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Abstract6

We present Verbose Lean, a library using the flexibility of the Lean programming language and proof7

assistant to teach undergrad mathematics students how to read and write traditional paper proofs.8

After explaining our main pedagogical goals, we explain how students use the library with varying9

levels of assistance to write proofs that are easy to transfer to paper because they look like natural10

language. We then describe how teachers can customize the student experience based on their11

specific pedagogical goals and constraints. Finally we describe some aspects of the implementation12

of the library, emphasizing how new aspects of the very recently released version 4 of Lean allow a13

lot of flexibility that could benefit many new creative uses of a proof assistant.14
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1 Introduction37

The transition from high-school mathematics to proof-based university mathematics is a38

well-known challenge for students. In the recent past, there have been several experiments39

using proof assistants to help students in this transition [2, 7, 12, 1, 17]. Here we really mean40

courses that consider the proof assistant only as an intermediate tool, not as a final goal.41

Note this tool is applicable to any kind of mathematics in principle but this account and the42

library it describes are biased towards elementary real analysis which is used in France as43
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23:2 Teaching mathematics using Lean and controlled natural language

the main introduction to rigorous proofs.44

Verbose Lean1 is a teaching library and meta library for the Lean programming language45

and proof assistant. Lean is due mostly to Leonardo de Moura at Microsoft Research and46

then Amazon Web Service and the Lean FRO2. This library has three main layers. The47

bottom one is a set of tactics (i.e. proof producing programs) mimicking the granularity of48

proofs on paper. The middle one is a controlled natural language syntax whose goal is to49

ease the transition to paper proofs, at the cost of being slightly more difficult to write. The50

third layer is made of mechanisms that help students to write proofs by suggesting potential51

next steps. All three layers are heavily customizable, even without programming knowledge,52

and everything exists in French and English and is translatable to other languages.53

This paper is intended for mathematics teachers and for people who want to see examples54

of using Lean’s flexibility. It is organized roughly in order of decreasing importance. We55

first explain our pedagogical goals, then describe the student experience, then the teacher56

experience before concluding with some aspects of the implementation. That last section is57

more technical but could be useful to anyone interested in what can be done with Lean.58

2 Main pedagogical goals59

The first main goal is to train students to have a crystal clear view of the current state of the60

proof: what is currently being proven, what are the current assumptions, which mathematical61

objects are fixed. The next pedagogical goal is to train students to automatically perform62

proof steps depending of the syntactic structure of the goal. For instance a direct proof of a63

universally quantified statement starts with fixing an object of the relevant type.64

A basic requirement here is to make sure that every statement has a clear status: is65

it something that is known to be true? Something that we assume? Something that will66

be proven soon? We claim that this goal is much easier to achieve if there is a really clear67

separation between stating, proving and using. For any given logical operator or quantifier,68

there are syntactic rules that explain how to form a mathematical statement it and some69

previously existing statements. Then there are rules that explains how to prove such a70

statement. Finally there are rules about how to use such a statement. This distinction71

seems obvious but in practice it is incredibly blurred, both by students and by professional72

mathematicians. Of course the difference is that mathematicians know what they are doing73

even when they are very sloppy about this distinction. One of the most frequent cases is74

failing to distinguish between stating the existence of a mathematical object satisfying some75

condition and fixing a witness. An example would be to say or write “since f is continuous76

and ε is positive, there exists δ such that. . . ” and then refer to some δ on the following77

line. The other very common one is more tied to using symbols instead of text. It uses78

the implication symbol as an abbreviation of the word “hence” or “therefore”, and more79

generally mixing using an implication and stating one. An example would be writing on80

a blackboard “f is polynomial =⇒ f is continuous” instead of “f is polynomial hence81

continuous”. This misuse of a symbol is extremely problematic since this alternative meaning82

of the symbol turns every legitimate use into nonsense. For instance reading the definition of83

convergence of a function f towards a number l at some point x0 with this interpretation for84

the implication symbol gives “for every positive ε, there exists some positive δ such that for85

every x, |x− x0| < δ hence |f(x)− l| < ε”. A less ubiquitous but still common example is a86

1 https://github.com/PatrickMassot/verbose-lean4
2 https://lean-fro.org/

https://github.com/PatrickMassot/verbose-lean4
https://lean-fro.org/
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confusion between stating a claim starting with a universal quantifier and beginning a proof87

of such a statement.88

All those logical errors (or at least sloppy writing) also impact achieving a third pedagogical89

goal which is to train students to make a clear distinction between bound and free variables.90

This is of course very related to keeping track of what is fixed in the current state of the91

proof, but with the additional twist that some variable name can appear simultaneously as92

the name of a free variable and as a bound variable in some assumption or in the current93

target statement.94

The next teaching goal that we want to achieve with this technology is to train students95

to classify proof steps into safe reversible steps that require no initiative and risky irreversible96

steps that require some creativity. The alternation between the routine safe steps and the97

risky creative steps is a crucial aspect of mathematical proof creation which is not necessarily98

emphasized when presenting a proof on a blackboard.99

On top of that there is a final goal which is to learn how to choose indirect strategies100

instead of simply following the syntax of the current target. Those includes stating and101

proving an intermediate fact, using a lemma instead of reproving everything, and the use of102

the excluded middle axiom, e.g. through proofs by contradiction or contraposition.103

The usual interfaces of proof assistants have many qualities that help achieving those104

goals. We will use the Lean terminology, but that part of the discussion applies equally well105

to Coq for instance. Near the beginning of proof of sequential continuity from continuity,106

the proof assistant can display something like:107

108
f: R → R109

u: N → R110

x0: R111

hu: u converges to x0112

hf: f is continuous at x0113

ε: R114

ε_pos: ε > 0115

δ: R116

δ_pos: δ > 0117

hδ: ∀ (x : R), |x - x0| ≤ δ ⇒ |f x - f x0| ≤ ε118

⊢ ∃ N, ∀ n ≥ N, |(f ◦ u) n - f x0| ≤ ε119120

This display is called the tactic state. Most lines described mathematical objects that are121

fixed in the proof and assumption. The last line shows the current goal.122

This is already tremendously useful to students, and completely impossible to emulate123

on a blackboard or in print. But there are also many challenges. The most obvious one124

is the need to learn the syntax of the software. In order to progress in proofs, one need125

to call tactics that are commands which usually do not look like mathematics but rather126

like programming. This is not a crucial problem, especially with students who also learn127

programming in other courses. But it does take time, so this issue prevents using a proof128

assistant on the side of a regular course with no dedicated time. A much more serious issue129

is that having a proof assistant syntax that is very different from paper proofs makes it a lot130

harder to transfer proving skills to paper. This is true in the direct case of transcribing a131

proof done on the computer but also in the longer run when students try to prove things on132

paper without writing a formal proof first.133

A second challenge is to set up the right kind of automation. Traditional paper proofs134

are very far from mentioning every lemma that is used. There can be some value to write a135

couple of proofs mentioning every lemma. But doing this systematically is counter-productive136

with respect to the goals listed above. An extreme example would be lemmas asserting the137

CVIT 2016



23:4 Teaching mathematics using Lean and controlled natural language

commutativity and associativity of addition and multiplication of numbers. More generally,138

things that are too obvious to be mentioned on paper should be done automatically by the139

proof assistant, whereas things that we want to see justified on paper should not. But this is140

an extremely vague and inconsistent specification. Powerful automation is also potentially141

problematic for students who have very slow compurters with little memory, and it can make142

error reporting more complicated. But it is crucial for the success of that kind of teaching143

use of proof assistants.144

A last challenge that is less universal is that some countries do not use English as their145

main language. This is especially relevant for very young students. In France in particular,146

having anything written in English raises a huge barrier for undergraduate students.147

3 Using the library as a student148

3.1 Tactic language149

In this section we will show what Verbose Lean looks like from the point of view of student150

users. We will show several possible variations but it is probably unwise to show all those151

variations to students. The following is a typical exercise solution.152

153
Exercise "Continuity implies sequential continuity"154

Given: (f : R → R) (u : N → R) (x0 : R)155

Assume: (hu : u converges to x0) (hf : f is continuous at x0)156

Conclusion: (f ◦ u) converges to f x0157

Proof:158

Let′s prove that ∀ ε > 0, ∃ N, ∀ n ≥ N, |f (u n) - f x0| ≤ ε159

Fix ε > 0160

By hf applied to ε using that ε > 0 we get δ such that161

(δ_pos : δ > 0) and (Hf : ∀ x, |x - x0| ≤ δ ⇒ |f x - f x0| ≤ ε)162

By hu applied to δ using that δ > 0 we get N such that163

Hu : ∀ n ≥ N, |u n - x0| ≤ δ164

Let′s prove that N works : ∀ n ≥ N, |f (u n) - f x0| ≤ ε165

Fix n ≥ N166

By Hf applied to u n it suffices to prove |u n - x0| ≤ δ167

We conclude by Hu applied to n using that n ≥ N168

QED169170

The first difference with the default syntax of Lean is that the statement clearly distin-171

guishes the data, the assumption and the conclusion. Then each line of the proof sounds like172

natural language, but it is actually as rigid as any programming language. Remember the173

goal of this language is not to be easier to write, it is to be easier to transfer to paper.174

The first line is completely optional, it only unfolds a definition. The second line shows175

how bounded quantifiers are handled by the library. The core logic of Lean does not involve176

those quantifiers. Given a predicate P , say on real numbers, the statement ∀ε > 0, P (ε) is a177

notation for ∀ε, ε > 0 =⇒ P (ε). In Verbose Lean, introducing a positive number can be178

done in one step (of course it can also be done in two steps). This generates a name ε_pos179

for the assumption that ε is positive. The next tactic, that spans the third and fourth lines180

above, uses that positivity but in a declarative way. However it does use the name hf that181

was assigned to the continuity assumption on f . A syntactic variant here would be to write182

183
Since f is continuous at x0 and ε > 0 we get δ such that184

(δ_pos : δ > 0) and (Hf : ∀ x, |x - x0| ≤ δ ⇒ |f x - f x0| ≤ ε)185186

which only list claims and does not even explicitly mention ε before mentioning its positivity.187
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Another important style choice to make is the use of backward reasoning at the end,188

witnessed by the words “it suffices to prove”. One could also replace the last two lines with189

190
Since ∀ n ≥ N, |u n - x0| ≤ δ and n ≥ N we get h : |u n - x0| ≤ δ191

Since ∀ x, |x - x0| ≤ δ → |f x - f x0| ≤ ε and |u n - x0| ≤ δ we192

conclude that |f (u n) - f x0| ≤ ε193194

which use both the nameless approach and forward reasoning only (those two aspects are195

independent, we gathered them only to prevent a combinatorial explosion of examples).196

The nameless approach is not purely stylistic, it also involves some implicit reasoning. For197

instance, with the same assumptions, we could write since ε ≥ 0 and the library would198

silently derive this from ε > 0.199

The example used so far only uses two definitions and the rules of logic. It features both200

using and proving statements formed using quantifiers and implication. Stating a universally201

quantified claim on line one and starting its proof on line 2 are very distinct operations. The202

first one involves the quantifier symbol while the second one involves the word “Fix”.203

The confusion between stating existence and extracting a witness is handled in a more204

subtle way. We could first state the existence using the symbol ∃ δ and then have something205

like “Let us fix such a δ”. Nothing prevents a teacher from implementing this syntax, but the206

trick of saying we get δ such that is a very nice compromise which distinguishes fixing a207

witness from merely stating existence and which stays very light to read.208

The confusion between claiming an implication and using it is handled very simply. First209

the implication symbol is used only when stating. Then both backward and forward uses of210

implication mention both the implication and its premise. This applies both to the style211

referring to assumption names and to the nameless style.212

Let us now consider another example: proving the squeeze theorem.213

214
Example "The squeeze theorem."215

Given: (u v w : N → R) (l : R)216

Assume: (hu : u converges to l) (hw : w converges to l)217

(h : ∀ n, u n ≤ v n) (h′ : ∀ n, v n ≤ w n)218

Conclusion: v converges to l219

Proof:220

Fix ε > 0221

Since u converges to l and ε > 0 we get N such that222

hN : ∀ n ≥ N, |u n - l| ≤ ε223

Since w converges to l and ε > 0 we get N′ such that224

hN′ : ∀ n ≥ N′, |w n - l| ≤ ε225

Let′s prove that max N N′ works : ∀ n ≥ max N N′, |v n - l| ≤ ε226

Fix n ≥ max N N′
227

Since n ≥ max N N′ we get (hn : n ≥ N) and (hn′ : n ≥ N′)228

Since ∀ n ≥ N, |u n - l| ≤ ε and n ≥ N we get229

(hNl : -ε ≤ u n - l) and (hNd : u n - l ≤ ε)230

Since ∀ n ≥ N′, |w n - l| ≤ ε and n ≥ N′ we get231

(hN′l : -ε ≤ w n - l) and (hN′d : w n - l ≤ ε)232

Let′s prove that |v n - l| ≤ ε233

Let′s first prove that -ε ≤ v n - l234

Calc -ε ≤ u n - l by assumption235

_ ≤ v n - l since u n ≤ v n236

Let′s now prove that v n - l ≤ ε237

Calc v n - l ≤ w n - l since v n ≤ w n238

_ ≤ ε by assumption239

QED240241
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23:6 Teaching mathematics using Lean and controlled natural language

The beginning of the proof uses the same tactics as our first example. New things start242

with the line Since n ≥ max N N′ we get (hn : n ≥ N) and (hn′ : n ≥ N′). Here we243

are using a lemma claiming that n ≥ max(N, N ′) implies that n ≥ N and n ≥ N ′. But this244

lemma is not mentioned explicitly. The tactic saw that the claim n ≥ max(N, N ′) is not a245

conjunction so it tried splitting it into the announced conclusions using so-called anonymous246

fact splitting lemmas. Here anonymous refers to the fact that their names do not appear247

in the proof script, but of course they actually do have names. The next two tactics (each248

spanning two lines) use the exact same mechanism using an anonymous lemma that split an249

inequality with shape |x| ≤ y into −y ≤ x and x ≤ y.250

The next tactic Let′s prove that |v n - l| ≤ ε is completely optional, it recalls251

what is the current goal since it was never explicitly spelled out and we just went through252

three tactics that created new facts without changing current goal. This tactic could also253

have been used right after Fix n ≥ max N N′.254

The next line is something new: Let′s first prove that -ε ≤ v n - l. This tactic255

can be used to start a conjunction proof. But here the current goal is not a conjunction, it is256

turned into a conjunction by a so-called anonymous goal splitting lemma, which happens to257

be the converse the anonymous fact splitting lemmas used before (but those are completely258

separate lemmas from the framework point of view).259

This tactic does a bit more than applying the lemma and splitting the resulting conjunction.260

Indeed we want to force students to announce the second part of the conjunction when261

the first one is proven. So instead of showing directly the second goal, the tactic state262

displays: You need to announce: Let′s now prove that v n - l ≤ ε and refuses3 any263

other tactic.264

Returning to what happens during the proof of the first inequality, we see some com-265

putation introduced by the Calc word. This is based on the builtin Lean calc tactic, but266

the justifications are specific to our library. The first one in the example is by assumption267

which implicitly refer to the hNl assumption. A more explicit justification could be from hNl.268

What comes after the word from could also contain the words applied to and using that269

as in the third tactic of our first example. The next justification uses since which indicates270

a nameless approach: we claim that u n ≤ v n without explaining why; the tactic has to271

instantiate the assumption h to the free variable n. But there is more to it since this fact by272

itself is not sufficient to justify that calculation step. The tactic has to secretely invoke a273

lemma saying that ∀x, y, z, x ≤ y =⇒ x− z ≤ y − z. This is handled internally by calling274

the gcongr tactic of Carneiro and Macbeth.275

Those two examples illustrate the main mechanisms that we use to get students to develop276

proof skills that are easier to transfer to paper than using the native Lean tactics. Of course277

they do not exhaust the list of tactics provided by our library. In particular there are tactics278

that allow to prove things by case disjunctions, using contraposition or proof by contradiction,279

or using the axiom of choice.280

3.2 Assisted modes281

The above examples can all be typed in the editor (typically VSCode to avoid teaching at282

the same time how to use Lean and a powerful editor such as vim or emacs). Lean then283

answers by updating the proof state and displaying error messages if needed. But mastering284

3 The courage to make this mandatory came from seeing it in the Coq waterproof project.
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a lot of syntax is challenging, even if only one proof style is taught (for instance only the285

variants that do not use assumption names). So Verbose Lean offers two levels of assistance.286

The fist level is the help tactic that can be used inside the proof. For instance, if the287

current target is (f ◦ u) converges to f x0 as at the beginning of our first example then288

the help tactics displays:289

290
Help291

· The goal starts with the application of a definition.292

One can make it explicit with:293

Let′s prove that ∀ ε > 0, ∃ N, ∀ n ≥ N, |(f ◦ u) n - f x0| ≤ ε294

· The goal starts with “∀ ε > 0”295

Hence a direct proof starts with:296

Fix ε > 0297298

The above has two help messages and two suggestions. Clicking on a suggestion replaces the299

help tactic with the suggestion.300

In the same example, there is a local assumption named hu saying that u converges to301

x0. The answer to help hu is302

303
Help304

· This assumption starts with the application of a definition.305

One can make it explicit with:306

We reformulate hu as ∀ ε > 0, ∃ N, ∀ n ≥ N, |u n - x0| ≤ ε307

· The assumption hu starts with “∀ ε > 0, ∃ N, . . .”308

One can use it with:309

By hu applied to ε0 using hε0 we get N such that310

(hN : ∀ n ≥ N, |u n - x0| ≤ ε0)311

where ε0 is a real number and hε0 is a proof of the fact that ε0 > 0312

The names N and hN can be chosen freely among available names.313314

Using this tactic with students suggests it already does a lot to tame the syntactic315

complexity of our controlled natural language. One could fear that students will constantly316

use it instead of analysing the goal or assumptions themselves, but this was not observed.317

Especially in situations where there is not much time allocated to the use of a proof318

assistant, one can use a more assisted mode where proofs can be assembled at least partly319

through clicking. In this interaction mode, students click on expressions in the tactic state320

and get tactics suggestions in return. This subsumes the help tactic: when clicking on the321

full target or on a full assumption, the suggestions that given are the same that appear in322

the help command (assuming the default configuration is used). But one can also click on323

multiple assumptions, or on sub-expressions inside the target or inside an assumption.324

For instance the example that proved sequential continuity from continuity can be done325

entirely by clicking. Clicking on the full goal suggests the first two lines of the proof. Then326

one needs to specialize the continuity assumption to the positive ε that was just introduced.327

This is done by clicking on the assumption and then clicking on ε. With this selection in the328

tactic state, one gets the following suggestions:329

330
· By hf applied to ε using that ε > 0 we get δ such that (δ_pos : δ > 0)331

(hδ : ∀ (x : R), |x - x0| ≤ δ ⇒ |f x - f x0| ≤ ε)332

· By hf applied to ε / 2 using that ε / 2 > 0 we get δ such that (δ_pos : δ333

> 0) (hδ : ∀ (x : R), |x - x0| ≤ δ ⇒ |f x - f x0| ≤ ε / 2)334335

Those two suggestions have the same shape but use either ε or ε/2 since specializing336

to half a given number is a very common move in elementary analysis and the default337

configuration is biased towards this kind of mathematics.338

CVIT 2016



23:8 Teaching mathematics using Lean and controlled natural language

In the above example, the library does not check that it will be able to automatically339

prove the positivity side condition that appears after using that. This lets students judge340

the different suggestions.341

4 Using the library as a teacher342

4.1 Basic configuration343

In this section we explain various mechanisms used for configuration which do not require344

programming expertise from teachers (of course a lot more is possible with programming).345

The goal is not to document every configuration possibility – since this is not a manual –346

but to show the configuration mechanisms that we use. We also show how this configuration347

depends on specific pedagogical goals, students expertise and time constraints.348

The first decision to make is how much automation, if any, is desired when implicitly349

using lemmas. As explained in the previous section, there are two kinds of such lemmas,350

depending on whether they split a given fact or the current goal. For instance lemmas in351

the second category can be configured using configureGoalSplitingLemmas Iff.into352

Subset.antisymm. Listing a lot of lemmas in these commands could become very tedious.353

So we allow defining lemmas lists and referring to them in the configuration commands. We354

also pre-define some lists. Defining a list named MyList which contains the pre-defined list355

LogicIntros and the lemma proving set equality from double inclusion is done using356

357
AnonymousGoalSplittingLemmasList MyList := LogicIntros Subset.antisymm358359

Those commands and all configuration commands are meant to be “hidden” in the teacher360

file. When changes are needed in the middle of an exercise file, one can use a macro. For in-361

stance macro "switchConf" : command => ‵(configureGoalSplittingLemmas x) would362

allow to simply to write switchConf between two exercises to avoid a long distracting line.363

Note that teachers will probably want to tell students about the list of anonymous lemmas,364

at least informally, to avoid creating confusion about what needs to be justified.365

Tactics can also have configuration flags. For instance, say the goal is ¬ ∃ x:Q, x^2 = 2.366

By default, starting the proof with Assume for contradiction H : ∃ x : Q, x^2 = 2367

will lead to the error message: “The goal is a negation, there is no point in proving it by368

contradiction. You can directly assume ∃ x : Q, x^2 = 2”. Teachers who fully embrace369

the confusion between a direct proof of a negation and a proof by contradiction, or simply370

need to focus on another battle, can use allowProvingNegationsByContradiction.371

The next thing to configure is the assisted modes (help tactic and suggestion widget).372

First there are commands to disable those modes for teachers who want students to write373

everything by hand (in an exam setting, one can simply delete the relevant file for extra374

safety). Assuming they are enabled, many aspects are configurable. Each help message comes375

from a function and one can configure the available functions using the same kind of lists376

as with anonymous lemmas. For instance, in a basic course which progressively introduces377

different kinds of reasoning, one can disable messages suggesting a proof by contradiction in378

the beginning. One can also modify existing help functions with no programming knowledge379

by copy-pasting and editing only the text.380

If the current lecture focusses on students knowing definitions then one can completely381

disable the help that unfolds definitions. One can also control in detail which definitions382

participate in unfolding suggestions. This has to be an opt-in mechanism to avoid having383

suggestions unfolding fundamental definitions such as the definition of real numbers or even384

the definition of addition of natural numbers. For instance the teacher file could contain:385
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configureUnfoldableDefs continuous seq_limit assuming the teacher library defined386

continuous and seq_limit.387

The suggestion widget is also fully configurable. Really changing its behavior requires388

programming. But an easy tweak is to change how to produce data from the selection. We389

saw that selecting a real number ε and a universally quantified assumption h does not only390

propose to specialize h to ε but also to ε/2. The configuration for this can look like:391

392
dataProvider mkSelf a := a393

dataProvider mkHalf a := a/2394

dataProvider mkMin a b := min a b395

dataProvider mkMax a b := max a b396

DataProviderList CommonProviders := mkSelf mkMin mkMax397

398

configureDataProviders {399

R : [CommmonProviders, mkHalf],400

N : [CommmonProviders] }401402

In addition to a declaration list CommonProviders analogous to the one we use for403

anonymous lemmas, there are two new kinds of micro–DSLs (domain specific languages)404

here. First we define four “functions” with the dataProvider command which features no405

type information at all. Those are purely syntactic objects. They only participate in creating406

the widget suggestions on the syntactic level. Writing meaningless functions there would407

of course create trouble when accepting suggestions. Finally there is a JSON-like syntax in408

the configureDataProviders that registers data providers for different types. The goal of409

those DSL is to allow configuring this even for teachers who basically know nothing about410

Lean, maybe not even enough to write a function that can perform an algebraic operation411

either on natural numbers or on reals.412

All the configuration options mentioned so far are specific to the Verbose library, but of413

course they come on top of the usual Lean configuration. A lot of the flexibility offered by414

Lean out of the box is very relevant to the kind of teaching targeted by our library.415

This includes the whole parsing and elaboration pipelines. For instance Verbose Lean416

overwrites the notation for implication to use the double arrow symbol that is normally417

used in mathematics instead of a single arrow. The examples in this paper also use an infix418

notation for continuity and limits as in u tendsto x.419

Overriding notation is not only about having a nice output. It also help mitigating420

unwanted side-effects of using type theory. For instance say we want to use the sequence421

of real numbers n 7→ 1/(n + 1). Using its default configuration, Mathlib may need help422

to understand that 1/(n + 1) is a real number and not a natural number. The correct423

interpretation can be enforced using a type ascription such as 1/(n + 1 : R). But this is424

distracting for students in the provided code, and failing to use such ascription in their own425

code can lead to inscrutable error messages. In this case it is much easier to override the426

meaning of the division symbol to always mean division or real numbers. One can also use427

a custom notation for function abstraction specialized to sequences of real numbers. For428

instance one can ensure seq n 7→ . . . gets expanded to fun n : N 7→ (. . . : R).429

Note there is no way to completely avoid type ambiguities in the input without type430

ascriptions. We have seen students feeling the need to state as an intermediate fact something431

like 0 < 1. Here there is no way Lean can guess whether this is meant as an inequality of432

real numbers or of natural numbers. And there is no way students can be aware of this issue433

without discussing the subtle status of the “inclusion” of N into R. Lean will interpret the434

above statement as an inequality of natural numbers and our tactics will happily prove it.435
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But then using this intermediate fact will fail if the intended meaning was an inequality of436

real numbers. Note that Lean has an option, namely pp.numeralTypes, to always decorate437

literal numbers such as 0 or 1 when it displays them. This helps making to above problem438

easier to spot, but it does not fix the input issue and does not avoid discussing the subtlety.439

4.2 Translating to a new language440

The English language can be a huge barrier for undergraduate students. One can also441

imagine teachers who want to use a dialect of English. Verbose Lean comes with an English442

version and a French version. Adding a new language can be done by imitation without any443

knowledge of Lean programming. The process is to copy the English folder of the Verbose444

library and replace English words. In case of doubt, comparing the French and English445

versions can show the required modifications. For instance we see4 in the English version:446

447
declare_syntax_cat maybeApplied448

syntax term : maybeApplied449

syntax term "applied to " term : maybeApplied450

syntax term "applied to " term " using " term : maybeApplied451

syntax term "applied to " term " using that " term : maybeApplied452

453

def maybeAppliedToTerm : TSyntax ‵maybeApplied → MetaM (TSyntax ‵term)454

| ‵(maybeApplied| $e:term) => pure e455

| ‵(maybeApplied| $e:term applied to $x:term) => ‵($e $x)456

| ‵(maybeApplied| $e:term applied to $x:term using $y) => ‵($e $x $y)457

| ‵(maybeApplied| $e:term applied to $x:term using that $y) =>458
‵($e $x (strongAssumption% $y))459

| _ => pure default460

461

elab "We" " conclude by " e:maybeApplied : tactic => do462

concludeTac (← maybeAppliedToTerm e)463464

We will comment more on this code in the next section. Our point here is that we see a lot465

of mysterious things but understanding them is not required to write the French version:466

467
declare_syntax_cat maybeAppliedFR468

syntax term : maybeAppliedFR469

syntax term "appliqué à " term : maybeAppliedFR470

syntax term "appliqué à " term " en utilisant " term : maybeAppliedFR471

syntax term "appliqué à " term " en utilisant que " term : maybeAppliedFR472

473

def maybeAppliedFRToTerm : TSyntax ‵maybeAppliedFR → MetaM Term474

| ‵(maybeAppliedFR| $e:term) => pure e475

| ‵(maybeAppliedFR| $e:term appliqué à $x:term) => ‵($e $x)476

| ‵(maybeAppliedFR| $e:term appliqué à $x:term en utilisant $y) => ‵($e $x $477

y)478

| ‵(maybeAppliedFR| $e:term appliqué à $x:term en utilisant que $y) =>479
‵($e $x (strongAssumption% $y))480

| _ => pure default481

482

elab "On" " conclut par " e:maybeAppliedFR : tactic => do483

concludeTac (← maybeAppliedFRToTerm e)484485

4 The actual code has some more cases that were removed here for conciseness.
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5 Some implementation mechanisms486

The previous sections have been all about the pedagogical choices of the library, about how487

they can be tweaked by teachers and how students can use them. We now switch gears and488

turn to the question of the Lean mechanisms that allow all this. Many of those mechanisms489

are specific to Lean 4, the new family of versions of Lean that was officially released for the490

first time in September 2023 and puts flexibility of use in the center [5].491

The flexibility of Lean as a proof assistant rests on two main pillars. The first one is that492

Lean is also a programming language and that almost all of Lean is implemented in Lean.493

This allows in particular to offer the possibility of overriding a lot of what Lean is doing,494

even pretty deep down, but we don’t really use that directly. However we certainly use Lean495

as a programming language here, so we need a very quick introduction to that.496

Lean is a pure functional programming language. So, fundamentally, it never does497

anything but defining and applying functions. However Lean makes extensive use of the498

monad pattern together with an extremely sophisticated notation system that can make it499

look a lot like imperative programming, but without the bad surprises [15]. An important500

inspiration is Haskell here. For our purposes, one can think of a monad M as a programming501

environment with a well specified state that can be read or written during program execution,502

a well specified way it can fail or not, and a well specified way of interacting or not with the503

outside world (such interactions could include reading files or printing things for instance).504

For any type α, the type M α is the type of programs that can do all this and return an505

element of type α (when they don’t throw an exception if M includes the exception throwing506

capability). Running such a program requires passing in an initial state and actually also507

return the new state if the state includes writable parts.508

An important example is the CoreM monad defined by Lean itself. It allows to describe509

and run programs that have read and write access to all definitions in scope, read only access510

to options, can fail by throwing certain kinds of exceptions, and can interact with the outside511

world (of course it has a more precise definition, we only give the flavor here).512

On top of this CoreM monad sits the MetaM monad which mainly adds read and write513

access to the meta-variable context. A meta-variable is a place-holder that can be used514

in particular in a partially constructed proof. For instance at the very beginning of an515

interactive proof of a lemma, the full proof is a single meta-variable. By itself a meta-variable516

only stores a unique identifier. The meta-variable context is a data structure holding in517

particular for each meta-variable its expected type (that would be the conclusion of the518

lemma in our example) and its local context (that would be the assumptions of the lemma).519

On top of MetaM sits the TacticM monad which describes tactics, with additional access to520

all the relevant goals.521

The second pillar of flexibility is the existence of typed concrete syntax objects as first522

class citizens [14, 13]. Here an important source of inspiration is the family of LISP languages,523

especially modern incarnations such as Racket. This is crucial for us. First it is crucial to our524

translation system that the syntax of tactics is clearly separated from their implementation.525

It also allows the assisted modes to provide suggestions that are guaranteed to be syntactically526

correct, because they produce syntax objects that are then printed as strings. This is seen in527

the snippets above that use syntax quotations such as ‵(maybeApplied| $e:term). Syntax528

objects can also be turned into other syntax objects, either by macros such as the one showed529

in Section 4 or by functions in the library.530

In order to explain this, we will follow part of the journey that allowed us to write in531

an earlier example: By hu applied to δ using that δ > 0 we get N such that Hu :532
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∀ n ≥ N, |u n - x0| ≤ δ. The place where the corresponding syntax is hooked to the533

tactic implementation is534

535
elab "By " e:maybeApplied " we get " news:newStuff : tactic =>536

do obtainTac (← maybeAppliedToTerm e) (newStuffToArray news)537538

The elab command is a shortcut that allows to define a syntax in the first line and immediately539

assign it some meaning in the second line. On the first line we see two literal strings and two540

variables e and news. Those variables are also syntax objects with some syntax categories541

that are defined in Verbose Lean. They are based in the crucial syntax category term which542

is used for syntax representing Lean expressions. The (simplified) definition of maybeApplied543

representing functions that may be applied to arguments, and then a function turning such544

syntax objects into terms syntax objects have been seen in the first code snippet in Section 4.2.545

The first line of that snippet registers our syntax category and the next four lines describe546

four ways to build a syntax object in this syntax category. Those four ways are very simple547

and combine terms and literal words.548

Now we can move to the second line of our elab command that calls the actual tactic.549

The do keyword starts a monadic program. Here it is a TacticM Unit program, i.e. a550

program in the TacticM monad that returns nothing – its only purpose is to manipulate the551

state of this monad. The type of the three involved functions are552

553
obtainTac : TSyntax ‵term → Array MaybeTypedIdent → TacticM Unit554

maybeAppliedToTerm : TSyntax ‵maybeApplied → MetaM (TSyntax ‵term)555

newStuffToArray : TSyntax ‵newStuff → Array MaybeTypedIdent556557

We will ignore the third function. Note that the return type of the second one does not match558

the type of the first input to the first function. We need a term and not only a program559

computing a term in the MetaM monad. Fortunately, program in this monad can be used in560

the TacticM monad which extends it. And the arrow in (← maybeAppliedToTerm e) tells561

Lean to run the maybeAppliedToTerm e program and feed the result at this spot.562

The definition of the maybeAppliedToTerm function was shown in Section 4.2. It is of563

course defined by pattern matching on the four possibilities to create a maybeApplied syntax564

object (plus a wild card possibility that is required because the syntax category could in565

principle be extended after the definition of this function). Note that the last interesting case566

also uses the strongAssumption% $y macro that expands to (by strongAssumption : $y)567

where strongAssumption is one of our tactics. Of course we could have used the expanded568

version here but the macro is used in several other places. Hence this example is a library569

function turning some syntax objects into other syntax objects using pattern matching and a570

macro that also does such a transformation.571

The result type is not directly TSyntax ‵term but a program in the MetaM monad. This572

is because the quotation mechanism includes hygiene guarantees, a mechanism preventing573

accidental name capture and requiring some information from the surrounding context.574

Note that one could inline this function into the obtainTac function. But this would575

make the latter into a language dependent function. As we saw in Section 4.2, Verbose Lean576

contains a French maybeAppliedFR syntax category and a function to turn syntax objects in577

this category into terms. It then uses the exact same obtainTac function from the language578

agnostic part of the library. Hopefully this already illustrate how we put to good use the579

monadic meta-programming framework of Lean and, crucially, its treatment of syntax objects.580

Syntax objects are also used to implement all the little DSLs we saw earlier.581

We now want to discuss part of the implementation of obtainTac. Its first task is to582

turn the term it got as its first argument into a Lean expression, i.e. an abstract syntax583
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object whose type Expr is an inductive type whose main constructors correspond to the584

fundamental operations of lambda calculus: function application, function abstraction. . .585

This process is possible in the TacticM monad which has access to all definitions in scope as586

well as to the local context of the proof where this tactic is used.587

Then obtainTac first tries to decompose the type of this expression. In our example this588

type is ∃ N, ∀ n ≥ N, |u n - x0| ≤ δ which can indeed be decomposed as a witness N589

and its property. This job of obtainTac is a trivial wrapper around a standard Lean tactic.590

More interestingly, when such a decomposition does not make sense, the tactic will try to591

apply an anonymous splitting lemma. We saw already how to configure the lemmas that are592

tried. Now we want to discuss how this configuration is stored and updated. We saw that593

programs in the CoreM monad have access to existing declarations. More generally they have594

access to the so-called environment that stores declarations but also a lot more information.595

Lean allows to declare environment extensions storing user information for later use. In the596

case at hand, the stored information is simply a list of lists of declaration names. But our597

library also uses more interesting extensions for assisted modes.598

The multilingual support for help and suggestions is based on a multilingual function599

dispatch framework by Mario Carneiro. Multilingual functions are first register it using the600

register_endpoint command. This gives a function that can immediately be used to define601

other functions. But running those functions requires implementing the endpoint in the602

current language, which is en by default but can be changed using setLang. For instance:603

604
/-- Multilingual hello function. -/605

register_endpoint hello : CoreM String606

607

/-- Greeting function refering to our endpoint before any implementation608

is defined. -/609

def greet (name : String) : CoreM String :=610

return (← hello) ++ " " ++ name611

612

#eval greet "Patrick" -- throws error: no implementation of hello found613

for language en614

615

implement_endpoint (lang := en) hello : CoreM String := return "Hello"616

617

implement_endpoint (lang := fr) hello : CoreM String := return "Bonjour"618

619

#eval greet "Patrick" -- returns "Hello Patrick"620

621

setLang fr622

623

#eval greet "Patrick" -- returns "Bonjour Patrick"624625

Note that above example creates three declarations: hello, hello.en and hello.fr,626

but only the first one is explicitly used. The implementations in this example are silly since627

they do no perform anything inside the CoreM monad, they simply return a value without628

reading or writing any CoreM state. But the hello function itself, which is created by the629

register_endpoint command, crucially uses CoreM to fetch the relevant information from630

the environment after reading the current language setting.631

The way this is achieved illustrates an important point about Lean’s flexibility. Lean632

as a proof assistant has very strong soundness guarantees, and the whole proof checking is633

handled by its type system. This translates to the default behavior of Lean as a programming634

language. We saw that being a pure functional programming language does not prevent635
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us from accessing state and having side-effects. One simply has to be honest about it by636

announcing in which monad we are working. Lean also allows to throw away type safety637

as long as we clearly announce it. And of course functions which do that cannot appear in638

proofs (they can participate in creating proofs, but can’t appear in the end result).639

A very simple version of the trick used in the multilingual framework is implemented640

in the example below. The runFunctionOn takes a string and a natural number, searches641

the environment for a declaration whose name is that string, then forcefully tells the Lean642

type system that this declaration is a function from natural numbers to natural numbers643

and applies it to the given number. The result is in CoreM N rather than N since it needs644

access to the environment to search for the relevant declaration and it could fail to find it645

so it needs to be able to throw errors – this is what happen in the second example below.646

But the new piece is the unsafe signpost in front of def. Indeed the declaration could be647

found but not with type N → N, bringing us into undefined behavior territory. This is what648

happen in the third example below where a function concatenating strings is found.649

650
unsafe def runFunctionOn (function : String) (a : N) : CoreM N := do651

let myFun ← evalConst (N → N) (Name.mkSimple function)652

return myFun a653

654

def foo (a : N) := 2∗a + 1655

656

#eval runFunctionOn "foo" 1 -- returns 3657

658

#eval runFunctionOn "baz" 1 -- fails with error message: unknown659

declaration baz660

661

def bar (a : String) := a ++ a662

663

#eval runFunctionOn "bar" 1 -- crashes Lean664665

The moral is that programming in Lean allows to do very unsafe things that completely666

bypass the guarantees offered by the type system, but this must be clearly flagged and667

cannot be used as a proof (explaining how soundness is protected is beyond the scope of this668

discussion). Note that our actual multilingual dispatch is much more careful and checks that669

types match before calling functions so that teachers don’t crash Lean when they make a670

type mistake in the implementation of a new help message. For performance reasons we671

don’t want to perform this check at every function call, so we also use an extension that672

keeps track of a list of endpoints and type-checked implementations.673

Although we insisted on our use of concrete syntax objects, we also use abstract ones,674

with type Expr, in the tactic backends. We even have a custom version VExpr with many675

more constructors that are useful when analysing goals and assumptions in assisted modes.676

For instance bounded quantifiers have dedicated constructors. We have a function parsing677

an Expr into a VExpr, hence factoring out work that many help functions would need to do.678

The type of help functions that analyse the goal is MVarId → VExpr → SuggestionM Unit679

where MVarId is used to indicate the relevant goal and the SuggestionM monad accumulates680

suggestions while providing access to the MetaM monad. Such functions are registered as681

part of the configuration by teachers, together with a pattern indicating (coarsely) which682

kind of goal they comment on. Calling the help tactic uses a discrimination tree to quickly683

locate functions with the relevant pattern and then check whether they are active in the684

configuration. This use of discrimination trees is not necessary until someone implements685

thousands of help functions, but the infrastructure is provided by Lean so it is free.686
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The last piece of Lean infrastructure that we want to comment on is the framework that687

allows us to build the suggestion widget. There are quite a few layers here. Lean implements688

the Language Server Protocol (LSP) with many extensions related to the so called info view689

which gather the tactic state display, various messages and user-defined widgets. Deep down,690

widgets are Javascript modules that export a React component that is displayed by the691

VSCode extension, can access information from Lean and modify the current document.692

However the ProofWidgets library [9] offers a powerful abstraction that allows us to ignore693

Javascript. In particular it features a JSX-like DSL as well as React components written in694

Lean and having a Lean interface. As a result, Verbose Lean does not contain a single line of695

actual Javascript or HTML. For instance the loop printing the suggestions is:696

697
for ⟨linkText, newCode, range?⟩ in suggs do698

let p : MakeEditLinkProps := .ofReplaceRange doc.meta699

⟨params.pos, params.pos⟩ (ppAndIndentNewLine curIndent newCode) range?700

children := children.push701

<li style={json% {"margin-bottom": "1rem"}}>702

<MakeEditLink703

edit={p.edit} newSelection?={p.newSelection?} title?={p.title?}>704

{.text linkText}705

</MakeEditLink>706

</li>707708

The li tag is directly turned into a HTML list item, whereas MakeEditLink refers to a709

ProofWidgets component. This component is rendered as a HTML link which, upon getting710

clicked, edits the proof script. All this is fully type-correct Lean code, with real-time711

typechecking and the expected editor support (for instance ctrl-clicking on MakeEditLink712

jumps to the relevant declaration).713

The tactic state natively allows to select names or sub-expressions in the local context or714

the goal. It records this information as an array where each element inhabits an inductive type715

Lean.SubExpr.GoalLocation having a constructor for each kind of selection, for instance716

a constructor for en element of the local context, one for a sub-expression in the type of717

such an element, etc. This layout is not convenient for our purposes so we introduce another718

datatype SelectionInfo which gather the same information by type of selections. We719

also have many functions querying this information. Each suggestion provider has type720

SelectionInfo → MVarId → WidgetM Unit analogous to the help function type.721

6 Related work722

Both the dream of using proof assistants for teaching and the work on alternative interfaces723

are very common. However most teaching uses focus on computer science, logic or discrete724

mathematics, or even on proof assistants for themselves.725

One notable exception is the work of Heather Macbeth at Fordham university [8]. However726

her course is more focused on computations and less on reasoning, so the need for a controlled727

natural language is less pressing. What is common to both contexts is the need for automation728

that is adapted to the level of details expected from students. And indeed some of our tactics729

rely on tactics develop for Macbeth’s course.730

Even more relevant is the comparison with the Coq-Waterproof project [16] that was731

developed independently and shares many goals with Verbose Lean. Discussing with its732

authors led to several improvements in our work. One thing that we still do not have is a733

nice custom text editor to mix rendered comments and interactive exercises. On the other734

hand, we do benefit from using a very flexible proof assistant that easily allows syntactic735
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freedom and interactive interfaces, as explained in this paper. The resulting proof scripts are736

closer to paper proofs and the user interaction model is richer.737

Also very relevant and interesting is the Diproche system [3, 4]. Its focus on controlled738

natural language is even greater than in Verbose Lean. Proofs are sequences of assertions in739

a more flexible language. Those assertions are sent to an automated prover that complains if740

it cannot justify a step. The main downside is that the proof structure is much less clear.741

On the topic of alternative interfaces, there are again many attempts that seem practicable742

only for pure logic. For instance this is the case of the Actema project [6] which proposes a743

drag and drop interface that is partly a more graphical version of our suggestion widget and744

can interface with Coq. However it seems difficult to integrate with computations as in our745

squeeze theorem example (which was chosen as the simplest example involving computations).746

And it very explicitly targets leaving no written trace at all, hence has a very different goal.747

Also in the same category but explicitly targeting teaching very young university students748

is the d∀∃duction project [11]. It features a graphical interface based on selecting sub-749

expressions and clicking buttons, with a completely invisible Lean backend. Again there is750

no written trace and it seems difficult for students to transfer their new skills to paper.751

Edukera [10] is another point and click interface that produces a written text. It is a web752

interface based on Coq. Its first main drawback is that teachers cannot write exercises or753

configure anything, they simply have access to a fixed set of exercises. In addition, there is754

no possibility to directly input text. The interface is only based on clicks and the text is755

purely on the output side. Also the development of Edukera stopped in 2018.756

As far as we know, none of those very nice projects have multilingual support except for757

Edukera. Most of them are only in English, Diproche is only in German and d∀∃duction is758

only in French.759

7 Future work760

Although some version of this library has been used for five years in University Paris-Saclay761

at Orsay, it is very much a work in progress, especially since the switch to Lean 4 made it762

a lot more flexible. The suggestion widget in particular has not been used with students763

yet, and is bound to need refinements and extensions. Error reporting is also a never-ending764

work in progress. Each new interface or piece of automation requires more care in case of765

incorrect input, and students always find new ways to trigger unexpected error messages.766

On the multi-lingual side, one short-term goal is to make it easier to create variants of an767

existing language. Another project is to offer more exercises that are ready to use or modify768

for teachers. Existing exercises are not yet all ported to Lean 4, and new ones should be769

created in different fields of elementary mathematics.770

On the pedagogical side, there are plan to rigorously assess the benefits of using this771

library with the APPAM5 team which includes specialists in education sciences.772
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