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Abstract

The weak Whitney embedding theorem says that a σ-compact smooth
m-dimensional manifold can be embedded into R2m+1. This paper de-
scribes the current state of a project aimed to formalize this theorem
in the Lean theorem prover. Currently, I formalized a “baby” version
of this theorem and the existence of a smooth partition of unity subor-
dinate to a given open covering.

1 Introduction

Recall that a smooth partition of unity on a smooth manifold M is a collection of smooth functions
{ fi : M → R }i∈I such that

• each fi takes values on [0, 1];
• the supports of fi form a locally finite family of sets, i.e., for every point x onM there exists a neighbourhood
U 3 x such that all but finitely many fi vanish on U ;

• the sum
∑
i fi(x) equals 1 at every point x; this sum makes sense due to the previous assumption.

If M is a σ-compact Hausdorff topological space1, then for every covering {Ui }i∈I of M by open sets there
exists a partition of unity { fi }i∈I that is subordinate to this covering, i.e., for each i, Ui includes the topological
support of fi.

Smooth partitions of unity are used in many definitions and theorems about smooth manifolds, including, e.g.,
the definition of the integral of a differential form over a manifold, the construction of the current defined by a
smooth foliation with a transverse invariant measure, and the proof of the weak Whitney embedding theorem. More ex-

amples?Mathlib is a project aimed to formalize lots of real-world mathematics in the Lean proof assistant (currently
we use a community fork of Lean 3; we are working on migration to Lean 4). To the best of my knowledge, Lean
is the only proof assistant with a formalization of manifolds, and my project is the only formalization of smooth
partitions of unity available for Lean, hence it is the only formalization of smooth partitions of unity.
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1In many books one or both of these assumptions are a part of the definition of a manifold. Mathlib’s definiton does not include
these assumptions because many theorems still hold true without them.



2 Implementation details
2.1 Ingredients of the proof

In this section I briefly describe notions and theorems formalized as a part of the project.

2.1.1 Manifolds

During the past two years, Sébastien Gouëzel formalized the notion of an infinitely smooth manifold in Lean.
This is not my work and I hope that some day Sébastien will write a paper about this formalization, so I will
only list a few design choices that are important for my project. Understanding these choices may help those
who will decide to read the code.

First, a charted_space is a topological space M with an atlas of charts taking values in another topological
space H. We also assume that there is a choice of the “canonical” chart at each point x ∈ M , denoted by
chart_at H x.

While the definition works in much more general cases, the main two examples are H = Rn and H =
{x ∈ Rn | 0 ≤ x1 }. We do not assume that H is a subset of Rn so that H can be the space itself, not the set of
all points of the space. Instead, we fix a closed embedding of I : H → E into a normed vector space E with a
left inverse I−1 : E → H that is continuous on the whole space. This embedding is called a model with corners.
Then we use I to turn charts chart_at into extended charts taking values in E and define smoothness etc. in
terms of these charts. Most parts of the proofs about smooth bump functions are done in the extended charts.

2.1.2 Paracompactness

A topological space is said to be paracompact if every open covering admits a locally finite refinement. For a finite
dimensional Hausdorff topological manifold, paracompactness is equivalent to σ-compactness of each connected
component. I did not need and have not formalized the forward implication.

The reverse implication follows from a more general fact: a locally compact σ-compact Hausdorff topological
space is a paracompact space. I prove a more precise version of this statement: if X is a locally compact σ-
compact Hausdorff topological space and for each point x in X, {Bα }α∈I(x) is a basis of the neighbourhoods
filter N (x), then each open covering of X admits a locally finite refinement that consists of elements of the bases
Bα. I use this lemma to find a locally finite covering of the manifold by supports of smooth bump functions.
One can use the same lemma to find, e.g., a locally finite refinement by open balls in a metric space.

While I do not need it for smooth partitions of unity, I also formalize Mary Rudin’s proof [?] of the fact that
every (extended) metric space is paracompact.

2.1.3 Shrinking lemma

Shrinking lemma says that a point finite open covering {Ui }i∈I of a normal topological space admits an open
refinement {Vi }i∈I such that the closure of each Vi is included by Ui. I formalize this lemma for general
topological spaces, as well as provide specialized versions for (extended) metric spaces.

2.1.4 Urysohn’s Lemma

Urysohn’s lemma says that for any two disjoint closed sets in a normal topological space, there exists a continuous
function that is equal to zero on the first set and is equal to one on the second set. While this lemma is not
needed for construction of a smooth partition of unity, only for its continuous counterpart, I formalize it (and
continuous partition of unity).
Some notes about my formalization of Urysohn’s lemma?

2.1.5 Smooth bump functions

Given a normed vector space V and a point c : V , a smooth bump function centered at c is an infinitely smooth
function f : V → R, 0 ≤ f(x) ≤ 1, that is equal to one in a neighborhood of c : V and is equal to zero outside of
an open ball centered at c.

The construction of a smooth bump function starts with the function

f1(x) =

{
e−1/x, if x > 0;

0, otherwise.



This is an infinitely smooth function that is equal to zero on (−∞, 0] and is positive on (0,+∞). These properties
were formalized by Sébastien Gouëzel in 2020.

Next, the infinitely smooth function f2(x) =
f1(x)

f1(x)+f1(1−x) equals zero on (−∞, 0], equals one on [1,+∞), and
takes values between zero and one on (0, 1). This function is formalized as real.smooth_transition.

If E is an inner product space, then one can define an infinitely smooth bump function using the formula
f3,c(x) = R−‖x−c‖

R−r . This function equals one on the closed ball B(c, r) and vanishes outside of the open ball
B(c,R). This construction works in any inner product space, not only finite dimensional spaces.

If V is a finite dimensional real vector space, then there exists a linear equivalence e between V and the
standard Euclidean space E of the same dimension. The function f4(x) = f3,e(c)(e(x)) is an infinitely smooth
bump function. It is equal to one on e−1(B(e(c), r)) and vanishes outside of e−1(B(e(c), R)). I call these
preimages euclidean balls, see Sec. 2.1.6 for details. This construction works only in a finite dimensional real
vector space but does not require that the norm comes from an inner product space structure.

Finally, if c is a point on a finite dimensional manifold M , ξ : U → V , c ∈ U ⊂ V is a smooth chart, and R is
so small that the range of ξ includes the closed euclidean ball Beu(ξ(c), R), then f4(ξ(c)) ◦ ξ is a smooth bump
function on M . The actual definition is a bit more convoluted to make it work for manifolds with boundary.

2.1.6 Unspecified Euclidean space structure

When we construct a smooth bump function, we first define it on an inner product space, then use the fact that
any finite dimensional real vector space is isomorphic to the Euclidean space of the same dimension to transfer
the smooth bump function to any finite dimensional real vector space.

Many properties of the resulting function are best formulated in terms of the distance transferred from the
Euclidean space, not in terms of the original distance on a finite dimensional vector space.

So, I define euclidean.dist to be this distance and build a minimalistic API about this definition. This way
proofs about smooth bump functions on a finite dimensional real vector space V do not need to explicitly use
an equivalence between V and the Euclidean space of the same dimension.

2.1.7 Bump function covering

A collection of infinitely smooth functions { fi }i∈I is a covering by supports of smooth bump functions if the
following conditions hold true:

• 0 ≤ fi(x) ≤ 1 for all i and x;
• supports of fi is a locally finite family of sets;
• for each x there exists i such that fi equals one in a neighborhood of x.

The formal definition assumes that fi are smooth bump functions described in Sec. 2.1.5.
The main fact about these coverings says that every family of neighborhoods {Ux }x∈M , Ux ∈ N (x), admits

a covering { fi }i∈I by supports of smooth bump functions such that supp(fi) ⊂ Uci , where ci is the center of
fi. This fact almost immediately follows from existence of smooth bump functions, the shrinking lemma, and a
version of the lemma about paracompactness of a locally compact σ-compact space, see Sec. 2.1.2.

The main reason to deal with coverings of this type is to use them to define a partition of unity, see below. I
also directly use a covering by supports of smooth bump functions to prove a simple particular case of the weak
Whitney embedding theorem: a compact manifold can be embedded into Rn for some sufficiently large n.

2.1.8 Partition of unity

A smooth partition of unity is a collection of smooth nonnegative functions { gi : M → R }i∈I such that supports
supp gi form a locally finite collection of sets and for each x we have

∑
i gi(x) = 1.

If { fi }i∈I is a covering by supports of smooth bump functions, then the functions gi given by

gi(x) = fi(x)
∏
j<i

(1− fj(x))

form a smooth partition of unity. Thus every open covering {Ui } admits a subordinate partition of unity.



2.1.9 Hausdorff dimension

All proofs of the weak Whitney embedding theorem I know about rely on the following particular of the Sard’s
Theorem: if f : Rn → Rm is a smooth (or, more generally, lcally Lipschitz continuous) map and n < m, then the
range of f has measure zero, hence its complement is everywhere dense.

The most straightforward way to prove this fact is to say that the Hausdorff dimension of the range is at most
dimH(Rn) = n < m = dimH(Rm). I have formalized the definition of the Hausdorff dimension of a metric space.
In order to prove this theorem, I still need to formalize dimH(Rn) = n and the fact that a locally Lipschitz
continuous map does not increase the Hausdorff dimension.

2.2 Design choices

2.2.1 Covering of subsets

Most sources (including the rest of this paper) define partition of unity etc. only for coverings of the whole space.
At the same time, quite a few proofs need only a part of the covering that covers a specified closed set. While
in traditional proofs it is easy to jump between open coverings of a closed set and open coverings of the whole
space, it is much less convenient to do in formal proofs. So, I first prove most lemmas for a covering of a closed
set s, then apply them to s = univ2.

2.2.2 Sums with finitely many non-zero terms

When I started working on this project, Mathlib had two functions formalizing the notion of a finite sum:
finset.sum and finsupp.sum. The former function takes a finite set s : finset α and a function f : α→M ,
where M is an additive commutative monoid. The latter function takes a function f : α→M such that the set
supp f = {x | f(x) 6= 0 } is finite3, and another function g : α → M → N , then computes

∑
x∈supp f g(x, f(x));

this sum has nice properties provided that g is additive in its second argument.
One of the assumptions in the definition of a partition of unity is that for each x, the sum of all nonzero fi(x)

equals one. While it is possible to express this using finset.sum, it would be not convenient to deal with this
definition for a few reasons.

• one needs a proof of finiteness of { i | fi(x) 6= 0 } to state the property
∑
i fi(x) = 1, making the definition

of the structure and basic lemmas about it much less readable;
• one would need a separate lemma stating that actually one can use any other finite set s such that fi(x) = 0
for all i /∈ s instead of { i | fi(x) 6= 0 };

• the same difficulties appear with other sums that involve fi(x).

While the finsupp.sum API solves the last two issues, it still requires a proof of finiteness to state the
property. Also, the standard proof of existence of a partition of unity subordinate to a given open covering
involves products with finitely many non-one multipliers, and finsupp.sum has no multiplicative counterpart.

Fortunately, at about the same time Kexing Ying and Kevin Buzzard submitted a draft of one more function
formalizing a sum of finitely many terms. The new function finsum takes a function f : α → M , where M is
an additive commutative monoid, and returns

∑
i f(i) if f vanishes at all but finitely many points, and zero

otherwise. This approach makes all the problems mentioned above go away (more precisely, to API lemmas
about the new function). I added a multiplicative version finprod and polished the API, then used it in my
project.

Now the assumption looks like
∑f

i, f i x = 1

3 Future plans
The main goal of this project is to formalize the weak Whitney embedding theorem. The main missing ingredient
is a particular case of Sard’s Theorem: if f : Rm → Rn is a smooth map and m < n, then the complement to the
range of f is everywhere dense in the codomain. This lemma easily follows from three helper lemmas:

• the Hausdorff dimension of Rn equals n;

2In Lean, univ is the set that contains all elements of a type.
3Following mathlib convention, I do not take closure in the definition of supp f . This way it works without a topological space

structure on the domain of f .



• for a locally Lipschitz map, the Hausdorff dimension of the image of a set is less than or equal to the
Hausdorff dimension of the original set;

• if s is a set in Rn such that dimH s < n, then the complement to s is everywhere dense.

I have formalized the definition of the Hausdorff dimension of a set in a metric space, and I am going to
formalize the rest in the next few weeks, then start working on the proof of the weak Whitney embedding
theorem.

Once this project is done, it opens path to formalization of large parts of differential geometry. For example,
it would be nice to formalize differential forms on a manifold and integral of a differential form over a manifold;
the latter part needs a partition of unity subordinate to the atlas. Another possible goal is to formalize Sard’s
Theorem and related theorems like Thom’s transversality theorem.
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