
The Last Mile
How do we make AI theorem provers

which work in the real world for real users
and not just on benchmarks?

Jason Rute
IBM Research / MIT-IBM Watson AI Lab

AI Generated Image (ImageFX)



Disclaimers

● This talk is intentionally provocative

● The opinions are my own, not those of my employer or co-authors

● The ideas are not necessarily novel, and others have said them before

● I could be wrong about the solutions … or even the problems

● I'm one of the worst offenders

● …but I've been thinking about this stuff for a long while!

AI Generated Image (ImageFX)



AI solves 48%+ of HOL/Lean/Isabelle library theorems
 

 

 

 

 

 

 

 



AI can solve competition math problems



Why don't we have AI assistants for real ITP users?

● Yes we have hammers.
● But why don't we have more?
● Why hasn't the feedback to Lean Copilot, LLMLean, Tactician, CoqPilot, etc 

been positive?
● Is it because the technology is not good enough yet?

● Claim: The technology is basically good enough, but we aren't building the 
right sorts of assistants.



The Last Mile

AI Generated Image (ImageFX)



Problems



Parties involved
Users

Novice Expert

Startups

ITP Governing Bodies

AI Labs

Industry Academia
AI Generated Images (ImageFX)



User Stories: Figuring out what users want

● Alex is a new ITP user. He is confused where to start. He is very frustrated 
that he can't even prove that (xy + yz) / y = x + z.  He wants his code editor to 
suggest next steps, and maybe also a built-in chat bot.

● Brenda is an ITP power user.  She can prove 10 lemmas before breakfast, but 
there is so much work to do!  She wants tools to make her 10x more efficient.  
This includes proof automation, but also general purpose coding

● Catherine is working on a long term formalization project.  She wants tools 
which will run overnight on a server, closing simple goals, learning from the 
current code base, and even formalizing parts of her LaTeX blueprint.

● Doug is a mathematician exploring new ideas in his field.  He is formulating 
conjectures that he would love to be able to prove or disprove automatically 
with AI.  He is willing to be a guinea pig, partnering with AI experts.

AI Generated Images (ImageFX)



User experience shouldn't take backdoor to benchmarks

Bad UX (Inconvenience > Benefit)

Researchers open sourced their 
state-of-the-art model and interface 
code.  The installation is a huge pain, 
so much that most never try it.  They 
provide a model to run locally.  It 
heats up the laptop and barely solves 
anything in a minute.  They also 
provide a way to use an LLM API, but 
one can quickly rack up $100 in cost 
in the first day.  No one adopts it.

Good UX (Benefit > Inconvenience)

An ITP ships an AI assistant as part of 
the standard setup of its system.  It is 
easy to setup with good docs and tech 
support.  It's been designed with user 
experience in mind.  It is far from 
state-of-the-art, but it provides good, 
unobtrusive advice when it works.  To 
entice users, there is a free web 
version to try it out, and the ITP power 
users and maintainers advertise it.



Benchmarks are not realistic to user experience

● Test problems often are very similar to training problems
○ Lemma's already worked out
○ Training problem was theorem right before the test problem in the library
○ No new definitions or theorems

● Test problems are competition math
○ Competition math can be gamed to some degree
○ Many examples are translated wrong (making them too easy or too hard)

● Few benchmarks on
○ Auto-formalization
○ Program verification
○ Verified code generation

● Data leakage for LLMs
○ Any benchmark from real-world data is already in the training data of every LLM

● Hard to compare methods
○ Different ITPs
○ Different benchmarks
○ Different computational limits



Lack of Communication

● AI researchers and ITP maintainers don't coordinate enough
○ This leads to reinventing the wheel
○ AI systems can't be incorporated into real world systems
○ AI experiments are done on forked version of the ITP

● Startups and ITP maintainers don't coordinate enough
○ Startups just drop stuff

● Symbolic AI and Neural AI researchers don't coordinate enough
○ AI papers consistently beat Hammers on AI paper benchmarks, but no response from 

Hammer folks
○ No common benchmarks by neural and symbolic AI folks
○ Lean is still investing a lot into building a Hammer

● Almost no one is communicating with users
○ Users should be more involved in making of AI benchmarks
○ User experience should be front and center in design of AI tools



Users don't try tools

● AI tool makes can't get users to try the tools even if they want to
● Many users have a low tolerance for trying experimental tools
● They don't want to

○ try new things
○ sign up for APIs
○ use the command line
○ mess around with lakefiles
○ use WSL in Windows
○ run something overnight to see if it works
○ troubleshoot a bug

● They give up on a tool very quickly



Technical Challenges With Making Real Tools

● How do we keep lemma selection database up-to-date
○ Continual retraining (e.g. in CI)
○ Online updates

● Do I host model locally on machine or in the cloud via an API?
○ API is easier and more powerful, but expensive
○ Local isn't at mercy of developer

● How to make an easy-to-install system?
● How to keep an AI system up-to-date as the library changes?

○ Online learning and/or lemma selection? (Hammer, Tactician, Graph2Tac, Reprover, miniCTX)
○ Continual retraining?

● Incorporate proof search (usually done with tactics) with surrounding code 
(usually done in the editor)



Concrete Proposals for
Lean User Community



For Lean users: Keep track of what you want AI to do

● Obvious theorems or goal states that AI tools can't currently solve but should
● Easy auto-formalizations that AI tools can't do

● Be specific and reproducible (MWEs or Git permalinks)
● Ideally, collect these in a central location to turn into benchmarks



For Lean users: Consider trying out Cursor + Sonnet 3.5

● Pros:
○ Cursor (an IDE) is easy to install (it is a VSCode fork)
○ Sonnet 3.5 (a language model) is a really good code model
○ Sonnet 3.5 has good Lean 4 support

● Cons:
○ Sonnet 3.5 costs money (free first two weeks or so)
○ Cursor is aggressive in automatically editing code

■ e.g. it may change a definition earlier in the file
■ it may introduce bugs in your code
■ Alternately: Continue.dev (VSCode plugin) + Sonnet 3.5 for less aggressive experience

○ Privacy: Your code is shared through an API over the internet
○ Cursor (like other IDEs) is a bit aggressive in trying to be the default editor for your system

● Share your wisdom publicly
○ What works?  What doesn't?
○ Tips and tricks



Start Lean AI tools user group

● Group of Lean users who like experimenting with cutting-edge tech
● Willing to install laptop-based Lean tools and give them a go

○ Lean Copilot, LLMLean, LeanAide, Duper, Improver, and others as they come out
● Willing to try tools in other ITPs

○ Coq/Roqc: Tactician, Graph2Tac, Coq Pilot, CoqHammer
○ Isabelle: Sledgehammer, ???
○ HOL4/HOL-Light: ???

● (Optional) If have a GPU, try tools requiring a GPU
○ ReProver, DeepSeek-Prover, InternLM-Prover, etc.

● Give feedback on setup process
● Experiment creatively (e.g. try running them for hours)
● Give feedback on what works and doesn't
● Write getting-started posts on using the tools
● Willing to try a tool if someone asks "are there any tools which can solve X"?



Install AI tactics in an online web editor

● live.lean-lang.org has pre-installed:
○ Lean, Mathlib, Aesop

● Install AI tools also:
○ Lean Copilot, LLMLean, LeanAide

● For AI tool makers:
○ Make your own web editor fork

with your tool installed

● Issues:
○ $$$
○ Overuse?
○ LLM API keys

https://live.lean-lang.org/


Practical research project: Sorry-filling Server

● Many projects have sorry's in them
● Set up central server (with GPUs) to regularly try to prove sorry
● Have different AI and symbolic models compete

○ Lean Copilot, ReProver, DeepSeek-Prover, InternLM-Prover, Duper etc
● Make automatic PR if sorry is solve (similar to Lean Agent)
● Important statistics to keep track of:

○ Was sorry solved?
○ How long did a prover take to solve?
○ How much did it cost (especially if using LLM API)?
○ Resource usage?  (Memory, threads, GPU utilization, tactics executed, model calls, etc)

● Much easier than have individual user try the tool on his/her laptop
● Both practical and informative
● Scientific questions:

○ What are the best models for Lean sorrys?
○ What if we let provers run longer (like hours)?
○ Does this speed up long projects?  Does this change user workflow?
○ What problems are some models better suited for

● Practical issues:
○ Who pays?  (Grant?  Partnership?  How much would it really cost?)
○ Ways to keep costs down?  (Checkpointing?  Bayesian methods to decide what provers to run longer?)
○ sorry or new version like try-sorry



Things I like



Hammers

● Hammers work in practice!
● Isabelle, Coq, and (soon) Lean have them
● Need engagement between Neural AI and Hammer 

folks
○ Are the current hammer benchmarks good?
○ What do hammer folks think of neural AI tools?

● What has made hammers so successful that other 
AI tools can learn from?



Lemma Selection

● Universal feature
○ Used in hammers
○ Used in retrieval augmented generation

● ITPs need to solve how to do vector lookup of 
premises from the library

○ How to make efficient (speed and memory)
○ How small of embeddings can you have
○ How to precompute embeddings during CI
○ How to bulk compute embeddings for a local project
○ How to compute embeddings on the fly for new theorems
○ Should it be done in pure OCaml/C++/Lean or in a neural 

network?



Magnus Hammer

SledgeHammer

Library Selected
Lemmas

External
ATP

Required
Lemmas

Lemma 
Selection

Reconstruction 
Tactics

Goal

Proof

Magnus Hammer

Library Lemma 
Selection

Reconstruction 
Tactics

Goal

ProofSelected
Lemmas



k-NN (TacticToe, HOList, Tactician)

● Record hand-crafted features for each proofstate-goal paper
● Use k-NN to look up closest proofstates
● Copy those tactics (verbatim)
● Tree search with selected tactics
● (Optional) Use online k-NN to take into account recent information
● (Optional) Use locality sensitive hashing forest to search over all tactics

● Works much better than you think!
● Should be a standard baseline in all AI for TP papers!
● Can be written (mostly) as a pure tactic. 



Lyra, LeanAide, PALM, Cobblestone, etc

● New class of solvers work by
○ calling a LLM to solve a proof or auto-formalization
○ fixing the errors with existing symbolic automation
○ (optionally) rerunning the LLM to solve the existing

● Practical approach which addresses current limitations:
○ Current LLMs are still error prone (and bad at ITP stuff)
○ Current AI assistants (e.g. Github-Copilot, Cursor) don't have access to goal states
○ LLMs are expensive and should only be used when helpful



Code assistants

● We should test and benchmark general purpose coding assistants like we 
do ITP specific tools.

● Do they help with day-to-day tasks?
● What are they good and not good at?
● Where do they fail?
● What community advice do we have for better prompting?



Centralized features like "Try this:" in Lean

● Click on tactic to replace tactic call with code
● User-centric feature
● Common tool available to other tactics
● Used in:

○ Standard Mathlib tactics
○ Aesop
○ Lean Copilot
○ LLMLean



Aesop

● Highly customizable search in Lean
● Available for other AI tools
● Used by Lean Copilot
● Easy to hook up your AI model to a Lean proof search



Some things I like: Moogle.ai


