
Chapter 1

A section from Eric Wieser’s
thesis, for Zulip

1.1 Scalar actions

Scalar actions (a generalization of group actions) are ubiquitous in mathematics, usually appear-
ing under the guise of multiplication; we write x+yi when x, y : R but i : C, or xi+yj+zk to scale
unit vectors i, j, k : R3 by coefficients x, y, z : R, or qvq−1 to apply a transformation represented
by a quaternion q : H to a vector v : R3. Very few programming languages support implicit
multiplication-by-juxtaposition like this, but many allow this kind of expression to be written
using the regular multiplication operator, *. In programming languages for scientific computing
like python or Julia, scalar actions fall out as a special case of “broadcasting”[1, fig. 1e], and
can be written with the regular multiplication operators. Sadly, lean does not even provide the
luxury of using the regular multiplication with the * operator, as this requires the two inputs
and the output to all be of the same type1.

mathlib’s solution to these difficulties is to define a new scalar multiplication operator •. In
this section we explore through examples how Lean’s typeclasses are used to implement a flexible
range of scalar actions, illustrate some of the problems which come up when using them such
as compatibility of actions and non-definitionally-equal diamonds, and note how these problems
can be solved. This section is a significantly extended version2 of [2], notably including more
recent work on right actions in section 1.1.7.

1While this restriction was lifted in Lean 4, it was preserved in mathlib, and as described in section 1.1.8,
simply opens a door to more problems.

2The original had a very short page limit.
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1.1.1 Basic typeclasses

The typeclass we are most interested in this section is has_smul M α, which equips a type α

with an action by elements of M denoted m • a. Here, smul stands for scalar multiplication. In
practice, this is almost always used for monoid or group actions, which are actions that satisfies
the additional fields in mul_action M α:
class has_smul (M : Type*) (α : Type*) := (smul : M → α → α)

infixr ` • `:73 := has_smul.smul

class mul_action (M : Type*) (α : Type*) [monoid M] extends has_smul M α :=

(one_smul : ∀ a : α, (1 : M) • a = a)

(mul_smul : ∀ (x y : M) (a : α), (x * y) • a = x • y • a)

Note here that because we use [monoid M] instead of extends monoid M, we are stating that
mul_action M α requires M to already be equipped with a monoid structure, rather than allowing
mul_action M α to itself provide that structure.

mathlib extends these two typeclasses with a variety of additional axioms (i.e., fields holding
proofs) for when M and α are themselves equipped with extra structures, such as distributivity
over addition and actions by zero. Figure 1.1a shows the majority of these typeclasses, while
details of their fields can be found either in [3, section 5.1] or in the mathlib docs.

1.1.2 Elementary actions

Scalar actions can be roughly divided into two types: elementary actions which are intrinsic to
a particular family of types, and derived actions which operate elementwise on “bigger” types
built out of smaller types. We will start by giving some examples of the former.

Left multiplication

One of the simplest actions we can construct is that of left-multiplication, with a • b = a * b,
which mathlib provides as follows.

instance has_mul.to_has_smul (α : Type*) [has_mul α] : has_smul α α := { smul := (*) }

As the properties of the multiplication on α becomes stronger, so do those of this scalar action
on α; for instance when we have monoid α we can deduce mul_action α α, and when we have
semiring α we can deduce module α α. Figure 1.1b shows these available left multiplication
structures, and the corresponding links with fig. 1.1a are shown with grey arrows.

Repeated addition and subtraction

Another simple action we can construct is that of repeated addition (an instance of module N α)
when α is a commutative additive monoid, which can be defined recursively for a natural number
as (0 : N) • x = 0 and ∀ n : N, (n + 1) • x = n • x + x. A similar approach can be used to
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(a) Scalar action typeclasses (b) Multiplicative typeclasses

Figure 1.1: Hierarchy of scalar action and multiplicative typeclasses
Arrows indicate implications. Grey arrows indicate implied left-multiplication actions.

define a module ℤ α instance when α additionally forms an additive group. These are respectively
promoted to algebra N α and algebra ℤ α structures when α forms a semiring or ring.

Application of endomorphisms and automorphisms

If we have an endomorphism or automorphism f : E (a structure-preserving map or equivalence,
respectively, from α to itself), then we can obtain a mul_action E α instance characterized by f •

x = f x; that is, the action is just function application. Depending on the endomorphism/auto-
morphism in question, this mul_action instance can be promoted to a stronger type: for instance,
if it is an endomorphism of additive monoids, then this action can be promoted to module (add_ c

monoid.End α) α [mathlib4#8395]; if it is an automorphism of R-algebras, then this action can be
promoted to mul_semiring_action (A ≃ₐ[R] A) A [mathlib#8724]. In Lean, this latter instance
is defined as follows, where ($) is the function application operator.

instance alg_equiv.apply_mul_semiring_action : mul_semiring_action (A₁ ≃ₐ[R] A₁) A₁ :=

{ smul := ($),

smul_one := alg_equiv.map_one, smul_mul := alg_equiv.map_mul,

smul_zero := alg_equiv.map_zero, smul_add := alg_equiv.map_add,

one_smul := λ _, rfl, mul_smul := λ _ _ _, rfl }

Further instances were added to mathlib in [mathlib4#8396].
These actions act as important glue between the typeclass approach of formalizing actions we

focus on in this section, and an alternate morphism-based approach. These two approaches are
shown in the columns of table 1.1. The typeclass approach is great for when a canonical action
is available; but when multiple possible actions are available, such as in representation theory,
the morphism approach is more predictable. To go to an entry in the right column from a term f

whose type is in the left column, we can build the action characterized by m • x = f m • x, where
the second • is the action induced from morphism application we just described. These “actions
after composing a function” are generated from the family of comp_hom definitions in the center
column. The rightwards arrows in table 1.1 show the more direct definitions [mathlib#8968] that
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Typeclass Morphism

mul_action M α
mul_actionn−−−−−−⇀↽−−−−−−
mul_actionn

M →* function.End α

distrib_mul_action M A
distrib_mul_actionn−−−−−−−−−−−⇀↽−−−−−−−−−−−
distrib_mul_actionn

M →* add_monoid.End A

mul_distrib_mul_action M A
mul_distrib_mul_actionn−−−−−−−−−−−−−−⇀↽−−−−−−−−−−−−−−
mul_distrib_mul_actionn

M →* monoid.End A

module R M
modulen−−−−⇀↽−−−−
modulen

R →+* add_monoid.End M

mul_semiring_action R S
mul_semiring_actionn−−−−−−−−−−−−⇀↽−−−−−−−−−−−−
mul_semiring_actionn

R →* (S →+* S)

Table 1.1: Morphism- vs typeclass-based representations of actions in mathlib, and translations
between them.
Note the composition implied by the comp_hom name is referring to composition with the
endomorphism action in section 1.1.2. For the rightwards arrows, a similar family of maps
is available for the automorphisms.

exist to go in the reverse direction.

1.1.3 Derived actions

A typical example of a module action might be that of a scalar R on the vector space R3 (fin
3 → ℝ), which multiplies each component separately. After making the obvious generalization to
an arbitrary type α and index set ι, the easy way to write this down would be as follows, where
again we can provide a stronger module α (ι → α) if we know α forms a semiring.

instance function.has_smul (ι α : Type*) [has_mul α] : has_smul α (ι → α) :=

{ smul := λ r v, (λ i, r * v i) }

This definition is perfectly fine for the action we wanted, but we can still generalize it much
more. Consider now the action on matrices3 ι₁ → ι₂ → R by their coefficients R. We would like
to show has_smul R (ι₁ → ι₂ → R), but that doesn’t match the function.has_smul instance we
just defined. While we could obviously define this operation trivially just as we did there, we
would have to do so again if working with a vector of matrices or similar; this approach doesn’t
scale. Instead, we should be deriving an action of an arbitrary type M on ι → α from its action
on α, such that this exploits the chaining that occurs during typeclass search.

Function types, through their codomain

mathlib defines such a derived action on function types as follows:

instance function.has_smul' (ι M α : Type*) [has_smul M α] : has_smul M (ι → α) :=

{ smul := λ r v, (λ i, r • v i) }

3though not quite mathlib’s spelling of them.
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This instance is strictly more general than the previous one—typeclass search will recover our
original has_smul α (ι → α) instance by setting M := α and finding has_smul α α from has_mul c

.to_has_smul, but can also find the has_smul R (ι₁ → ι₂ → R) we wanted by setting M := R and
α = (ι₂ → R), and finding has_smul R (ι₂ → α) by recursive application of this instance.

This action propagates the axioms of the original action of M on α; we can show that if we
additionally have [module M α], then our action above satisfies module M (ι → α), and similarly
for all the other typeclasses in fig. 1.1a.

Sets, through their elements

On sets, mathlib defines a derived action via the action on the elements [mathlib#997], as

instance has_smul_set [has_smul α β] : has_smul α (set β) :=

{ smul := λ a s, (λ b, a • b) '' s }

Which satisfies a • {x, y} = {a • x, a • y}. Once again, the axioms of the original action are
propagated; though to a much lesser extent, as 0 • s = 0 (where 0 on the RHS is the set {0})
does not hold if s is the empty set. An analogous construction exists for finsets [mathlib#12865].

For historical reasons, these instance are not globally available by default; they must be
requested locally using open_locale pointwise.

Morphisms of additive groups, through their codomain

For functions in section 1.1.3 and sets in section 1.1.3, the action we describe contains no proof
obligations—we did not need to know any properties of [has_smul M α] to define has_smul M

(ι → α). This is not always the case; we cannot conclude has_smul R (M →+ N) from [has_smul

R N] as we don’t know enough about the action of R on N to know if additive maps remain
additive. Moving away from the root node in fig. 1.1a towards stronger typeclasses is usually
enough to resolve this—in this particular case, we can conclude distrib_mul_action R (M →+ N)

from [distrib_mul_action R N] [mathlib#6891].

Polynomials, through their coefficients

Another simple example of a derived action is that polynomials R[X] (polynomial R or R[X])
inherit an action by a type S when S acts upon their coefficients. This is a stronger statement
than has_smul R R[X] (that polynomials are acted upon by their coefficients), as it generalizes in
the same way as the instance we saw in section 1.1.3 to allow R to act on R[X][X] (a polynomial
in two variables). Until [mathlib#4784], only this weaker statement was available.

As with the action on additive morphisms in section 1.1.3, we cannot directly conclude has_ c

smul S R[X] from has_smul S R, this time because if we had our action on the coefficients satisfy 1

• (0 : R) = 1, then we would end up with 1 • (0 : R[X]) = 1 + X + X^2 + ⋯ which has infinite
support and thus is not a polynomial at all! Once again, we can instead start at a stronger
typeclass in fig. 1.1a and provide the typeclass instance showing that distrib_mul_action S R
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implies distrib_mul_action s R[X] [mathlib#7664], as distrib_mul_action provides the crucial
proof that 1 • (0 : R) = 0 and ensures that the scaled polynomial is well formed. This instance
solves the has_smul R R[X][X] case by having us search for distrib_mul_action R R[X] and then
distrib_mul_action R R before finally finishing the search at the instance in section 1.1.2.

Polynomials in mathlib are at the end of a chain of simpler constructions; they are defined as
the special case of a “monoid algebra” whose generators are the natural numbers corresponding
to the powers of X. A monoid algebras is in turn defined as a “finitely supported function”
representing its coefficients; functions which are zero at all but finitely-many points. Before the
upgraded has_smul instance could be put on polynomials [mathlib#4784], the author had to
first upgrade a corresponding instance on monoid algebras [mathlib#4365], which in turn relied
on an earlier upgrade to the instance on finitely supported functions [mathlib#284]; a sequence
spanning over two years!

Multivariate polynomials are treated separately in mathlib, but the handling of scalar ac-
tions largely mirrors the univariate case; this time, it was the author’s turn to perform the
generalization from has_smul R R[X] to has_smul S R[X], in [mathlib#6533].

Interactions with other actions

The strategy used for additive maps in section 1.1.3 of choosing stronger typeclasses from fig. 1.1a
can only take us so far. Once we start working with types that themselves ingrain a preferred
action, we need some additional tools. For instance, the closely related types for R-linear maps
M →ₗ[R] N and R-submodules submodule R N ingrain a preferred R-action. For the first of these
cases, we can start by attempting to build a general action by an arbitrary type α. If we do this
we find ourselves left with two proof obligations, indicated by the show ..., from syntax.

instance {α R M N : Type*}

[semiring R] [add_comm_monoid M] [add_comm_monoid N] [has_smul α N] [module R M] [module R N] :

has_smul α (M →ₗ[R] N) :=

{ smul := λ a f, { to_fun := λ m, a • f m,

map_add' := λ m₁ m₂, (congr_arg _ $ f.map_add _ _).trans $

show a • (f m₁ + f m₂) = a • f m₁ + a • f m₂, from sorry,

map_smul' := λ r m, (congr_arg _ $ f.map_smul _ _).trans $

show a • r • f m = r • a • f m, from sorry } }

The goal in map_add' tells us we need to strengthen [has_smul α N] to [monoid α] [distrib_ c

mul_action α N], just as we already would have done when building the instance in section 1.1.3.
The goal in map_smul' is more troublesome. The easy way out is to replace α with a commu-

tative R so that our statement becomes
instance {α M N : Type*} [comm_semiring R] [add_comm_monoid M] [add_comm_monoid N] [module R M] [module R

N] :↪→

has_smul R (M →ₗ[R] N) :=

and the sorry can be closed with a • r • f m = (a * r) • f m = (r * a) • f m = r • a • f m

which follows from the axioms of mul_action and commutativity of R. Another approach would



CHAPTER 1. A SECTION FROM ERIC WIESER’S THESIS, FOR ZULIP 7

be to require R to be an α-algebra with [algebra α R], and that the α-action on R and N is
compatible with the R-action on N.

To best solve this problem, mathlib provides two additional typeclasses about scalar actions.
The first expresses the compatibility condition we would need to use [algebra α R] as mentioned
above, as

class is_scalar_tower (M N α : Type*) [has_smul M N] [has_smul N α] [has_smul M α] : Prop :=

(smul_assoc : ∀ (x : M) (y : N) (z : α), (x • y) • z = x • (y • z))

The name alludes to towers of algebras, which is described in more detail in [4, Section 4.2]. Our
particular problem can be solved more directly with the second typeclass, [smul_comm_class α R

N], which expresses exactly the condition we require:

class smul_comm_class (M N α : Type*) [has_smul M α] [has_smul N α] : Prop :=

(smul_comm : ∀ (m : M) (n : N) (a : α), m • n • a = n • m • a)

After this typeclass was introduced in [mathlib#4770], the author contributed and drove the
review of a large number of instances of it [mathlib#6534; mathlib#6614; mathlib#8965; math-
lib#15876; mathlib#10262], most notably those for polynomials [mathlib#6542; mathlib#6592],
product types [mathlib#6139], and the repeated addition actions in section 1.1.2 [mathlib#5205;
mathlib#5369; mathlib#5509; mathlib#13174].

1.1.4 Algebras and not-quite algebras

The mathlib algebra R A describes an associative unital R-algebra over A given a comm_semiring

R and semiring A. The definition is roughly

class algebra (R A : Type*) [comm_semiring R] [semiring A] extends has_smul R A :=

(algebra_map : R →+* A)

(commutes : ∀ r x, algebra_map r * x = x * algebra_map r)

(smul_def : ∀ r x, r • x = algebra_map r * x)

which states that there is a canonical ring homomorphism from R to A which agrees with • and
sends R to the center of A. This parameterization of the axioms is difficult to generalize to A being
a nonunital and non-associative ring. However, mathlib also provides a definition to construct an
algebra from an alternate set of axioms:

def algebra.of_module (R A : Type*) [comm_semiring R] [semiring A] [module R A]

(h₁ : ∀ (r : R) (x y : A), (r • x) * y = r • (x * y))

(h₂ : ∀ (r : R) (x y : A), x * (r • y) = r • (x * y)) : algebra R A := sorry

If we look carefully, we note that h₁ and h₂ closely resemble smul_assoc and smul_comm from
section 1.1.3, but with some *s substituted for •s. But if we look back to section 1.1.2, we
remember that when x and y are the same type, x * y = x • y by definition! This means that h₁
and h₂ correspond directly with is_scalar_tower R A A and smul_comm_class R A A, respectively.

This is a valuable insight, because it allows us to use the follow sequences of typeclass argu-
ments interchangeably:
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variables [comm_semiring R] [semiring A] [algebra R A]

variables [comm_semiring R] [semiring A] [module R A] [is_scalar_tower R A A] [smul_comm_class R A A]

Knowing this, it becomes immediately obvious how to generalize various statements to non-
unital algebras (which were needed in [mathlib#7932]); we switch from from the first form to
the second form, and then replace [semiring A] with [non_unital_semiring A], something which
was not permitted on the unexpanded version. Another generalization this permits is one that
allows putting “most of” an R'-algebra structure on A when R' is only a monoid, which comes
up for instance when R' := units R. In this case, we replace [comm_semiring R] [semiring A]

[module R A] with [monoid R] [semiring A] [distrib_mul_action R A]. This generalization was
used when proving intermediate results needed for Sylvester’s law of inertia [mathlib#7416].

1.1.5 Typeclass diamonds

Frequently, there are multiple ways for Lean to construct a typeclass. One example arises when
considering how the ring of module endomorphisms, M →ₗ[R] M with * as composition, acts on
itself; module (M →ₗ[R] M) (M →ₗ[R] M). There are two routes to find this instance, as shown
in fig. 1.2; we call this situation a “typeclass diamond”, in light of the shape of the figure4.
Once route is to use the action from section 1.1.2, where • is just defined as *; this gives an
action characterized by (f • g) x = (f * g) x = f (g x). The other route is to combine the
codomain-wise action from section 1.1.3 with the endomorphism action from section 1.1.2; this
gives an action characterized by (f • g) x = f • g x = f (g x). Depending on the order of the
search, Lean could take either of these two paths; though as the result is the same (the paths
“commute”), we do not care here.

Non-commuting diamonds

While Lean does not care about the existence of multiple paths and will happily just pick one,
for the typeclass to be useful it needs to be predictable to the user—all they see is a • in the goal

4Although in fact not all such situations actually resemble diamonds!

(f • g) x

(f * g) xf • g x

f (g x)

semiring.to_module : module (M →ₗ[R] M) (M →ₗ[R] M)linear_map.module : module M (M →ₗ[R] M)

module.End.semiring : semiring (M →ₗ[R] M)module.End.apply_mul_action : module (M →ₗ[R] M) M

Figure 1.2: A commuting diamond in typeclass search
Here the nodes show the expression, while the edges represent using a certain instance to
populate the • or *, and point towards the definition implied by that instance.
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(f • g) i j

(f i • g i) j

f i • g i j

(f • g i) j

f j • g i j

.has_smul'' : has_smul (ι → M) (ι → ι → α).has_smul' : has_smul (ι → M) (ι → ι → α)

.has_smul' : has_smul M (ι → M)

.has_smul'' : has_smul (ι → M) (ι → α)

Figure 1.3: A non-commuting diamond in typeclass search

state. This means that whenever we have a diamond, we want all the paths to produce the same
• such that the actual path taken does not matter. In this section, we shall give an example of
an instance that violates this rule.

mathlib contains the following variant of the function.has_smul' that we saw earlier, which
applies scalar multiplication pointwise between two families (or vectors) of elements5.

instance function.has_smul'' (ι M α : Type*) [has_smul M α] : has_smul (ι → M) (ι → α) :=

{ smul := λ r v, (λ i, r i • v i) }

Mathematically this is a very reasonable operation, but in the context of typeclass diamonds we
shall see it is not. In particular, consider a typeclass search for has_smul (ι → M) (ι → ι → α) in
the presence of has_smul M α, as shown in fig. 1.3. Here, we find that one path gives (f • g) i

j = f i • g i j, while the other gives (f • g) i j = f j • g i j, where the argument to f is
different. We say these paths are not “propositionally equal” (as it can be proved in most cases6

that they do not agree), and call this instance diamond “non-commuting”.

Definitional equality

There is a reason that section 1.1.5 specifically refers to issues with propositional equality in
typeclass resolution; dependent type theory leaves us with another important kind of equality,
definitional equality, which holds only if things are true by construction.

The following example, which shows that a family of additive maps are a module under scaling
by natural numbers, is vulnerable to issues around definitional equality.

example {ι A B} [add_comm_monoid A] [add_comm_monoid B] : module N (ι → A →+ B) := by apply_instance

The possible typeclass-resolution paths available are shown in fig. 1.4.
From the viewpoint of propositional equality, we are safe from non-commuting paths; it can

be proven that ∀ (M : Type*) [add_comm_monoid M], subsingleton (module N M) (that is that
all N-module structures are equal), and thus we can conclude the paths must be equal from the
type of their endpoint alone. To a user of Lean, this means that they can be confident that the
• carries the right mathematical meaning.

5In some sense, providing a one-sided “broadcasting” multiplication like that found in [1]; though only for when
the right array has more dimensions than the left.

6The exception being when subsingleton ι (i.e. when there is only a single inhabitant of ι, and so i = j) or
similar!



CHAPTER 1. A SECTION FROM ERIC WIESER’S THESIS, FOR ZULIP 10

add_comm_monoid Badd_comm_monoid (A →+ B)add_comm_monoid (ι → A →+ B)

module N Bmodule N (A →+ B)module N (ι → A →+ B)

Figure 1.4: Compounding diamonds in typeclass search
Three possible paths to resolve module N (ι → A →+ B), with arrows showing implications.
Diamonds are created by the choice between inheriting a module structure (horizontal
edges), or deriving it from the additive structure (vertical edges).

When it comes to applying lemmas about •, it is not sufficient that • carry the right math-
ematical meaning; the • in the lemma statement needs to unify with the • in the target. In
practice, this means that the instances found for each need to be definitionally equal, otherwise
users are left with baffling error messages about how n • x does not match n • x.

In older versions of mathlib, the paths taken around the diamonds in fig. 1.4 resulted in
instances that were propositionally equal, but not definitionally equal, as shown in fig. 1.5. The
underlying reason was that the recursor @nat.rec for natural numbers (which underpins the ^[n]

notation in fig. 1.5) does not commute definitionally with lambda introduction λ a,; that is, the
following example fails:

example {α β} (f₀ : α → β) (f : α → N → β → β) (n : N) :

@nat.rec (λ n, α → β) (λ a, f₀ a) (λ n ih a, f a n (ih a)) n =

λ a, @nat.rec (λ n, β) (f₀ a) (λ n ih, f a n ih) n :=

rfl

This meant that lemmas about the natural N-action (blue path, fig. 1.4) such as ∑ x in s, c

= s.card • c would fail to match goals containing a derived N-action (green and red paths,
fig. 1.4). This was fixed in [mathlib#7084] by requiring the definition of add_comm_monoid M to
include an implementation of the N-module structure; namely, a new nsmul field, and a proof
that it coincides propositionally with the naïve recursive implementation.

While mathematically it is bizarre to say “a commutative additive monoid has a zero, addition,
and a scalar-multiplication by naturals, such that …”, in Lean this is crucial to allow manual
control of definitional equality such that the green and blue paths in fig. 1.4 can be made
definitionally equal to the red path. This is analogous to the situation described in [3, section 4.1]
for topologies associated with metric spaces, and follows the “forgetful inheritance” pattern
described in [5]. Further discussion of this nsmul field can be found in [6, §7].

A similar place in which this comes up is when constructing algebra N S, algebra ℤ R,
and algebra ℚ K instances for a semiring, ring, or characteristic-zero division ring, respectively.
In each case, the type of the instance is a subsingleton and so instance paths can be seen
trivially to commute propositionally. The danger arises when constructing the algebra_map

fields; the “obvious” way is to do so recursively, by recursing structurally on n : N/z : ℤ/q :

ℚ and setting algebra_map _ _ (n + 1) = algebra_map _ _ n + 1, etc. This approach not only
fails on a very similar example to fig. 1.4, but also fails in the case when S = N/R = ℤ/K =
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n • f i a(n • f i) a(n • f) i a

(λ x, x + f i a)^[n] 0

(λ x, λ a, x a + f i a)^[n] 0 a

(λ x, λ i a, x i a + f i a)^[n] 0 i a

(λ x, x + f i)^[n] 0 a

(λ x, λ i, x i + f i)^[n] 0 i a(λ x, x + f)^[n] 0 i a

Figure 1.5: Non-commuting diamonds in repeated addition actions
Prior to [mathlib#7084], the expressions shown here are the ones found through the paths
in fig. 1.4, where the g^[n] x operation is iterated function application, g^[2] x = g (g x).
The arrows mean “unfolds to” as they did in figs. 1.2 and 1.3.

ℚ, as the identity function is certainly not equal by definition to such a recursive scheme. The
solution in [mathlib#12182; mathlib#14894] was also similar; adding of_nat/of_int/of_rat field
to the semiring/ring/division_ring typeclasses7 and proof fields demonstrating that they are
well-behaved.

This is not the last time we shall have to concern ourselves with definitional equality; we shall
see the relevance of it again in ????.

1.1.6 Conjugation, via type synonyms

While section 1.1.5 gives some more involved examples of how derived actions can induce con-
flicting definitions, we can obtain conflicting actions much more simply. Consider for instance
the ways in which a group can act on itself: both g · h = gh and g · h = ghg−1 are reasonable
actions, but we clearly can’t use the same notation for both without causing confusion8, and so
only the former (section 1.1.2) gets the privilege of the has_smul G G typeclass.

This is of no help to us if we really want to work with the latter conjugation action. In some
cases we can avoid this by working with mul_distrib_mul_action G H for arbitrary groups G and
H instead, which is a more abstract representation of actions (like conjugation) which distribute
over multiplication. Even then, this abstraction only postpones the inevitable; it cannot be
specialized to the concrete case of g · h = ghg−1 until we solve the original issue.

The solution used by mathlib is that of “type synonyms”, which can be written as either of
the following forms

7Or rather, suitable ancestors of these classes, for reasons related to non-associative algebras
8Lean may be happy for us to overload the notation in this way, but the humans writing proofs who see this

notation in their goal are unlikely to be!
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-- nominal types

@[deriving group]

def conj_act (G : Type*) : Type* := G

def of_conj_act : conj_act G ≃* G :=

mul_equiv.refl _

def to_conj_act : G ≃* conj_act G :=

of_conj_act.symm

-- one-field structures

structure conj_act (G : Type*) : Type* :=

to_conj_act :: (of_conj_act : G)

instance [has_mul G] : has_mul (conj_act G) :=

{ mul := λ g h, to_conj_act (g.of_conj_act * h.of_conj_act) }

instance [Group G] : group (conj_act G) :=

function.injective.group to_conj_act

sorry sorry sorry sorry sorry sorry sorry

where in both cases, we define a new type conj_act G which is a copy of G with the same group
structure, and a pair of functions to_conj_act and of_conj_act to translate from G to conj_act

G and back. The trade-offs between the two approaches are not particularly relevant to this
section9, and in this particular case mathlib opts for the left approach.

So far, the type synonym has achieved nothing; it behaves in exactly the same way as G! To
give it purpose, we give it a special action on G that is the conjugation action

instance : has_smul (conj_act G) G :=

{ smul := λ cg h, of_conj_act cg * h * (of_conj_act cg)⁻¹ }

where we convert from conj_act G back to G before implementing the expected expression. This
allows us to write the conjugation of g on h as to_conj_act g • h, and prove the various axioms
of the stronger typeclasses in fig. 1.1a. The synonym is placed on the type doing the acting
(has_smul (conj_act G) G) rather than the type being acted upon (has_smul G (conj_act G))
as this permits us to use both the multiplication and conjugation action simultaneously10 (via
different spellings).

The verbosity of this spelling might make it seem unappealing; if a spelling this long is
acceptable, it would tempting to conclude we could have just used the spelling conj g h where
conj : G →* monoid.End G is the appropriate morphism taken from the right column of table 1.1.
The reason we avoid making this choice is that it would exclude the conjugation action from
incorporation into the derived instances in section 1.1.3. One action in particular is of interest
here; the pointwise action [mathlib#8945] (matching section 1.1.3) induced by elements g : G on
a subgroup S : subgroup H when mul_distrib_mul_action G H. Combined with the conjugation
action we just saw, this gives us the usual conjugation action of an element on a subgroup!
The type synonym in this section was added in [mathlib#8627] by Chris Hughes, in response to
review the author’s review of Chris’ previous approach in an early version of [mathlib#8592],
which aimed to define only the conjugation action.

9They come down to the left version being easier to misuse (since Lean is willing to confuse the types G and
conj_act G in some situations), and the right version being much more work to set up (since Lean is not ever
willing to confuse the types and we must therefore rebuild the group structure from scratch, hence all the sorrys).
If used correctly, the two approaches are in practice equivalent to the end user.

10Though in fact there is a third option, explored in section 1.1.9.
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1.1.7 Right actions

The scalar action typeclass has_smul in mathlib is intended for left actions (those where a(bX) =

(ab)X), which is apparent both in the definition of the mul_smul axiom of mul_action, and in the
order in which the arguments appear in the notation. However, this does not mean that right
actions (those where (Xb)a = X(ba)) are impossible.

The trick is to use another type synonym (section 1.1.6) from mathlib, mul_opposite α, which
is built similarly to the pedagogical example in ?? and which reverses the multiplication order.
With this in mind, we can require a right action by writing [mul_action (mul_opposite M) α],
which permits us to write op a • X as a messy spelling for a right action on X by a.

The author introduced mathlib’s first right action in [mathlib#7630], via the instance

instance monoid.to_opposite_mul_action [monoid α] : mul_action (mul_opposite α) α :=

{ smul := λ c x, x * c.unop,

one_smul := mul_one,

mul_smul := λ x y r, (mul_assoc _ _ _).symm }

lemma op_smul_eq_mul [monoid α] {a b : α} : op a • b = b * a := rfl

which mirrors the left-multiplication action in section 1.1.2. Similar instances were introduced
for the other stronger typeclasses in fig. 1.1a.

One big advantage of this design over introducing a new right_mul_action type is that the
vast majority of the derived actions from section 1.1.3 come for free: as an example, mul_action
(mul_opposite α) (ι → α) is found automatically and corresponds to the action (op a • f) i =

op a • f i = f i * a,. This is precisely the action we want, if for example we want to multiply
a family of quaternions (or indeed, any object with non-commutative multiplci by a constant on
the right.

Bimodules

Often, we wish to consider simultaneous right and left actions, such as an R-S-bimodule , where
R acts on the left of M, and S on the right. Crucially, these actions must be compatible; (rm)s =

r(ms). Mathematically, this looks like associativity, and so we might hope to capture it using
the smul_assoc from is_scalar_tower. In actuality, to Lean the statement is r • op s • m = op

s • r • m, and so this is commutativity! We can thus capture the structure of the bimodule M

as follow:
variables [module R M] [module (mul_opposite S) M] [smul_comm_class R (mul_opposite S) M]

When R is commutative, we typically don’t bother with talking about left and right actions, as
they are usually equivalent11. However, it would be a bad idea to make module R M imply module

(mul_opposite R) M, as even though the commutativity of R means we need not worry about
11and if they weren’t, mathlib would typically force the use of a type synonym (section 1.1.6) to declare the

less-canonical action
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propositionally equal typeclass diamonds arising, we are almost guaranteed to run into defini-
tional ones. The solution was to introduce an is_central_scalar R m typeclass [mathlib#10543],
which instead of producing a new instance and risking diamond issues, simply asserts that two
existing instances interact in the desired way; namely that op_smul_eq_smul : op r • m = r •

m.
Adding this typeclass is just the tip of the iceberg; the real work is to saturate mathlib with

instances of this typeclass. [mathlib#10543] claimed the low-hanging fruit, providing instances
for commutative monoids, product types (M × N, Π i, M i), finitely supported functions (ι →₀

M, Π₀ i : ι, M i), ULift M, polynomials and their generalizations (monoid_algebra R M, add_ c

monoid_algebra R M, R[X], mv_polynomial σ R), matrix m n M, morphisms (M →+ N, M →ₗ[R] N),
complex numbers, and pointwise instances12 (set M, submonoid M, add_submonoid M, subgroup M,
add_subgroup M, subsemiring M, subring M, submodule M). Further contributions [mathlib#10720;
mathlib#11291; mathlib#11297 ; mathlib#12248; mathlib#12272; mathlib#12434; mathlib#13710;
mathlib#15359; mathlib#18682] brought the total up to more than 60 is_central_scalar in-
stances across mathlib.

Interaction with algebra

The addition of all these is_central_scalar instances was not simply motivated by completeness:
it was a prerequisite for solving a larger issue, the fact that we want every algebra R A to
automatically be a left- and right- R-module.

We already saw in section 1.1.4 that mathlib knows that an algebra R A implies a left module

R A structure, and forces it to agree with left-multiplication. To make it also imply a right-
module (module (mul_opposite R) A) structure, we need it to carry an additional to_has_op_ c

smul : has_smul (mul_opposite R) A field (the right action), and a proof that it coincides with
right-multiplication, op_smul_def' x r : op r • x = x * to_fun r. Such a refactor is a rather
herculean task; there are at least 130 instances of algebra in mathlib13, and adding fields to
algebra requires every instance to provide values for these fields. To make matters worse, mathlib
is a moving (and growing) target, and once you think you’re almost done, you merge in the latest
changes from other contributors and have even more algebra instances to fix!

The exercise of adding a large number of is_central_scalar instances was a means to slowly
close the gap; the act of adding these results often involved adding associated has_smul (mul_ c

opposite R) A instances, getting half the work out of the way. Additionally, the op_smul_eq_ c

smul lemma provided by these instances paves a quick path to proving op_smul_def'. Getting
these intermediate results merged into mathlib before the full project was a way of offloading
the work of keeping up: while results are only in your local modifications, it falls primarily on
you to deal with conflicts and proof breakages arising from others’ changes; once results are in
mathlib, the responsibility transfers to the community at large. As it turned out, this approach of

12elementwise actions on the elements of a set or sub-object
13According to the generated documentation.
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contributing early and often had further benefits; the author’s prototype of a complete refactor
in [mathlib#10716] was “caught in the porting tide”, which is to say that the translation (“port”)
from Lean 3 to Lean 4 (which starting from the simplest files and rose up through the import
hierarchy) caught up with the files it modified, forcing it to be abandoned. The same fate did
not befall the is_central_scalar instances, as these were already merged before the port began.

As discussed by the author in mathlib4/issues/7152, this refactor introduces further com-
plications almost exactly analogous to the ones we saw in fig. 1.4. If every algebra implies a
right action, then we need N-algebras to imply right-N-actions. We saw in section 1.1.5 that to
make this work without definitional typeclass diamonds for left-actions, we needed to add an
nsmul field to additive monoids (and zsmul to additive groups); for right-actions, we need to do
the same for op_nsmul and op_zsmul, making the mathlib add_comm_group even further from the
expected mathematical definition!

Other compatibility concerns

In section 1.1.3, we saw how when working even just with left-actions, needs arise for compat-
ibility typeclasses like is_scalar_tower and smul_comm_class. In section 1.1.7, we saw that the
latter can be repurposed to provide a compatibility between left and right actions. However, there
are other common interactions of left and right actions for which mathlib has no compatibility
typeclass.

Introducing briefly for clarity the notation14 a •> b for a • b and a <• b for op a • b, there is
no typeclass in mathlib capable of expressing (a <• b) •> c = a •> (b •> c). Some examples of
when this situation arises are [monoid M] (a b c : M) (all three variables belong to the same non-
commutative monoid), [monoid M] (a c : M) (S : submonoid M) (b : S) (the second belongs to
a submonoid of the monoid containing the other two), and [monoid M] (a b : M) (c : ι → M)

(the third variable is a coordinate vector).

On functions, through their domains

In section 1.1.6, we remarked that sometime the left action we want is not the one by left-
multiplication, and that to resolve this we must introduce a type synonym. The same issue
arises for right actions. A particularly typical example is the right action on function types (or
in general, morphisms) that acts through their domain; the action where for f : G → G, g, h : G,
we define the right action fg such that (fg)(h) = f(gh). This is problematic, because the derived
action in section 1.1.3 gives us the action where (fg)(h) = f(h)g, which when combined with
the instance we wanted produces a non-commuting instance diamond.

Type synonyms again provide a solution here; in [mathlib4#5368], after some discusion with
the author, Yury Kudryashov introduces a DomMulAct M type synonym which induces precisely
this (fg)(h) = f(gh) action, which Lean characterizes as:

14Which is proposed for inclusion in mathlib in [mathlib4#8909].

https://github.com/leanprover-community/mathlib4/issues/7152
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(mk g • f) a b

(mk g • f a) b

f a (g • b)

f (g • a) b

Pi.instSMul : SMul (DomMulAct G) (H → H → H)

DomMulAct.instSMul : SMul (DomMulAct G) (H → H)

DomMulAct.instSMul : SMul (DomMulAct G) (H → H → H)

Figure 1.6: A non-commuting diamond caused by DomMulAct

Here we have an action SMul G H, variables g : G, a b : H and f : H → H → H. The ambiguity
arises through choosing which argument of f to act upon.

example [SMul M α] (c : M) (f : α → β) (a : α) : (mk c • f) a = f (c • a) := rfl

which for our example specializes to

example [Group G] (g : G) (f : H → H) (h : H) : (mk g • f) a = f (g * h) := rfl

With this synonym, Lean cannot take a wrong turn towards using the instance in section 1.1.3
with (fg)(h) = f(h)g, as there is no action of SMul (DomMulAct G) G available.

Unfortunately, this solution only postpones the diamonds to one step further down the road.
When faced with an action on a function taking two arguments, Lean now faces an ambiguity
about which of the two domains the action should act upon (thanks to the action in section 1.1.3),
as shown in fig. 1.6. This isn’t quite as bad as the diamond in fig. 1.3, as it only impacts users
of DomMulAct; but it is indicative that type synonyms are not a silver bullet.

We could resolve this by removing the Pi.instSMul instance in section 1.1.3 that formed one
of the offending edges, but this would be prevent writing r • ![x, y, z] to scale a vector of
coefficients. A compromise is available through the use of even more type synonyms; we could
demote the instance for actions through the codomain to a CodMulAct synonym, and then the two
actions in fig. 1.6 would be spelt as (DomMulAct.mk g • f) a b = f (g * a) b and (CodMulAct c

.mk (DomMulAct.mk g) • f) a b = f a (g * b), and r • ![x, y, z] would need to be written as
CodMulAct.mk r • ![x, y, z]. The verbosity could be somewhat reduced by introducing some
shorthand notation, which for these three examples could resemble g •D f, g •CD f, and r •C

![x, y, z].
Such a compromise would involve a substantial refactor to mathlib, and for now the costs of

the instance diamond in fig. 1.6 do not in the author’s opinion outweigh the effort involved in
performing the refactor, let alone the negative impact of the increased verbosity.

1.1.8 Lean 4’s new HMul typeclass

Lean 4 generalizes the meaning of the * syntax, allowing it to be used to multiply elements
of different types. This is done by means of a new HMul α β γ typeclass that provides the
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(f * g) i j

(f * g i) j

f i * g j

(f i * g) j

f j * g i

hmulRight : HMul (ι → N) (ι → N) (ι → ι → N)hmulLeft : HMul (ι → N) (ι → N) (ι → ι → N)

hmulLeft : HMul (ι → N) N (ι → ι → N)
hmulRight : HMul N (ι → N) (ι → ι → N)

Figure 1.7: A non-commuting diamond caused by HMul for f g : ι → N

operator * through the function HMul.hMul : α → β → γ, where the H stands for “heterogenous”.
This generalization is very useful for multiplication of matrices (which mathlib switched to using
in [mathlib4#6487 ]), as here multiplication is naturally homogenous in the dimensions of the
matrices; we have HMul.hMul : Matrix l m R → Matrix m n R → Matrix l n R.

At first sight, the introduction of HMul would appear to make has_scalar.smul : α → β → β

redundant, as it falls out as a special case. Similarly, we could even see HMul as the answer to
the right actions in section 1.1.7, since we can also recover β → α → β as a special case. Even
smul_comm_class and is_scalar_tower could likely be subsumed by a typeclass for generalized
heterogenous commutativity or associativity, respectively.

Unfortunately, for our use-case the flexibility of HMul is also its downfall; attempting to build
basic left- and right- actions for “vectors” (as in section 1.1.3) using it almost immediately leads
to instance diamonds in the style of section 1.1.5. The two basic instances in question are:

-- HMul generalizes to families on the right

instance hmulRight [inst : HMul α β γ] : HMul α (ι → β) (ι → γ) where

hMul a b := fun i => a * b i

-- HMul generalizes to families on the left

instance hmulLeft [inst : HMul α β γ] : HMul (ι → α) β (ι → γ) where

hMul a b := fun i => a i * b

and the diamond is formed when querying for HMul (ι → N) (ι → N) (ι → ι → N), as shown in
fig. 1.7. The following code can be used to verify the diagram is correct.

variable (ι)

abbrev blue : HMul (ι → N) (ι → N) (ι → ι → N) := hmulLeft (inst := hmulRight)

abbrev red : HMul (ι → N) (ι → N) (ι → ι → N) := hmulRight (inst := hmulLeft)

-- the two paths give conflicting results, swapping the placements of `i` and `j`

example (f g : ι → N) (i j : ι) : letI := blue ι; (f * g) i j = f i * g j := rfl

example (f g : ι → N) (i j : ι) : letI := red ι; (f * g) i j = f j * g i := rfl

Strictly speaking, our problem is not that HMul is too general, but that hmulLeft and hmulRight

are. We can resolve this by eliminating γ, and using repeated type variables to distinguish right
and left actions:
-- right-HMul generalizes to families on the right

instance hmulRight [inst : HMul α β β] : HMul α (ι → β) (ι → β) where
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hMul a b := fun i => a * b i

-- left-HMul generalizes to families on the left

instance hmulLeft [inst : HMul α β α] : HMul (ι → α) β (ι → α) where

hMul a b := fun i => a i * b

At this point though, we may as well have defined LeftSMul α β := HMul α β β and RightSMul α

β := HMul α β α, an approach which is not all that different from the current mathlib approach
which is effectively using LeftSMul α β := SMul α β and RightSMul α β := SMul (MulOpposite

α) β. The only real difference is the choice of symbol, * vs •.

1.1.9 Alternatives to type synonyms

In sections 1.1.6 and 1.1.7 we explored how mathlib uses DomMulAct and ConjAct synonyms that
wraps the type doing the acting, in order to distinguish these action from other “more canonical”
actions. However, this comes at the cost of introducing some annoying boilerplace in the form of
DomMulAct.mk and ConjAct.toConjAct, which we use to juggle between DomMulAct G, ConjAct G,
and G. While section 1.1.7 suggests that the pain of this boilerplate can be reduced with clever
notation, it still ends up being something that has to be manipulated within proofs. This section
briefly outlines an alternative design that has no prior use in mathlib.

A possible redesign of the SMul typeclass could be

def SMul.Discr := Type

class SMul (M : Type*) (α : Type*) (discr : SMul.Discr) where

smul : M → α → α

notation3:72 a:72 " •[" discr "] " b:72 => @SMul.smul _ _ discr _ a b

where the discr parameter acts as a discriminator to implement “tag dispatching” (to borrow the
term from C++) and contains information relevant only at typeclass-search-time about which
action to use; information that was previously tracked by attaching it to type synonyms wrapping
M and α. The discr parameter would be copied to all the other typeclasses in fig. 1.1a.

The actions in sections 1.1.2, 1.1.3 and 1.1.7 can then respectively be written

inductive SMul.Discr.leftMul : SMul.Discr

instance (M : Type*) [Mul M] : SMul M M .leftMul where

smul m n := m * n

inductive SMul.Discr.domAct (_ : SMul.Discr) : SMul.Discr

instance (ι α M : Type*) (discr) [SMul α ι discr] : SMul α (ι → M) discr.domAct where

smul a f := fun i => f (a •[discr] i)

inductive SMul.Discr.codAct (_ : SMul.Discr) : SMul.Discr

instance (ι α M : Type*) (discr) [SMul α M discr] : SMul α (ι → M) discr.codAct where

smul a f := fun i => a •[discr] (f i)

where the domAct and codAct discriminators are parameterized to record the discriminator they
inherit from.
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With this infrastructure in place, the diamonds in fig. 1.6 are avoided by forcing the user to
spell which action they want:

variable {G H} (discr) [SMul G H discr] (g : G) (f : H → H → H) (a b : H)

example : (g •[discr.domAct] f) a b = f (g •[discr] a) b := rfl

example : (g •[discr.domAct.codAct] f) a b = f a (g •[discr] b) := rfl

This strategy is not without its downsides. It makes cases where the typeclass diamonds do
commute (such as fig. 1.2) more awkward to work with, requiring an additional compatibility
typeclass that states that two discriminators describe the same action; Additionally, bundled
linear maps would now need to take two extra arguments to specify the discriminator for their
source and domain. Determining whether these tradeoffs are acceptable would require an attempt
at refactoring large pieces of mathlib, which the author will leave to a particularly interested
reader.
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