1,E2, . . . ,El, F1, F2, . . . , Fl by the following relations:

[Hi,Hj] = 0

[Ei, Fi] =Hi

[Ei, Fj] = 0 if i ≠ j

[Hi,Ej] = AijEj

[Hi, Fj] = −AijFj

ad(Ei)
1−Aij(Ej) = 0 if i ≠ j

ad(Fi)
1−Aij(Fj) = 0 if i ≠ j

Thanks to the construction of the free Lie algebra described in section 4, it
was easy to implement Serre’s construction in Mathlib and thus to define the
exceptional Lie algebras. For example, here is Mathlib’s definition of f4:

9

def cartan_matrix.F4 : matrix (fin 4) (fin 4) Z :=
![![2, -1, 0, 0],

![-1, 2, -2, 0],
![0, -1, 2, -1],
![0, 0, -1, 2]]

abbreviation f4 := cartan_matrix.F4.to_lie_algebra R

What’s more, thanks to Ed Ayers’s Lean Widgets [2], it was easy to
generate the Dynkin diagram corresponding to a Cartan matrix. For example,
here is a screenshot from the author’s proof-of-concept widget, written in
Lean, which reads Mathlib’s definition of the E8 Cartan matrix and renders
the corresponding Dynkin diagram:

Finally, we should confess that we have yet to prove almost anything
about the exceptional Lie algebras. The path is clear but much work remains
until we can prove key facts such as their simplicity, or for example:

def dimension_g2 : Prop := finrank (g2 C) = 14

6 Stating the classification

An important milestone, passed in the course of this work, was teaching Lean
the statements of the classification of semisimple Lie algebras. Modulo some
boilerplate to establish notation, the statements are:

variables (K L : Type∗)

/-- Let K be an algebraically closed field of characteristic 0. -/
variables [field K] [is_alg_closed K] [char_zero K]

/-- Let L be a finite-dimensional Lie algebra over K. -/
variables [lie_ring L] [lie_algebra K L] [finite_dimensional K L]

def simple_classification : Prop :=
is_simple K L ↔

10

((L ≅l[K] g2 K) ∨

(L ≅l[K] f4 K) ∨

(L ≅l[K] e6 K) ∨

(L ≅l[K] e7 K) ∨

(L ≅l[K] e8 K) ∨

(∃ l, (L ≅l[K] sl l K) ∧ 1 < l) ∨

(∃ l, (L ≅l[K] sp l K) ∧ 2 < l) ∨

(∃ l, (L ≅l[K] so l K) ∧ 4 < l ∧ l ≠ 6))

def semisimple_classification : Prop :=
is_semisimple K L ↔
∃ n (I : fin n → lie_ideal K L),
(L ≅l[K] (⊕ i, I i)) ∧ ∀ i, is_simple K (I i)

Note that the simple_classification contains several of the ‘‘excep-
tional isomorphisms’’. E.g., so(6) is simple so it must be isomorphic to one
of the other algebras on the list. For dimensional reasons, this has to be sl(4).
Likewise for the other cases excluded.

Note also that if we pursue a proof of the classification, we will probably
restate simple_classification in terms of algebras constructed from Cartan
matrices of types A, B, C, D rather than the models sl, sp, so defined in
terms of matrices.

7 Final words

7.1 Trivial proofs should be trivial

When building a library the size of Mathlib, one must constantly try to be
mindful of how one’s work will scale as more is built upon it. One metric for
the health of a particular area of the library is how much effort one is forced
to put into proving trivialities. We share an example of what this looks like
when things go well.

Given a type X and a commutative ring R one can use this data to build
the the free unital, associative algebra A(R,X). However, there is another
way to build a unital, associative algebra from this data: one first builds
the free Lie algebra L(R,X) and then takes its universal enveloping algebra
U(L(R,X)). A simple diagram chase reveals that these are the same, in
particular:

U(L(R,X)) ≃ A(R,X).

Mathlib knows this fact; here is the proof (using some notational shortcuts
for readability):

11

def universal_enveloping_equiv_free_algebra :
universal_enveloping_algebra R (free_lie_algebra R X) ≃a[R]
free_algebra R X :=

alg_equiv.of_alg_hom
(liftu R $ liftl R $ ιa R) (lifta R $ (ιu R) ○ (ιl R))
(by { ext, simp, })
(by { ext, simp, })

The point of the above is the two lines that read (by { ext, simp, }). This
is the Lean code discharging the proof obligations which correspond to the
informal mathematician’s diagram chase. It is encouraging that they are
trivial applications of standard tactics.

7.2 The Lie algebra of a Lie group

Far away in a different corner of Mathlib, Sébastien Gouëzel has developed a
theory of differentiable manifolds. Building on top of this, Nicolò Cavalleri,
under the supervision of Anthony Bordg, has defined Lie groups and has used
it to construct the Lie algebra associated to a Lie group [4].

7.3 Proof of classification

With the statement of the classification theorem formalised, it is tempting to
consider formalising a proof. Several key concepts such as Cartan subalgebras,
weight spaces, and root spaces have also been formalised. The evidence so
far is that formalising a proof of the classification would be non-trivial but is
absolutely within reach.

Acknowledgements

It is a pleasure to ackowledge the significant help the author received from
numerous members of the thriving Mathlib community. Almost all of the
maintainers were of direct assistance at some point. Special thanks are owed
to Johan Commelin and Eric Wieser for their astonishing appetite to review
pull requests (and excellent suggestions) as well as to Scott Morrison for
providing the motivation to take up this work and for writing the noncomm_-

ring tactic. I am also grateful to Kevin Buzzard for frequent advice, guidance,
and encouragement.

12

https://leanprover-community.github.io/meet.html#maintainers

References

[1] J. F. Adams. Lectures on exceptional Lie groups. Chicago Lectures in
Mathematics. University of Chicago Press, Chicago, IL, 1996. With
a foreword by J. Peter May, Edited by Zafer Mahmud and Mamoru
Mimura.

[2] Edward Ayers. Widgets: interactive output in VSCode. In Lean Together
2021, January 4–7, 2021. url, 2021.

[3] John Baez and John Huerta. The algebra of grand unified theories. Bull.
Amer. Math. Soc. (N.S.), 47(3):483–552, 2010.

[4] Anthony Bordg and Nicolò Cavalleri. Elements of Differential Geometry
in Lean A Report for Mathematicians. In 14th Conference on Intelligent
Computer Mathematics CICM 2021, Timisoara, Romania, July 26–31,
2021. url, 2021.

[5] Nicolas Bourbaki. Lie groups and Lie algebras. Chapters 1–3. Elements
of Mathematics (Berlin). Springer-Verlag, Berlin, 1998. Translated from
the French, Reprint of the 1989 English translation.

[6] Nicolas Bourbaki. Lie groups and Lie algebras. Chapters 4–6. Elements
of Mathematics (Berlin). Springer-Verlag, Berlin, 2002. Translated from
the 1968 French original by Andrew Pressley.

[7] Nicolas Bourbaki. Lie groups and Lie algebras. Chapters 7–9. Elements
of Mathematics (Berlin). Springer-Verlag, Berlin, 2005. Translated from
the 1975 and 1982 French originals by Andrew Pressley.

[8] A. J. Coleman. The greatest mathematical paper of all time. Math.
Intelligencer, 11(3):29–38, 1989.

[9] José Figueroa-O’Farrill. A geometric construction of the exceptional Lie
algebras F4 and E8. Comm. Math. Phys., 283(3):663–674, 2008.

[10] Wilhelm Killing. Die Zusammensetzung der stetigen endlichen
Transformations-gruppen. Math. Ann., 31(2):252–290, 1888.

[11] Wilhelm Killing. Die Zusammensetzung der stetigen endlichen Transfor-
mationsgruppen. Math. Ann., 33(1):1–48, 1888.

[12] Wilhelm Killing. Die Zusammensetzung der stetigen endlichen
Transformations-gruppen. Math. Ann., 34(1):57–122, 1889.

13

https://leanprover-community.github.io/lt2021/schedule.html
https://arxiv.org/abs/2108.00484

[13] Sophus Lie. Theorie der Transformationsgruppen I. Math. Ann.,
16(4):441–528, 1880.

[14] Mathoverflow. Is the natural map from the free Lie algebra to the free
associative algebra injective? url, 2021.

[15] Jean-Pierre Serre. Complex semisimple Lie algebras. Springer-Verlag,
New York, 1987. Translated from the French by G. A. Jones.

[16] The mathlib community. The Lean mathematical library. In Proceedings
of the 9th ACM SIGPLAN International Conference on Certified Pro-
grams and Proofs, CPP 2020, New Orleans, LA, USA, January 20-21,
2020, pages 367–381, 2020.

[17] J. Tits. Algèbres alternatives, algèbres de Jordan et algèbres de Lie
exceptionnelles. I. Construction. Nederl. Akad. Wetensch. Proc. Ser. A
69 = Indag. Math., 28:223–237, 1966.

[18] E. B. Vinberg. Construction of the exceptional simple Lie algebras. In Lie
groups and invariant theory, volume 213 of Amer. Math. Soc. Transl. Ser.
2, pages 241–242. Amer. Math. Soc., Providence, RI, 2005. Translated
from Trudy Sem. Vekt. Tenz. Anal. 13 (1966), 7–9.

[19] Eric Wieser. Scalar actions in Lean’s mathlib. In 14th Conference on
Intelligent Computer Mathematics CICM 2021, Timisoara, Romania,
July 26–31, 2021. to appear, 2021.

14

https://mathoverflow.net/questions/396680

	Introduction
	Skew-symmetric matrices
	Abstract Lie algebras and their ubiquity
	Lie algebras in Lean

	Design choices: Leibniz vs. Jacobi
	Case study: the radical is solvable
	General non-associative algebra and the free Lie algebra
	The exceptional Lie algebras
	Stating the classification
	Final words
	Trivial proofs should be trivial
	The Lie algebra of a Lie group
	Proof of classification

