The Last Mile

How do we make Al theorem provers
which work in the real world for real users
and not just on benchmarks?

Jason Rute
IBM Research / MIT-IBM Watson Al Lab

Al Generated Image (ImageFX)

Disclaimers

e This talk is intentionally provocative
e The opinions are my own, not those of my employer or co-authors
e The ideas are not necessarily novel, and others have said them before

e | could be wrong about the solutions ... or even the problems

e ['m one of the worst offenders

e ...butI've been thinking about this stuff for a long while!

Al solves 48%+ of HOL/Lean/Isabelle library theorems

On_a single CPU. with a time limit

7]
G

Model

4-hop GNN, sub-expression sharing
Graph Representations for HOL

f 60 seconds, TacticToe proves 66.4% (of the
Praved brary, whereas E prover with auto-schedule
49.95% 1 169.0% by combining the results of TacticToe

al Paliwal et al 2019
arxiv Model Proved
Human Explore -
Learning to Reason in Large Theories SR
without Imitation
Bansal et al 2020 Model Proved
arxiv Zero Explore 56.31%
Learning to Reason in Large Theories
formalized M — ' - ' — ~h a neural theorem prover
. roof rate .
driven by aT B:u; 033 : ™) PACT improves theorem
Method random [C°| TF-IDF 31.8 from 32% ta 48%.
: OpenAl embed. (Neelakantan et al., 2022) 36.1
tidy 23.8 Sledgehammer 38.3
GPT-4 20.0 Magnushammer (ours) 59.5
Ref/ jo‘fe‘;r(lo‘jg) Z%’é LISA (Jiang et al., 2021) 33.2
0 © : Thor (Jiang et al., 2022a) 57.0
Thor + Magnushammer (ours) 71.0

can solve competition math problems

65

60

Pass Rate (%)
N w w > = (4]
w [w (=] w (=]

13>}
o

mmm DeepSeek-Prover-V1.5 mmm DeepSeek-Prover-V1
mmm InternLM2-StepProver mmm Hypertree Proof Search

miniF2F-test (fine-tuned)

miniF2F-test (pre-trained)

mm GPT-
mmm ReProver mm Llemma-34B

f m [lemma-7B

Al achieves silver-medal standard
solving International Mathematical
Olympiad problems

25 JULY 2024

AlphaProof and AlphaGeometry teams

< Share

Why don't we have Al assistants for real ITP users?

e Yes we have hammers.

e But why don't we have more?

e \Why hasn't the feedback to Lean Copilot, LLMLean, Tactician, CogPilot, etc
been positive?

e Is it because the technology is not good enough yet?

e Claim: The technology is basically good enough, but we aren't building the
right sorts of assistants.

The Last Mile

Staek Usens

Problems

Parties involved

Users ITP Governing Bodies

Startups
aﬁﬁﬁ'ﬂﬁ‘ffm _‘@
\(: H l] "\‘

Al LABORATIRY —
e CamRATRY STARTTURG

Industry Academia

User Stories: Figuring out what users want

Alex is a new ITP user. He is confused where to start. He is very frustrated
that he can't even prove that (xy + yz) / y = x + z. He wants his code editor to
suggest next steps, and maybe also a built-in chat bot.

Brenda is an ITP power user. She can prove 10 lemmas before breakfast, but
there is so much work to do! She wants tools to make her 10x more efficient.
This includes proof automation, but also general purpose coding

Catherine is working on a long term formalization project. She wants tools
which will run overnight on a server, closing simple goals, learning from the
current code base, and even formalizing parts of her LaTeX blueprint.

Doug is a mathematician exploring new ideas in his field. He is formulating
conjectures that he would love to be able to prove or disprove automatically
with Al. He is willing to be a guinea pig, partnering with Al experts.

User experience shouldn't take backdoor to benchmarks

Bad UX (Inconvenience > Benefit)

Researchers open sourced their
state-of-the-art model and interface
code. The installation is a huge pain,
so much that most never try it. They
provide a model to run locally. It
heats up the laptop and barely solves
anything in a minute. They also
provide a way to use an LLM API, but
one can quickly rack up $100 in cost
in the first day. No one adopts it.

Good UX (Benefit > Inconvenience)

An ITP ships an Al assistant as part of
the standard setup of its system. It is
easy to setup with good docs and tech
support. It's been designed with user
experience in mind. It is far from
state-of-the-art, but it provides good,
unobtrusive advice when it works. To
entice users, there is a free web
version to try it out, and the ITP power
users and maintainers advertise it.

Benchmarks are not realistic to user experience

e Test problems often are very similar to training problems
o Lemma's already worked out
o Training problem was theorem right before the test problem in the library
o No new definitions or theorems
e Test problems are competition math
o Competition math can be gamed to some degree
o Many examples are translated wrong (making them too easy or too hard)
e Few benchmarks on
o Auto-formalization
o Program verification
o \Verified code generation
e Data leakage for LLMs

o Any benchmark from real-world data is already in the training data of every LLM

e Hard to compare methods
o Different ITPs
o Different benchmarks
o Different computational limits

Lack of Communication

e Al researchers and ITP maintainers don't coordinate enough
o This leads to reinventing the wheel
o Al systems can't be incorporated into real world systems
o Al experiments are done on forked version of the ITP
e Startups and ITP maintainers don't coordinate enough
o Startups just drop stuff

e Symbolic Al and Neural Al researchers don't coordinate enough
o Al papers consistently beat Hammers on Al paper benchmarks, but no response from
Hammer folks
o No common benchmarks by neural and symbolic Al folks
o Lean is still investing a lot into building a Hammer

e Almost no one is communicating with users

o Users should be more involved in making of Al benchmarks
o User experience should be front and center in design of Al tools

Users don't try tools

e Al tool makes can't get users to try the tools even if they want to
e Many users have a low tolerance for trying experimental tools

e They don't want to
o try new things
sign up for APls
use the command line
mess around with lakefiles
use WSL in Windows
run something overnight to see if it works
o troubleshoot a bug

e They give up on a tool very quickly

o O O O O

Technical Challenges With Making Real Tools

e How do we keep lemma selection database up-to-date

o Continual retraining (e.g. in CI)
o Online updates

e Do I host model locally on machine or in the cloud via an API?

o APl is easier and more powerful, but expensive
o Local isn't at mercy of developer

e How to make an easy-to-install system?
e How to keep an Al system up-to-date as the library changes?

o Online learning and/or lemma selection? (Hammer, Tactician, Graph2Tac, Reprover, miniCTX)
o Continual retraining?

e Incorporate proof search (usually done with tactics) with surrounding code
(usually done in the editor)

Concrete Proposals for
Lean User Community

For Lean users: Keep track of what you want Al to do

e Obvious theorems or goal states that Al tools can't currently solve but should
e Easy auto-formalizations that Al tools can't do

e Be specific and reproducible (MWEs or Git permalinks)
e Ideally, collect these in a central location to turn into benchmarks

For Lean users: Consider trying out Cursor + Sonnet 3.5

e Pros: 1 »

o Cursor (an IDE) is easy to install (it is a VSCode fork)
o Sonnet 3.5 (a language model) is a really good code model
o Sonnet 3.5 has good Lean 4 support

e Cons:
o Sonnet 3.5 costs money (free first two weeks or so)
o Cursor is aggressive in automatically editing code
m e.g. it may change a definition earlier in the file
m it may introduce bugs in your code
m Alternately: Continue.dev (VSCode plugin) + Sonnet 3.5 for less aggressive experience
o Privacy: Your code is shared through an APl over the internet
o Cursor (like other IDEs) is a bit aggressive in trying to be the default editor for your system

e Share your wisdom publicly

o What works? What doesn't?
o Tips and tricks

Start Lean Al tools user group

Group of Lean users who like experimenting with cutting-edge tech

e Willing to install laptop-based Lean tools and give them a go
o Lean Copilot, LLMLean, LeanAide, Duper, Improver, and others as they come out

e Willing to try tools in other ITPs
o Cog/Rogc: Tactician, Graph2Tac, Coq Pilot, CogHammer

o Isabelle: Sledgehammer, ?7?7?
o HOL4/HOL-Light: ???

e (Optional) If have a GPU, try tools requiring a GPU

o ReProver, DeepSeek-Prover, InternLM-Prover, etc.
Give feedback on setup process
Experiment creatively (e.g. try running them for hours)
Give feedback on what works and doesn't
Write getting-started posts on using the tools
Willing to try a tool if someone asks "are there any tools which can solve X"?

Install Al tactics in an online web editor

live.lean-lang.org has pre-installed:

o Lean, Mathlib, Aesop
Install Al tools also:

o Lean Copilot, LLMLean, LeanAide
For Al tool makers:

o Make your own web editor fork
with your tool installed

Issues:
o $3%%

o Overuse?
o LLMAPI keys

[AvIN

| Latest Mathlib

V)

1 import Mathlib

2 import Aesop

3

4 example : 1 + 1 = 2 :=
5| aesop

¥ mathlib-demo.lean:5:2
¥ Tactic state

1goal
F1+1=2

» All Messages (0)

by

<> Text =

Restart File

https://live.lean-lang.org/

Practical research project: Sorry-filling Server

e Many projects have sorry's in them
Set up central server (with GPUs) to regularly try to prove sorry

e Have different Al and symbolic models compete
o Lean Copilot, ReProver, DeepSeek-Prover, InternLM-Prover, Duper etc

e Make automatic PR if sorry is solve (similar to Lean Agent)

e Important statistics to keep track of:
o Was sorry solved?
o How long did a prover take to solve?
o How much did it cost (especially if using LLM API)?
o Resource usage? (Memory, threads, GPU utilization, tactics executed, model calls, etc)

e Much easier than have individual user try the tool on his/her laptop
Both practical and informative

e Scientific questions:
o What are the best models for Lean sorrys?
o What if we let provers run longer (like hours)?
o Does this speed up long projects? Does this change user workflow?
o What problems are some models better suited for
e Practical issues:
o Who pays? (Grant? Partnership? How much would it really cost?)
o Ways to keep costs down? (Checkpointing? Bayesian methods to decide what provers to run longer?)
o sorry or new version like try-sorry

Things | like

Hammers

e Hammers work in practice!

e |sabelle, Coq, and (soon) Lean have them

e Need engagement between Neural Al and Hammer
folks

o Are the current hammer benchmarks good?
o What do hammer folks think of neural Al tools?

e \What has made hammers so successful that other
Al tools can learn from?

Lemma Selection

e Universal feature

(@)

(@)

Used in hammers
Used in retrieval augmented generation

e |TPs need to solve how to do vector lookup of
premises from the library

(@)

o O O O O

How to make efficient (speed and memory)

How small of embeddings can you have

How to precompute embeddings during CI

How to bulk compute embeddings for a local project

How to compute embeddings on the fly for new theorems
Should it be done in pure OCaml/C++/Lean or in a neural
network?

MAGNUSHAMMER: A TRANSFORMER-BASED

APPROACH TO PREMISE SELECTION

Maciej Mikuta* Szymon Tworkowski* Szymon Antoniak*
Magnus Hammer e el Wl
Bartosz Piotrowski ~ Albert Qiaochu Jiang Jin Peng Zhou Christian Szegedy
GO al IDEAS NCBR University of Cambridge Cornell Universityi
SledgeHammer e R bk
Libra Lemma Selected | External | Required Reconstruction | Proof
ry Selection Lemmas ATP Lemmas Tactics
Magnus Hammer/ Goal —
Library Lemma Selected Reconstruction Proof
Selection Lemmas o . Tactics
b 4
~ 50 xa""x’x
§ 40 xa\"x
j‘; 30 | % L A A
£ 20 i;)Ll““LA
» & Eldgbammar
10 ™ ; BM25

0 100 200 300 400 500 600 700 800
Compute Budget

K-NN (TacticToe, HOList, Tactician)

Record hand-crafted features for each proofstate-goal paper

Use k-NN to look up closest proofstates

Copy those tactics (verbatim)

Tree search with selected tactics

(Optional) Use online k-NN to take into account recent information
(Optional) Use locality sensitive hashing forest to search over all tactics

Works much better than you think!
e Should be a standard baseline in all Al for TP papers!
Can be written (mostly) as a pure tactic.

Lyra, LeanAide, PALM, Cobblestone, etc

e New class of solvers work by
o calling a LLM to solve a proof or auto-formalization
o fixing the errors with existing symbolic automation
o (optionally) rerunning the LLM to solve the existing

e Practical approach which addresses current limitations:
o Current LLMs are still error prone (and bad at ITP stuff)
o Current Al assistants (e.g. Github-Copilot, Cursor) don't have access to goal states
o LLMs are expensive and should only be used when helpful

Code assistants

e We should test and benchmark general purpose coding assistants like we
do ITP specific tools.

Do they help with day-to-day tasks?

What are they good and not good at?

Where do they fail?

What community advice do we have for better prompting?

Centralized features like "Try this:" in Lean

e Click on tactic to replace tactic call with code
e User-centric feature
e Common tool available to other tactics
e Usedin: : Injective f
. . R R (PRGN T
o Standard Mathlib tactics
o Aesop v LLMLean suggestions
o Lean Copilot Try this:
o LLMLean e

Aesop

Highly customizable search in Lean

Available for other Al tools

Used by Lean Copilot

Easy to hook up your Al model to a Lean proof search

Some things I like: Moogle.ali

Moogle

the measure of the union of two disjoint sets is the

sum of their measures

MeasureTheory.measure_union

theorem MeasureTheory.measure_union {a : Type u_1} {m :
: Set a} (hd :

{u : MeasureTheory.Measure a} {s1 : Set a} {sz
(h : MeasurableSet s2) :
tt (S1 U S2) = Tt S1 + t1U S2

» Source Code

Mathlib/MeasureTheory/Measure/MeasureSpace.lean @

MeasureTheory.measure_union'

theorem MeasureTheory.measure_union' {a : Type u_1} {m

{u : MeasureTheory.Measure a} {si1 : Set a} {sz :

(h : MeasurableSet si) :
tth (S1 U s2) = 114 S1 + t1U S2

» Source Code

Mathlib/MeasureTheory/Measure/MeasureSpace.lean &

MeasurableSpace a}

Disjoint si s2)

! MeasurableSpace a}

Set a} (hd : Disjoint si s2)

LeanSearch

Find theorems in Mathlib4 using natural la

(®]V[=1a" Name or description of the theorem or definition you are looking for

nguage query

The measure the the union of two disjoint sets is the sum of their measures.

]

Clear Query Augmentation

Tip: Query Augmentation augments your query to increase the chance to find relevant results.

MeasureTheory.measure_union

V {a : Type u_1} {m : MeasurableSpace a} {u :
MeasureTheory.Measure a} {s: s, : Set a}, Disjoint si sz
> MeasurableSet sz » ™y (s1 U S2) = T S1 + ™Y S2

MeasureTheory.measure_union'

V {oa : Type u_1} {m : MeasurableSpace a} {u :
MeasureTheory.Measure a} {si s, : Set a}, Disjoint si sz
> MeasurableSet si » ™y (S1 U S2) = ™M S1 + T S2

theo rem

» Measure of Union in Disjoint
Measurable Sets

theo rem

» Measure of Union in Disjoint
Measurable Sets

