THEOREM 1 (BANACH-STEINHAUS-MACKEY) Let E be a Hausdorff LCTVS. Every bounded complete disk of E is strongly bounded.

In other words:

COROLLARY 1 Let E and F be LCTVS, E Hausdorff; then every subset of L(E, F) bounded for pointwise convergence is bounded for the uniform convergence on the bounded complete disks of E.

Proof of Theorem 1. We must show that if M is a set of continuous linear mappings from E into F, bounded for pointwise convergence, and if A is a complete bounded disk in E, then M(A) is a bounded subset of F. Now, let E_A be the vector space generated by A, with the gauge semi-norm of A:

$$||x||_A = \inf_{x \in \lambda A} |\lambda|;$$

this is a norm since A is bounded. Taking the restrictions of $u \in M$ to E_A , we can show that the set of mappings from E_A into F thus obtained, is bounded for A-convergence. But as this set is bounded for pointwise convergence, it suffices to show that E_A is complete and to apply the Banach-Steinhaus theorem (Chapter 1, Section 15, Theorem 11). We then have the following lemma, interesting in itself:

LEMMA 1 Let E be a Hausdorff LCTVS, A a complete bounded disk in E. Then the corresponding normed space E_A is a Banach space, i.e. it is complete.

Proof As A is closed in E, and therefore contains the ends of the intervals intersected by A on the real lines passing through the origin, we conclude that the unit ball of E_A is A. Also it is clear that a normed space is complete if and only if its unit ball is complete. It is then sufficient to show that the unit ball A of E is complete for the norm topology of E_A . This follows from Chapter 2, Section 18, Proposition 35, applied to E_A and to the topology induced by E on E_A .

Required concepts: (the ones marked with? I wasn't able to find in mathlib)

- -> locally convex topological vector spaces
- -> Hausdorff spaces (i.e. two distinct points => exist two disjoint neighbourhoods)
- -> ? bounded complete disks
- -> ? vector space generated by A
- -> gauge seminorm

```
@[class]
structure locally_convex_space (k : Type u_1) (E : Type u_2) [ordered_semiring k]
  Prop
(convex_basis : \forall (x : E), (nhds x).has_basis (\lambda (s : set E), s \in nhds x \wedge convex k s) id)
A locally_convex_space is a topological semimodule over an ordered semiring in which convex neighborhoods of a poi
form a neighborhood basis at that point.
► Instances of this typeclass
@[class]
structure is_Hausdorff {R : Type u_1} [comm_ring R] (I : ideal R) (M : Type u_2)
 (haus' : \forall (x : M), (\forall (n : \mathbb{N}), x \equiv 0 [SMOD I ^ n • T]) \rightarrow x = 0)
A module M is Hausdorff with respect to an ideal I if \bigcap I^n M = 0.
► Instances of this typeclass
 \verb|noncomputable| \ \textit{def gauge\_seminorm} \ \{ \textit{k} : \textit{Type} \ \textit{u\_1} \} \ \{ \textit{E} : \textit{Type} \ \textit{u\_2} \} \ [\textit{add\_comm\_group} \ \textit{E}] \\
      (hs_0 : balanced k s) (hs_1 : convex R s) (hs_2 : absorbent R s) :
   seminorm & E
 gauge s as a seminorm when s is balanced, convex and absorbent.
 ▶ Equations
```