
1

Benchmarking Energy Calculations Using Formal Proofs

Ejike D. Ugwuanyi1, Colin T. Jones1, John Velkey1, and Tyler R. Josephson1,2

1Department of Chemical, Biochemical, and Environmental Engineering,

University of Maryland, Baltimore County, Baltimore, MD, USA
2Department of Computer Science and Electrical Engineering,

University of Maryland, Baltimore County, Baltimore, MD, USA

April 28, 2025

Abstract

Traditional approaches for validating molecular simulations rely on making software open source and
transparent, incorporating unit testing, and generally employing human oversight. We propose an ap-
proach that eliminates software errors using formal logic, providing proofs of correctness. We use the
Lean theorem prover and programming language to create a rigorous, mathematically verified frame-
work for computing molecular interaction energies. We demonstrate this in LeanLJ, a package of
functions, proofs, and code execution software that implements Lennard-Jones energy calculations in
periodic boundaries. We introduce a strategy that uses polymorphic functions and typeclasses to bridge
formal proofs (about idealized real numbers) and executable programs (over floating point numbers). Ex-
ecution of LeanLJ matches the current gold standard NIST benchmarks, while providing even stronger
guarantees, given LeanLJ’s grounding in formal mathematics. This approach can be extended to for-
mally verified molecular simulations, in particular, and formally verified scientific computing software,
in general.

Keywords: Formal verification, Lean 4, molecular simulations, functional programming.

1. Introduction

Molecular simulations serve as a cornerstone for understanding the behaviour of matter at the atomic scale,

enabling predictions of properties and phenomena that underpin disciplines ranging from material science to

biophysics. Central to these simulations is the accurate modelling of interactions between particles. Among

the most widely used models are the Lennard-Jones potential and the Coulomb interaction, which capture

the essential physics of van der Waals forces and electrostatic interactions [1] [2] [3] [4] [5]. The Lennard-

Jones potential describes non-bonded interactions between particles, particularly in simple fluids and gases

[6] [7]. It describes the interaction between a pair of neutral atoms or molecules based on their distance [8]

[9], and efficiently captures the balance between attractive and repulsive forces [1] [10].

2

Practical simulations also incorporate periodic boundary conditions (PBC) to approximate an infinite system

by wrapping particles around the edges of the simulation box [11] [12]. This ensures that no particle is arti-

ficially confined by the box itself. When computing interactions, the minimum image convention is applied,

which means that each particle interacts only with the closest periodic copy of another particle [13]. Using

the shortest physically meaningful (periodic) distance between particles avoids redundant calculations and

reduces computational overhead. Long-range effects are approximately included via tail corrections.

Software tools like LAMMPS and Gromacs [14][15][16] allow users to simulate the dynamics of large

molecular systems. However, the sheer complexity of these software packages and the systems they intend

to model presents challenges in making simulations transparent, reproducible, useable by others and extensi-

ble (TRUE) [17]. For example, the SAMPL Challenges (Statistical Assessment of the Modelling of Proteins

and Ligands) [18] and the Industrial Fluid Properties Simulation Challenges [19][20] task computational

researchers to predict the solvation or binding free energies of small molecules or the thermophysical prop-

erties of fluids. Each year, researchers submit highly variable answers, reflecting differences in modelling

choices by the researchers (e.g. force fields, simulation conditions, free-energy extrapolation strategies,

etc.), as well as more hidden, subtle differences amongst software packages (e.g. default settings for man-

aging Lennard-Jones cut-off and settings for Ewald summation). Projects such as the Molecular Simulation

Design Framework (MoSDeF) [17][21] and the Molecular Sciences Software Institute (MolSSI) [22] ad-

dress these issues by providing reproducible workflows for molecular simulation setup, and by teaching and

promoting best practices in software development [23]. Simulation software can also be validated by com-

paring to benchmarks, such as those on the National Institute of Standards and Technology (NIST) Standard

Reference Simulation Website (SRSW) [24].

Category of Error Example Intervention Lean

Syntax Not closing parentheses Editor Editor
Runtime Accessing element in list

that doesn’t exist
Run program, program gives error
message

Editor

Semantic Missing a minus sign,
transposing tensor indices

Human inspection of the code;
test-driven development; observing
anomalous behaviour

Editor

Floating-point/
Round-off

Subtracting small values
from large values,
ill-conditioned matrices

Modifying simulation methods,
using double precision floats

–

Table 1: Errors in scientific computing software, and typical interventions. Our goal is to develop an ap-
proach to address syntax, runtime, and semantic errors in Lean at the “editor” stage, before code is compiled.

We propose an alternative paradigm for improving reliability of molecular simulations. To illustrate, con-

sider the taxonomy of programming errors in Table 1. The simplest are syntax errors: these are addressed

immediately because the code cannot compile, the editor highlights the mistake, and the programmer fixes

it. Runtime errors occur during code execution, and may arise when users run the program under conditions

not anticipated by the software developers. Nonetheless, runtime errors typically provide a helpful error

message pointing toward the source of the issue. The deepest issues are semantic errors in the meaning of

3

the software: Python won’t complain about misinterpreting a scientific principle or incorrectly transcribing

math into code – it’s simply not designed for that. Floating-point and round-off errors create numerical

inaccuracies, since computers do not operate with infinite mathematical precision. These are addressed by

judicious choices of simulation settings and algorithm choices, and by checking conditions like energy con-

servation after simulation completion [25].

In this work, we propose a strategy for catching syntax, runtime, and semantic errors at the “editor” stage,

namely, before the code is compiled. Our approach stems from the formal methods community in computer

science, which seeks to prove when software is correct by construction before it is run (also known as static

program analysis), unlike traditional testing, which checks for errors by running a program with different

inputs. This approach is handy in areas where even small errors can have significant consequences, such

as hardware design and critical software systems. A prominent example is the Pentium FDIV bug in Intel

processors in the early 1990s, the subject of a multi-million dollar recall stemming from a few misplaced

bits in chip software [26]. Now, formal verification approaches prove the correctness of such arithmetic

operations in manufactured chips [27]. Our approach most closely resembles that of Selsam, et al., who

explored how formal methods can be applied to machine learning systems in Certigrad [28]. By proving

the correctness of each step mathematically, this approach exposes errors that might otherwise slip through

traditional empirical testing. They highlight the ability of theorem provers like Lean to eliminate entire

classes of high-level errors that arise in complex software systems by enforcing correctness through formal

reasoning. They demonstrate their approach by building a variational auto-encoder in Lean, proving prop-

erties about their implementation of stochastic gradient descent.

Most prior work on formal methods has focused on floating point operations [29]. In molecular simulations,

these are typically insignificant, but they can lead to issues in certain settings, such as when programs are

run with less precision to increase speed, or under extreme conditions. Tran and Wang [30], explored using

interval arithmetic to model the propagation of these uncertainties in molecular dynamics simulations. Our

work sets aside the imprecision of floating-point arithmetic, and instead focuses on verifying higher-level

logic and mathematics. Incorporating interval arithmetic into our approach would in principle be possible,

but these tools are currently in development [31].

Lean 4 is a theorem prover and functional programming language designed to write and verify mathematical

proofs, as well as write formally-verified software [32]. Unlike traditional programming languages used for

scientific computing (C, FORTRAN, Python, etc.), Lean provides a formally verified framework in which

proofs of correctness can be explicitly constructed and checked [33]. We previously used Lean to formal-

ize chemical physics [34]. Lean is also being used to formalize theories in high-energy physics [35]. We

also recognize Tomáš Skřivan’s ongoing SciLean project, which is working out methods for doing efficient,

array-based computations in Lean [36]

In our work [34], we showed how theories in science can be rigorously encoded using the Lean theorem

prover, proving the correctness of the derivations, grounding them in the foundations of mathematics. We

formalized derivations of the Langmuir and BET adsorption models, meticulously defining assumptions and

4

Standard approach: test code empirically

Hybrid method: use tests and proofs

Program Test

Debug

Code that
passes tests

Specify Program Prove

Debug

Code with
correct math

Test

Formal approach: verify code mathematically

Specify Program Prove

Debug

Code with
correct math

Figure 1: Comparison of code correctness approaches (adapted from [28]): the standard test-debug cycle,
formal verification using proofs, and a hybrid method combining tests and formal proofs, that we adopt here.

derivations to ensure mathematical rigour. That work was limited to proofs in Lean – we extend that now to

executable programs with formally-verified properties.

In this paper, we first present a familiar, informal description of Lennard-Jones energy calculations of pe-

riodic fluids (Section 3). We then highlight the proof components (especially definitions and theorems) for

the formal implementation in Lean (Section 4). Section 5 describes how we implement these energy calcu-

lations in Lean, which requires novel approaches using functional programming, type polymorphism, and

monads. Section 6 compares our calculations with the results from the NIST SRSW benchmarks [24].

2. Methods

We implemented this using Lean version 4.16.0-rc2, Mathlib 4 at commit e1a3d4c, and Visual Studio Code

version 1.96. The source code is available in LeanLJ Repository.

3. Informal Description of the Molecular Simulation System

The Lennard-Jones system is modelled as a collection of N particles confined within a cubic simulation

box of side length L. The position of each particle is represented as a vector in a three-dimensional space,

ri = (xi,yi,zi), where i = 1,2, . . . ,N. The interaction between particles is governed by the Lennard-Jones

https://github.com/ATOMSLab/LeanLJ

5

potential:

VLJ(ri j) = 4ε

[(
σ

ri j

)12

−
(

σ

ri j

)6
]

(1)

where ri j is the distance between particles i and j, ε represents the depth of the potential well, and σ is the

characteristic length scale.

Periodic boundary conditions (PBCs) are applied to simulate an infinite system as shown in the equation for

particle coordinates in the x, y, and z axes, respectively.

xi_wrapped = xi −L · round
(xi

L

)
(2)

yi_wrapped = yi −L · round
(yi

L

)
(3)

zi_wrapped = zi −L · round
(zi

L

)
(4)

Because the LJ particles are in a system with PBCs, the distance between two particles is not the Euclidean

distance, but the minimum image distance, the shortest pairwise distance considering the periodicity of the

box as given in the equation below.

ri j =

√(
∆x−L · round

(
∆x
L

))2

+

(
∆y−L · round

(
∆y
L

))2

+

(
∆z−L · round

(
∆z
L

))2

(5)

(a) Periodic boundary conditions. (b) Minimum image convention.

Figure 2: (a) Periodic boundary conditions: Particles outside the central cubic simulation box are wrapped
back into it. Arrows represent the wrapping process along the directions. (b) Minimum image convention:
Particles interact with the nearest periodic image, ensuring the shortest distance is used in calculations.

To improve computational efficiency, a cut-off radius rc is introduced. Interactions are considered only for

particle pairs that satisfy ri j ≤ rc, with contributions beyond this radius set to zero. This truncation neglects a

6

relatively minor contribution to the potential energy, depending on the cut-off radius rc as shown in Figure 3.

V (r) =

VLJ(r), r ≤ rc

0, r > rc

(6)

The Lennard Jones potential function is defined in part: When r ≤ rc, the potential is calculated as 4ε

[(
σ

r

)12 −
(

σ

r

)6
]
,

which captures both short-range repulsion and long-range attraction. For r > rc, the potential is set to zero,

reflecting the computational practice of truncating interactions beyond the cut-off to save resources. In

addition, the inclusion of a cut-off distance makes the function practical for large-scale molecular systems.

Figure 3: The Lennard-Jones potential, truncated at the cut-off. This plot was generated using Python and
matplotlib, since data visualization in Lean is still experimental.

The total internal energy Upair is calculated by summing the energies of the pairs of particles interacting.

This is given by the following equation, where V (ri j) is the simulated pair potential:

Upair =
N

∑
i=1

N

∑
j=i+1

V (ri j), where ri j ≤ rc. (7)

The neglected part of the Lennard-Jones potential can be approximately included by incorporating a “Long-

Range Correction” (LRC), also known as “tail corrections". This incorporates the ensemble-averaged energy

contribution of the particles beyond the cut-off radius, in a manner that only depends on the density of the

system and does not require pairwise distance calculations [13]. The LRC is given by:

ULRC =
1
2

4πρ

∫
∞

rc

r2V (r)dr, (8)

where ρ is the density of the system, rc is the cut-off radius, and V (r) is the pairwise energy function.

7

When V (r) = 4ε

((
σ

r

)12 −
(

σ

r

)6
)

, this integrates to:

ULRC =
1
2

4πρ

∫
∞

rc

r2VLJ(r)dr (9)

=
1
2

4πρ

∫
∞

rc

r24ε

((
σ

r

)12
−
(

σ

r

)6
)

dr (10)

=
8περ

r3
c

(
σ12

9r6
c
− σ6

3

)
(11)

4. Formally Defining the Mathematics

Compare
result with

NIST
standard

P
A
S
S

Proofs about
minimum

image
distance

Proofs about
periodic

boundaries

Wrap
molecules
into box

Recursion over N molecules

Calculate
pairwise
distances

Recursion over N*(N-1) pairs

Calculate
LJ energy

Proving

Proofs about
LJ potential

Programming

Proofs that recursion terminates

Sum to
get total
energy

Testing
Match
NIST?

Cell
Length

N
Particles

✔8.030

✔8.0200

✔10.0400

✔10.0800

Recursion for sum

N particle
positions

Compute
long-range
correction

Derivation of
long-range
correction

Figure 4: Workflow of the Lennard-Jones energy calculation using LeanLJ. The process involves recursive
programming, formal proofs, and comparison to NIST benchmarks.

The previous section was an informal description of these concepts; now, we turn to a formal description,

expressed as Lean code. Lean provides a structured framework to rigorously define the components of our

system and prove their properties. Figure 4 illustrates our code and the means by which it is verified. In this

section and the next, we describe the components of the system. We start by illustrating Lean’s capabilities

as a theorem prover.

4.1. Introduction to Lean syntax

Here are a few examples to illustrate the syntax of Lean 4. Lean’s basic objects include types, tactics, def-

initions, and theorems; we don’t introduce any custom types or tactics in this work, so we will focus on

definitions and theorems. A definition has the following basic structure1:

def name_of_object (p1 : parameter1) . . . : type_of_object := the_def_of_the_object

1This overview is inspired by the presentation in [35].

8

A theorem (or equivalently, a lemma) has the following basic structure:

theorem name_of_theorem (p1 : parameter1) . . . (a1 : assumption1) . . . :
thing_to_be_proved := by

proof

Lean’s rich type system enables theorems to be stated and proved; while the user writes code, Lean effec-

tively checks the types of the objects in the code for consistency. Type-checking a theorem object amounts

to validating whether it is true. As the user writes the steps in a theorem’s proof, Lean provides a concise

overview of the current proof goal, as well as the current state of the assumptions and parameters. This

information is presented in the “Lean Infoview’ in VS Code, in what is known as a tactic state, which is

organized as follows:

p1 : parameter1
. . .

a1 : assumption1
⊢ current_state_of_goal

To learn more about Lean, we highly recommend the textbooks “Mechanics of Proof" by Heather Macbeth

[37] and “Functional Programming in Lean" by David Christiansen [33].

4.2. Lennard Jones Potential

We can write the Lennard-Jones potential energy function in multiple ways. In every case, we aim to for-

mally define Eq. 6, using a function that takes four parameters (ε , σ , r, and rc) and returns the energy

between a pair of particles.

The first version of this is lj. In this version, all parameters are type R, for the real numbers. Because real

numbers are noncomputable, Lean requires this definition to be prefaced with the noncomputable keyword.

This would be an issue if we were executing this function in our calculations, but we intend to execute other

versions of this function – see functions lj_float and lj_p for computable LJ functions in Section 5.

noncomputable def lj (r r_c ε σ : R) : R :=
if r ≤ r_c then

4 * ε * ((σ / r) ^ 12 - (σ / r) ^ 6)
else

0

While lj may be a natural way to write Eq. 6, alternative formulations are typically used for efficient

molecular simulations. For instance, r−3 can be computed first, which is then squared to obtain r−6, which

can be squared again to obtain r−12. Our function lj_real reflects this idea, using intermediate variables

9

like r6 and r12. Because lj_real is also a function of real numbers, it is also noncomputable.

noncomputable def lj_real (r r_c ε σ : R) : R :=
if r ≤ r_c then

let r6 := (σ / r) ^ 6
let r12 := r6 ^ 2
4 * ε * (r12 - r6)

else
0

Lean allows us to formally prove the equivalence of these two forms, as shown in the theorem lj_eq,

allowing us to use either representations confidently. This capability enables not only correctness, but also

flexibility in implementing the most efficient forms for simulation. Keep in mind that we don’t address

floating-point or round-off errors; this guarantee holds only for idealized functions over real numbers, which

have infinite precision. If a more-efficient version of a function is mathematically equivalent (over reals) to

a base case, but leads to more round-off errors, that won’t be detected in our formulation. A more-efficient

version that is not mathematically equivalent (e.g. it invokes an approximation) would be shown to be

distinct by this approach.

theorem lj_eq (r r_c ε σ : R) : lj_real r r_c ε σ = lj r r_c ε σ := by
unfold lj_real
unfold lj
simp
ring_nf

The theorem lj_eq formally proves that lj_real r r_c ε σ = lj r r_c ε σ . This illustrates the

syntax of Lean functions: unlike Python, which uses parentheses to denote function application (e.g.,

lj_real(r, r_c, epsilon, sigma)), Lean uses simple whitespace. In the expression lj_real r r_c

ε σ , each argument is applied to the function from left to right, separated by spaces. Thus, lj_real r

r_c ε σ represents “apply the function lj_real to these four arguments.” This compact syntax is helpful

in mathematical reasoning, where function application is so pervasive.

We can also prove various mathematical properties of our LJ function. Theorem cutoff_behavior states

that for any r > rc, the value of the Lennard-Jones potential is zero. (The way to read this theorem, is “for

real numbers ε , σ , r, and rc, assuming r > rc, this function evaluates to zero”). This reflects practice of

truncating the potential beyond the cut-off distance.

10

theorem cutoff_behavior (ε σ r r_c : R) (h : r > r_c) :
lj_real ε σ r r_c = 0 := by
unfold lj_real
simp [if_neg (not_le_of_gt h)]

Theorem ljp_eq_le establishes that, in 0 < r ≤ rc, the Lennard-Jones potential is 4ε

[(
σ

r

)12 −
(

σ

r

)6
]
.

Lean can use logical operators like ∀ (for all) for defining properties of functions.

theorem ljp_eq_le {r_c ε σ : R} : ∀ r ∈ {r | r > 0 ∧ r ≤ r_c },
lj_real r r_c ε σ = 4 * ε * ((σ / r)^12 - (σ / r)^6) := by
intro r hr
have h_r_le_rc : r ≤ r_c := hr.2
unfold lj_real
rw [if_pos h_r_le_rc]
ring

We also prove the continuity of the function in this range, in Theorem ljp_continuous_closed_domain.

Continuity is essential in molecular dynamics simulations because forces are evaluated on the basis of en-

ergy gradients, and discontinuities can introduce artificial forces, destabilizing numerical integration [38].

Importantly, we do not, indeed we cannot, prove that this function is continuous for the whole domain of

r; the LJ function diverges at r = 0 and undergoes a step change at r = rc. Researchers have implemented

alternative truncation methods for the LJ function, such as the truncated and shifted LJ function or the linear

force shift function, which would be continuous for all 0 < r [39]. These properties could be formalized in

Lean, but in this work, we have focused on the simple LJ function.

theorem lj_p_continuous_closed_domain (r_c ε σ : R) :
ContinuousOn (fun r => if r ≤ r_c then 4 * ε * (((σ / r) ^ 6) ^ 2 - (σ / r) ^ 6)
else 0)
{r | 0 < r ∧ r ≤ r_c} := by

have subset_pos : {r | 0 < r ∧ r ≤ r_c} ⊆ {r | r > 0} := by
intro r hr
exact hr.1

have base := (scale_continuous ε σ).mono subset_pos
apply ContinuousOn.congr base
intro r hr
simp [if_pos hr.2]
left
ring

11

4.3. Periodic Boundaries

We follow the formulation in Allen and Tildesley [38] in defining functions for wrapping molecules ac-

cording to periodic boundary conditions (PBCs) and calculating the minimum image distance. The periodic

boundary function wraps a position from anywhere in space into the bounds of the simulation box. This

function pbc takes in a one-dimensional position and box length and outputs a new position (all have type

R).

noncomputable def pbc_real (pos box_length : R) : R :=
pos - box_length * round (pos / box_length)

We formally proved that the wrapped displacement produced by the periodic boundary condition function

lies within the interval [−L/2,L/2] for any real coordinate p and positive box length L. This ensures that

particles always interact with the nearest periodic image, which is a key assumption in molecular dynamics

simulations. The proof was constructed in Lean by expressing the wrapped position as L · δ , where δ =
p
L − round

(p
L

)
, and rigorously showing that |δ | ≤ 1

2 , hence |pbc_real(p,L)| ≤ L
2 .

theorem abs_pbc_le (p L : R) (hL : 0 < L) :
|pbc_real p L| ≤ L / 2 := by

dsimp [pbc_real]
let δ := (p / L) - round (p / L)
have h_eq : p - L * round (p / L) = L * δ := by

rw [mul_sub]
field_simp [hL.ne’]

rw [h_eq, abs_mul, abs_of_pos hL]
have hδ : |δ| ≤ 1 / 2 := abs_diff_round_le_half (p / L)
trans L * (1 / 2)
· exact mul_le_mul_of_nonneg_left hδ hL.le
· field_simp

4.4. Minimum Image Distance

In defining the minimum image distance, we found it more convenient to first define the squared minimum

image distance, and then take the square root of that to obtain the minimum image distance. The box

length box_length and positions posA and posB are vectors in RN (wtih N = 3) where each component

corresponds to a coordinate in the respective dimension. This is specified using a vector type Fin 3 → R.
2 The function iterates over each of the three dimension and computes a displacement, which is adjusted

2Lean can handle particularly rich mathematics through its use of dependent types – types that depend on a value. Vector is an
example of this – it is a subtype of List that depends on a value, the length of the list, which in our case, is 3. This is one way in
which Lean avoids runtime errors; before the code compiles, Lean can ensure that a function taking a vector of length N will always
receive a vector of length N.

12

using the periodic boundary function pbc_real. The adjusted displacements are squared and summed over

all dimensions. In our squaredminImageDistance_real function, the decide tactic is employed in each

invocation of the vectors posB and posA, to prove to Lean that elements 0, 1, and 2 are in scope.

noncomputable def squaredminImageDistance_real (box_length posA posB : Fin 3 → R) : R
:=

let dx := pbc_real (posB ⟨0, by decide⟩ - posA ⟨0, by decide⟩) (box_length ⟨0, by
decide⟩)

let dy := pbc_real (posB ⟨1, by decide⟩ - posA ⟨1, by decide⟩) (box_length ⟨1, by
decide⟩)

let dz := pbc_real (posB ⟨2, by decide⟩ - posA ⟨2, by decide⟩) (box_length ⟨2, by
decide⟩)

dx^2 + dy^2 + dz^2

We can prove a neat property of how the periodic boundaries interact with the minimum image distance –

that the minimum image distance between arbitrary points in space is equivalent to the minimum image

distance between those points, after being wrapped into the simulation box. This is stated in theorem

squaredminImageDistance_theorem, which requires an inline invoking a λ function to iterate over the

box dimensions (for brevity, the proof steps are omitted here, but available on GitHub). This only holds for

nonzero box lengths.

theorem squaredminImageDistance_theorem (box_length posA posB : Fin 3 → R)
(hL : ∀ i, box_length i ̸= 0) squaredminImageDistance_real box_length posA posB =

squaredminImageDistance_real box_length (λ i => pbc_real (posA i) (box_length i))
(λ i => pbc_real (posB i) (box_length i)) := by
. . .

Finally, the function minImageDistance_real calls the squaredminImageDistance function, and takes

the square root to obtain the minimum image distance.

noncomputable def minImageDistance_real (posA posB box_length : Fin 3 → R) : R :=
(squaredminImageDistance_real posA posB box_length).sqrt

We can also prove that computed distances between particles are guaranteed to be non-negative in all ap-

plications of the minimum image convention; this can be useful when non-negativity is invoked in proofs

about energy calculations.

https://github.com/ATOMSLab/LeanLJ/blob/f4513e07e14e7290feccf856546fe4e5a7b7ca97/LeanLJ/MinImageDistance_PeriodicBC.lean

13

theorem minImageDistance_real_nonneg (posA posB box_length : Fin 3 → R) :
0 ≤ minImageDistance_real posA posB box_length := by
unfold minImageDistance_real
apply Real.sqrt_nonneg

We also proved that the minimum image distance between a particle and itself is always zero (theorem

minImageDistance_self).

theorem minImageDistance_real_self (pos box_length : Fin 3 → R) :
minImageDistance_real pos pos box_length = 0 := by
unfold minImageDistance_real squaredminImageDistance_real
have h0 : pbc_real (pos ⟨0, by decide⟩ - pos ⟨0, by decide⟩) (box_length ⟨0, by
decide⟩) = 0 := by
simp [pbc_real, sub_self, zero_div, round_zero, mul_zero, sub_zero]

have h1 : pbc_real (pos ⟨1, by decide⟩ - pos ⟨1, by decide⟩) (box_length ⟨1, by
decide⟩) = 0 := by
simp [pbc_real, sub_self, zero_div, round_zero, mul_zero, sub_zero]

have h2 : pbc_real (pos ⟨2, by decide⟩ - pos ⟨2, by decide⟩) (box_length ⟨2, by
decide⟩) = 0 := by
simp [pbc_real, sub_self, zero_div, round_zero, mul_zero, sub_zero]

rw [h0, h1, h2]
simp

While the above formulations of pbc_real and minImageDistance_real lead to valid computations and

proofs, we are somewhat dissatisfied with the semantics. The pbc_real function operates on particle

positions (i.e. xi), wrapping them inside the box from outside. When this function is applied in the

minImageDistance function, it is being applied to a difference between particle positions (i.e. x j − xi).

Lean does not complain, because in both cases, these are just real numbers, and everything checks out, but

a displacement is nonetheless not the same thing as a position. There may be a way to make this even more

rigorous, by defining a custom type for positions and restricting the pbc_real function to only operate on

such a type, but we kept our approach simpler for now.

4.5. Long-Range Corrections

The long-range correction, given in Eq. 8, is computed using the function U_LRC, which depends on ρ , ε ,

σ , and rc.

noncomputable def U_LRC_real (ρ ε σ rc : R) : R :=
(8 * π * ρ * ε) * ((1/9) * (σ ^ 12 / rc ^ 9) - (1/3) * (σ ^ 6 / rc ^ 3))

We can prove that this function follows from the integral definition of ULRC, Eq. 9. The integral
∫

(r :

14

R) in Set.Ioi rc is interpreted using measure theory, and refers to an integral over the set Set.Ioi rc,

which is the open interval (rc,∞). We state the theorem here and omit the proof for brevity, the full proof is

available in the LeanLJ Repository.

theorem long_range_correction_equality (hr : 0 < rc) (ρ ε σ : R) :
(2*π*ρ) *

∫
(r : R) in Set.Ioi rc, 4*ε * (r^2 * (((σ / r)^12) - ((σ / r)^6))) =

U_LRC ρ ε σ rc π := by

5. Code Execution

Combining formal proofs with numerical computation is central to this work. In this section, we elaborate

on three aspects of programming in Lean. Subsection 5.1 introduces the function for energy summation;

in Lean, this must be recursive instead of based on traditional for loops. Subsection 5.2 highlights our

approach for bridging computations and proofs using polymorphic functions. Subsection 5.3 describes

Lean’s approach to input and output.

5.1. Functional Programming

Traditional molecular simulation software is implemented using imperative programming languages (like C

and FORTRAN), but Lean is a functional programming language (like Haskell). Imperative programs are

about “doing” (following a step-by-step procedure), while functional programs are about “being” (defining

what a function is, which in Lean, ultimately enables proofs about it). Imperative programming is suscep-

tible to “side effects” that are avoided in functional programming, reducing security risks and improving

rigour. Functional programming avoids mutable data types; rather than updating (mutating) existing vari-

ables, such as assigning x=x+1, when new things must be computed, new variables are assigned. Lean 4

does support some imperative design patterns, but to get guarantees that come from proofs, writing code in

a functional style is essentially required.

One of the most stark differences (and most relevant for molecular simulations) between imperative and

functional programming is the use of for- and while-loops, which are not supported by Lean. Figure ?? il-

lustrates the typical “double for-loop” used for pairwise energy calculations (using a Python example): first

loop over particles i from 1 to N, then over particles j from i+1 to N. In Lean, this is done using recursive

function calls, instead of for loops, as shown in the total_energy function. total_energy locally defines

a recursive function energy and an accumulation variable acc. In the central function call, energy (i+1)

j (acc + lj_float r r_c ε σ), energy adds one LJ energy contribution to the value of acc, using

particle indices i+1 and j to obtain the distance r. The remaining conditions handle increments on the edge

cases.

Lean automatically checks functions for termination, which is quite important for recursive functions, lest

they get trapped in an infinite loop. In developing this code, we also found execution and comparing to the

NIST tests to be valuable, as we developed the logic of the double loop. This double-recursive function is

https://github.com/ATOMSLab/LeanLJ

15

quite complicated; we highly recommend becoming familiar with singly-recursive functions (such as the

factorial function, or a function for adding up items in a list) before tackling more complicated ones. We

also incorporated tail recursion to facilitate efficient execution [33].

def total_energy (positions : List (Fin 3 → Float))
(boxLength : Fin 3 → Float) (cutoff ε σ : Float) : Float :=
let numAtoms := positions.length
let rec energy : Nat → Nat → Float → Float

| 0, _, acc => acc
| i+1, 0, acc => energy i (i - 1) acc
| i+1, j+1, acc =>

let posI := positions.get! i
let posJ := positions.get! j
let r := minImageDistance posI posJ boxLength
let e := lj_float r cutoff ε σ

energy (i+1) j (acc + e)
energy numAtoms (numAtoms - 1) 0.0

Figure 5: Top: Loop-based Python implementation for computing Lennard-Jones pairwise energy with
periodic boundary conditions (top). Bottom: the equivalent recursive implementation in Lean 4, which
mirrors the same logic using functional programming.

5.2. Polymorphism

In Lean, we can define functions specifically for real numbers (R), which allows us to prove mathematical

properties, or for floating-point numbers (Float), which enables efficient numerical computation. However,

these separate implementations create a trade-off: the real version is non-computable, meaning it cannot be

executed in actual simulations, while the Float version is not suitable for formal proofs, as floating-point

arithmetic lacks the necessary mathematical structure (in the typical standard for floating point addition,

IEEE 754, 0.1 + 0.2 ̸= 0.3). To bridge this gap, polymorphic functions are used, allowing the same defini-

tion to work for multiple types (Fig. 6). By introducing a generic type α that can subsume both real and

Float, we ensure that our function can operate on both reals (R) for proofs and floats (Float) for compu-

tations.

16

<latexit sha1_base64="w0PVX34BPDtylG0k1mC5WXsMb0I=">AAAB9HicbVDLSgNBEOz1GeMr6tHLYBDiJeyKRPEU9OIxgnlAsoTeyWwyZPbhzGwwLPkOLx4U8erHePNvnCR70MSChqKqm+4uLxZcadv+tlZW19Y3NnNb+e2d3b39wsFhQ0WJpKxOIxHJloeKCR6yuuZasFYsGQaeYE1veDv1myMmFY/CBz2OmRtgP+Q+p6iN5PqlJ3JNOijiAZ51C0W7bM9AlomTkSJkqHULX51eRJOAhZoKVKrt2LF2U5SaU8Em+U6iWIx0iH3WNjTEgCk3nR09IadG6RE/kqZCTWbq74kUA6XGgWc6A9QDtehNxf+8dqL9KzflYZxoFtL5Ij8RREdkmgDpccmoFmNDkEpubiV0gBKpNjnlTQjO4svLpHFedirlyv1FsXqTxZGDYziBEjhwCVW4gxrUgcIjPMMrvFkj68V6tz7mrStWNnMEf2B9/gAngZES</latexit>

f(x : ↵)

<latexit sha1_base64="MnlaUSNxjsl/vfQKzgCTFpmsqwY=">AAAB+nicbVDLSgMxFL3js9bXVJdugkWomzIjUsVV0Y3LKvYBbSmZNNOGZjJDklHL2E9x40IRt36JO//GTDsLbT0QOJxzL/fkeBFnSjvOt7W0vLK6tp7byG9ube/s2oW9hgpjSWidhDyULQ8rypmgdc00p61IUhx4nDa90VXqN++pVCwUd3oc0W6AB4L5jGBtpJ5d8EuP6AJ1AqyHnpfcTo57dtEpO1OgReJmpAgZaj37q9MPSRxQoQnHSrVdJ9LdBEvNCKeTfCdWNMJkhAe0bajAAVXdZBp9go6M0kd+KM0TGk3V3xsJDpQaB56ZTCOqeS8V//PasfbPuwkTUaypILNDfsyRDlHaA+ozSYnmY0MwkcxkRWSIJSbatJU3JbjzX14kjZOyWylXbk6L1cusjhwcwCGUwIUzqMI11KAOBB7gGV7hzXqyXqx362M2umRlO/vwB9bnD9k8kx0=</latexit>

f(x : R)
<latexit sha1_base64="FMepnFhpv4t1lx4dlbEQFn3MkXk=">AAAB/HicbVDLSsNAFJ34rPUV7dLNYBHqpiQiVVwVBXFZwT6gDWUynbRDJ5MwcyMNof6KGxeKuPVD3Pk3Th8LbT1w4XDOvdx7jx8LrsFxvq2V1bX1jc3cVn57Z3dv3z44bOgoUZTVaSQi1fKJZoJLVgcOgrVixUjoC9b0hzcTv/nIlOaRfIA0Zl5I+pIHnBIwUtcuBKURvsIdYCPIbkVEYHzatYtO2ZkCLxN3TopojlrX/ur0IpqETAIVROu268TgZUQBp4KN851Es5jQIemztqGShEx72fT4MT4xSg8HkTIlAU/V3xMZCbVOQ990hgQGetGbiP957QSCSy/jMk6ASTpbFCQCQ4QnSeAeV4yCSA0hVHFzK6YDoggFk1fehOAuvrxMGmdlt1Ku3J8Xq9fzOHLoCB2jEnLRBaqiO1RDdURRip7RK3qznqwX6936mLWuWPOZAvoD6/MHrXCULA==</latexit>

f(x : Float)

<latexit sha1_base64="1n+DhQXc4F++BP4QKN7vkNq9pF4=">AAAB9HicbVDLSgNBEOyNrxhfUY9eBoPgKeyKRI9BLx4jmAckS5idzCZDZnfWmd5gWPIdXjwo4tWP8ebfOHkcNLGgoajqprsrSKQw6LrfTm5tfWNzK79d2Nnd2z8oHh41jEo143WmpNKtgBouRczrKFDyVqI5jQLJm8Hwduo3R1wboeIHHCfcj2g/FqFgFK3kd5A/YVbTSoVm0i2W3LI7A1kl3oKUYIFat/jV6SmWRjxGJqkxbc9N0M+oRsEknxQ6qeEJZUPa521LYxpx42ezoyfkzCo9EiptK0YyU39PZDQyZhwFtjOiODDL3lT8z2unGF77mYiTFHnM5ovCVBJUZJoA6QnNGcqxJZRpYW8lbEA1ZWhzKtgQvOWXV0njouxVypX7y1L1ZhFHHk7gFM7Bgyuowh3UoA4MHuEZXuHNGTkvzrvzMW/NOYuZY/gD5/MHgdKSmQ==</latexit>

Proofs
<latexit sha1_base64="NuuhMtfBYCg8TWNSEduYPC4bMZI=">AAAB+XicbVDLSgNBEJz1GeNr1aOXwSB4Crsi0WNQBI8RzAOSJcxOOsmQ2QczvSFhyZ948aCIV//Em3/jbLIHTSxoKKq66e7yYyk0Os63tba+sbm1Xdgp7u7tHxzaR8cNHSWKQ51HMlItn2mQIoQ6CpTQihWwwJfQ9Ed3md8cg9IiCp9wGoMXsEEo+oIzNFLXtjsIE0zvJ8CTTJl17ZJTduagq8TNSYnkqHXtr04v4kkAIXLJtG67ToxeyhQKLmFW7CQaYsZHbABtQ0MWgPbS+eUzem6UHu1HylSIdK7+nkhZoPU08E1nwHCol71M/M9rJ9i/8VIRxglCyBeL+omkGNEsBtoTCjjKqSGMK2FupXzIFONowiqaENzll1dJ47LsVsqVx6tS9TaPo0BOyRm5IC65JlXyQGqkTjgZk2fySt6s1Hqx3q2PReualc+ckD+wPn8AV42UIw==</latexit>

Execution

Figure 6: How polymorphic functions link proofs (over idealized real numbers) with execution (over floating
point numbers). The polymorphic function f is defined for x with generic type α; proofs about f can be
written when x is real, and computations with f can be executed when x is a float.

def pbc (position boxLength : α)
[HSub α α α] [HMul α α α] [HDiv α α α] [HasRound α] : α :=
position - boxLength * (HasRound.pround (position / boxLength))

HSub: type α “has subtraction”

HMul: type α “has multiplication”

HDiv: type α “has division”

HasRound: type α “has round”

Subtract(ℝ,ℝ)
Subtract(Float,Float)

Multiply(ℝ,ℝ)
Multiply(Float,Float)

Divide(ℝ,ℝ)
Divide(Float,Float)

Round(ℝ,ℝ)
Round(Float,Float)

Typeclasses Instances

Figure 7: Explanation of the polymorphic pbc function. The function is defined over a generic type α , and
the required operations—subtraction, multiplication, division, and rounding—are expressed through type-
classes: HSub, HMul, HDiv, and HasRound. Each typeclass specifies that the type α must support a given
operation. For example, HSub α α α means α must support subtraction with two α inputs returning an α

result. Concrete instances, such as Float and R, implement these typeclasses to enable polymorphic behav-
ior. This allows pbc to work with different numeric types, as long as they satisfy the required operations.

To illustrate, consider the function pbc (Fig. 7), which wraps a particle’s position into the simulation box us-

ing periodic boundary conditions. Section 4 showed pbc_real, which operates on position and box length

with type R; pbc operates on position and box length with generic type α . We tell Lean more about what

α can be, by using typeclasses and instances. Specially, pbc is defined for any type α that “knows how to”

subtract, multiply, divide, and round. These capabilities are provided through the typeclasses HSub, HMul,

HDiv, and HasRound. For example, the typeclass HSub [α α α] requires that there exists a definition of

subtraction between two members of α that would output a third member of α . HSub, HMul, and HDiv are

all defined in Mathlib; for rounding, we defined a custom typeclass, since Mathlib didn’t already define that

connection. This approach allows our definition of pbc to be used in two very different ways: with real

numbers for formal proofs, and with floating-point numbers for actual simulations.

17

For some more examples, we provide the implementations for the Lennard-Jones potential in three forms:

the polymorphic version (α), the real number version (R), and the floating-point version (Float).

-- Polymorphic version: Works for both R and Float
def lj_p {α : Type} [LE α] [DecidableLE α] [HDiv α α α] [HPow α α α] [HSub α α α]
[HMul α α α] [OfNat α 2] [OfNat α 4] [OfNat α 6] [Zero α] (r r_c ε σ : α) : α :=
if r ≤ r_c then

let r6 := (σ / r) ^ (6 : α)
let r12 := r6 ^ (2 : α)
4 * ε * (r12 - r6)

else
0

-- Real number version: Allows formal proofs but cannot compute
noncomputable def lj_real (r r_c ε σ : R) : R :=
if r ≤ r_c then

let r6 := (σ / r) ^ 6
let r12 := r6 ^ 2
4 * ε * (r12 - r6)

else
0

-- Floating-point version: Can compute but lacks proof capabilities
def lj_float (r r_c ε σ : Float) : Float :=
if r ≤ r_c then

let r6 := (σ / r) ^ 6
let r12 := r6 ^ 2
4 * ε * (r12 - r6)

else
0

Ultimately, we define polymorphic functions for all executable functions in the overall execution flow

(Fig. 4) and connect them to their real-value counterparts. Most often, we used typeclasses already in

Mathlib, but we did need to define custom typeclasses for square roots (for distance calculations) and π (for

the long-range correction).

5.3. Input and Output in Lean

Most of Lean is developed in terms of pure functions, whose behaviour can be guaranteed because the

argument types limit the domain of the function inputs. By chaining pure functions with pure functions

through-and-through, Lean guarantees there are no side effects. But input/output (IO) operations cannot

18

have the same guarantees. For instance, if one writes a molecular configuration file to disk, then reads it

back in, one cannot guarantee that some other process modified it in the meantime.

But to be a useful programming language, Lean must nonetheless have IO. Lean separates this cleanly from

its pure functions and math libraries, implementing it in the IO monad. This essentially serves as a bridge

between the messy, “outside” world and the safe, pure functions inside Lean (Figure 8).

Monads are used to handle many kinds of computation patterns in a clean and consistent way, such as

optional values, errors, and non-determinism. For example, the Option monad handles missing values, the

Except monad deals with errors without crashing, and the List monad allows multiple possible results

from a single computation. They are central in functional programming, but are encountered less often in

imperative languages; the interested reader can learn more here [33].

IO Monad

<latexit sha1_base64="tdy5cBUx22e49sInllEMc7AaEZY=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKRI9BLx4jmAckS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1hb39jcKm6Xdnb39g/Kh0cto1JNaJMornQnwoZyJmnTMstpJ9EUi4jTdjS+nfntJ6oNU/LBThIaCjyULGYEWye1eoYNBe6XK37VnwOtkiAnFcjR6Je/egNFUkGlJRwb0w38xIYZ1pYRTqelXmpogskYD2nXUYkFNWE2v3aKzpwyQLHSrqRFc/X3RIaFMRMRuU6B7cgsezPxP6+b2vg6zJhMUkslWSyKU46sQrPX0YBpSiyfOIKJZu5WREZYY2JdQCUXQrD88ippXVSDWrV2f1mp3+RxFOEETuEcAriCOtxBA5pA4BGe4RXePOW9eO/ex6K14OUzx/AH3ucPn/GPLg==</latexit>�
<latexit sha1_base64="w9hvxVEtH0CwHtdl/UDboK03PwY=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF48V7Ae0oWy2k3bpZhN3N0IJ/RNePCji1b/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHssHM0nQj+hQ8pAzaqzU6WGiuYhlv1xxq+4cZJV4OalAjka//NUbxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bH7vlJxZZUDCWNmShszV3xMZjbSeRIHtjKgZ6WVvJv7ndVMTXvsZl0lqULLFojAVxMRk9jwZcIXMiIkllClubyVsRBVlxkZUsiF4yy+vktZF1atVa/eXlfpNHkcRTuAUzsGDK6jDHTSgCQwEPMMrvDmPzovz7nwsWgtOPnMMf+B8/gBQY5Ar</latexit>✏

<latexit sha1_base64="BkZirS3xLJHdCVdDDlMDKbxoLwk=">AAAB6HicbVA9SwNBEJ2LXzF+RS1tFoNgFe5EomXQxsIiAfMByRH2NnPJmr29Y3dPCCG/wMZCEVt/kp3/xk1yhSY+GHi8N8PMvCARXBvX/XZya+sbm1v57cLO7t7+QfHwqKnjVDFssFjEqh1QjYJLbBhuBLYThTQKBLaC0e3Mbz2h0jyWD2acoB/RgeQhZ9RYqX7fK5bcsjsHWSVeRkqQodYrfnX7MUsjlIYJqnXHcxPjT6gynAmcFrqpxoSyER1gx1JJI9T+ZH7olJxZpU/CWNmShszV3xMTGmk9jgLbGVEz1MveTPzP66QmvPYnXCapQckWi8JUEBOT2dekzxUyI8aWUKa4vZWwIVWUGZtNwYbgLb+8SpoXZa9SrtQvS9WbLI48nMApnIMHV1CFO6hBAxggPMMrvDmPzovz7nwsWnNONnMMf+B8/gCnG4zb</latexit>

L
<latexit sha1_base64="RSfXl0II+4HruVnZJLbm5qVQ0E4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB91n/XLFrbpzkFXi5aQCORr98ldvELM04gqZpMZ0PTdBP6MaBZN8WuqlhieUjemQdy1VNOLGz+anTsmZVQYkjLUthWSu/p7IaGTMJApsZ0RxZJa9mfif100xvPYzoZIUuWKLRWEqCcZk9jcZCM0ZyokllGlhbyVsRDVlaNMp2RC85ZdXSeui6tWqtfvLSv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOk8+K8Ox+L1oKTzxzDHzifP1Hmjdc=</latexit>rc

<latexit sha1_base64="2dUhXUtZ2n70Sl71LDIc9HSOiW0=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16CRbBU0lEqseiF48V7Ae0oWy2m3bpZjfsTqQl5K948aCIV/+IN/+NmzYHbX0w8Hhvhpl5QcyZBtf9tkobm1vbO+Xdyt7+weGRfVztaJkoQttEcql6AdaUM0HbwIDTXqwojgJOu8H0Lve7T1RpJsUjzGPqR3gsWMgIBiMN7eoA6AwA0lhqlks6G9o1t+4u4KwTryA1VKA1tL8GI0mSiAogHGvd99wY/BQrYITTrDJINI0xmeIx7RsqcES1ny5uz5xzo4ycUCpTApyF+nsixZHW8ygwnRGGiV71cvE/r59AeOOnTMQJUEGWi8KEOyCdPAhnxBQlwOeGYKLM78QhE6wwARNXxYTgrb68TjqXda9Rbzxc1Zq3RRxldIrO0AXy0DVqonvUQm1E0Aw9o1f0ZmXWi/VufSxbS1Yxc4L+wPr8AWCylVM=</latexit>

positions

Lean objects

<latexit sha1_base64="fKUGid2XFy+9zxmgR67ePGQuZQg=">AAAB83icbVBNS8NAEN3Ur1q/qh69BIvgqSQi1WPRi8cK9gOaUDbbabt0s1l2J2IJ/RtePCji1T/jzX/jts1BWx8MPN6bYWZepAQ36HnfTmFtfWNzq7hd2tnd2z8oHx61TJJqBk2WiER3ImpAcAlN5CigozTQOBLQjsa3M7/9CNrwRD7gREEY06HkA84oWikIEJ4QMVMRm/bKFa/qzeGuEj8nFZKj0St/Bf2EpTFIZIIa0/U9hWFGNXImYFoKUgOKsjEdQtdSSWMwYTa/eeqeWaXvDhJtS6I7V39PZDQ2ZhJHtjOmODLL3kz8z+umOLgOMy5ViiDZYtEgFS4m7iwAt881MBQTSyjT3N7qshHVlKGNqWRD8JdfXiWti6pfq9buLyv1mzyOIjkhp+Sc+OSK1MkdaZAmYUSRZ/JK3pzUeXHenY9Fa8HJZ47JHzifP8zYkjM=</latexit>

pbc

<latexit sha1_base64="Bpl5vN91iatWgjcS2cEaeNWeURk=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSJ4KolI9Vj04rGC/YA2lM12067dbMLuRCyhP8OLB0W8+mu8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXJtRKzucZxwP6IDJULBKFqp00X+hIiZfJj0SmW34s5AlomXkzLkqPdKX91+zNKIK2SSGtPx3AT9jGoUTPJJsZsanlA2ogPesVTRiBs/m508IadW6ZMw1rYUkpn6eyKjkTHjKLCdEcWhWfSm4n9eJ8Xwys+ESlLkis0XhakkGJPp/6QvNGcox5ZQpoW9lbAh1ZShTaloQ/AWX14mzfOKV61U7y7Ktes8jgIcwwmcgQeXUINbqEMDGMTwDK/w5qDz4rw7H/PWFSefOYI/cD5/ABMrkco=</latexit>

lj

<latexit sha1_base64="QR3dfHEO9ewMZLvhoNoQnw9sQno=">AAAB/3icbVA9SwNBEN3zM8avqGBjcxgEq3AnEi2DNpYRzAckIext5pIle7vH7pwYzhT+FRsLRWz9G3b+GzfJFZr4YODx3gwz84JYcIOe9+0sLa+srq3nNvKbW9s7u4W9/bpRiWZQY0oo3QyoAcEl1JCjgGasgUaBgEYwvJ74jXvQhit5h6MYOhHtSx5yRtFK3cJhG+EBEVNUSEW7CxJ0fzTuFopeyZvCXSR+RookQ7Vb+Gr3FEsikMgENablezF2UqqRMwHjfDsxEFM2pH1oWSppBKaTTu8fuydW6bmh0rYkulP190RKI2NGUWA7I4oDM+9NxP+8VoLhZSflMk4QJJstChPhonInYbg9roGhGFlCmeb2VpcNqKYMbWR5G4I///IiqZ+V/HKpfHterFxlceTIETkmp8QnF6RCbkiV1Agjj+SZvJI358l5cd6dj1nrkpPNHJA/cD5/AF1klvw=</latexit>

total energy

<latexit sha1_base64="m6wy928VY0iOuuyEu84KBzeGdII=">AAAB+HicbVBNS8NAEN3Ur1o/GvXoJVgETyURqR6LvXjwUMW0hSaEzXbTLt1swu5ErKG/xIsHRbz6U7z5b9y2OWj1wcDjvRlm5oUpZwps+8sorayurW+UNytb2zu7VXNvv6OSTBLqkoQnshdiRTkT1AUGnPZSSXEcctoNx62Z372nUrFE3MEkpX6Mh4JFjGDQUmBWPaAPAJC7XnB925oGZs2u23NYf4lTkBoq0A7MT2+QkCymAgjHSvUdOwU/xxIY4XRa8TJFU0zGeEj7mgocU+Xn88On1rFWBlaUSF0CrLn6cyLHsVKTONSdMYaRWvZm4n9eP4Pows+ZSDOggiwWRRm3ILFmKVgDJikBPtEEE8n0rRYZYYkJ6KwqOgRn+eW/pHNadxr1xs1ZrXlZxFFGh+gInSAHnaMmukJt5CKCMvSEXtCr8Wg8G2/G+6K1ZBQzB+gXjI9v37WTPg==</latexit>

U LRC

Inputs

“Outside world”

Outputs
<latexit sha1_base64="vqnWDazMwTuuQ/NBRdhNbknlMYs=">AAAB/XicbVBNS8NAEN3Ur1q/4sfNS7AInkoiUj0WRfBYwX5AG8pmO22XbjZhdyLWUPwrXjwo4tX/4c1/47bNQVsfDDzem2FmXhALrtF1v63c0vLK6lp+vbCxubW9Y+/u1XWUKAY1FolINQOqQXAJNeQooBkroGEgoBEMryZ+4x6U5pG8w1EMfkj7kvc4o2ikjn3QRnhAxBQjpOJaguqPxh276JbcKZxF4mWkSDJUO/ZXuxuxJASJTFCtW54bo59ShZwJGBfaiYaYsiHtQ8tQSUPQfjq9fuwcG6Xr9CJlSqIzVX9PpDTUehQGpjOkONDz3kT8z2sl2LvwUy7jBEGy2aJeIhyMnEkUTpcrYChGhlCmuLnVYQOqKEMTWMGE4M2/vEjqpyWvXCrfnhUrl1kceXJIjsgJ8cg5qZAbUiU1wsgjeSav5M16sl6sd+tj1pqzspl98gfW5w+1fZYN</latexit>

totalEnergy

“Pure mathematics”

<latexit sha1_base64="WgmSAyBUwbvUKw4R6MMAjrlGhoQ=">AAACAnicbVDLSsNAFJ3UV62vqCtxEyyCq5KIVJdFXeiugn1AG8pkemOHTiZh5kYsobjxV9y4UMStX+HOv3H6WGjrgYHDOfdy5p4gEVyj635buYXFpeWV/GphbX1jc8ve3qnrOFUMaiwWsWoGVIPgEmrIUUAzUUCjQEAj6F+M/MY9KM1jeYuDBPyI3kkeckbRSB17r43wgIhZxOW18eDSZFLJYNixi27JHcOZJ96UFMkU1Y791e7GLI1AIhNU65bnJuhnVCFnAoaFdqohoaxvQlqGShqB9rPxCUPn0ChdJ4yVeRKdsfp7I6OR1oMoMJMRxZ6e9Ubif14rxfDMz7hMUgTJJkFhKhyMnVEfTpcrYCgGhlCmuPmrw3pUUYamtYIpwZs9eZ7Uj0teuVS+OSlWzqd15Mk+OSBHxCOnpEKuSJXUCCOP5Jm8kjfryXqx3q2PyWjOmu7skj+wPn8ASF+YAw==</latexit>

minImageDistance

<latexit sha1_base64="LekwvoWi4tfXgblD/GmqC2b3pLw=">AAAB+nicbVDLTsMwEHTKq5RXCkcuFhUSpygBVDhWcOFYJPqQ2qhyXKc1dZzI3hSq0E/hwgGEuPIl3Pgb3McBWkZaaTSzq92dIBFcg+t+W7mV1bX1jfxmYWt7Z3fPLu7XdZwqymo0FrFqBkQzwSWrAQfBmoliJAoEawSD64nfGDKleSzvYJQwPyI9yUNOCRipYxfbwB4BIBP3Z65D9XDcsUuu406Bl4k3JyU0R7Vjf7W7MU0jJoEKonXLcxPwM6KAU8HGhXaqWULogPRYy1BJIqb9bHr6GB8bpYvDWJmSgKfq74mMRFqPosB0RgT6etGbiP95rRTCSz/jMkmBSTpbFKYCQ4wnOeAuV4yCGBlCqOLmVkz7RBEKJq2CCcFbfHmZ1E8dr+yUb89Llat5HHl0iI7QCfLQBaqgG1RFNUTRA3pGr+jNerJerHfrY9aas+YzB+gPrM8fW7eUFA==</latexit>

lj30.csv

Figure 8: The IO Monad as a bridge that links the verified, pure functions in Lean with the messy real world,
where data and simulation inputs reside. The CSV parser uses the IO Monad to read the particle coordinates
from lj30.csv into the Lean object positions.

To import the configuration files from the NIST SRSW, we first saved them as comma-separated values

(CSV) files. We adapted the CSV reader and used it to parse each configuration. In addition, users are asked

to manually enter simulation parameters such as the cut-off radius, σ , ε , and the length of the box through

the terminal. These user inputs and file reads are examples of interaction with the “outside world,” and

are handled explicitly in Lean using the IO monad. This makes it clear which parts of the program remain

exposed to sources of error – our setup does not provide guarantees against sources of error on the “outside”

of IO; if an incorrect value for σ were input, Lean would not catch it. This would be a form of semantic

error (Table 1) that our current implementation does not avoid.

Proofs in Lean only provide guarantees about pure functions; errors in the I/O layer cannot be validated in

this manner. This is why we advocate for both proofs and tests (Fig. 1). For instance, while developing

this application, our first approach for reading the configuration failed to read all atoms, leading to incorrect

energy calculations. The proofs do not catch bugs like these, but the tests do.

19

Table 2: Comparison of LRC and Upair energy calculations from NIST SRSW [24] and LeanLJ for various
particle counts. Energies are reported in scientific notation (reduced units).

Particles Upair (Lean) Upair (NIST) LRC (Lean) LRC (NIST)

30 −1.67903E+01 −1.6790E+01 −5.45166E−01 −5.4517E−01

200 −6.90004E+02 −6.9000E+02 −2.42296E+01 −2.42296E+01

400 −1.14666E+03 −1.1467E+03 −4.96222E+01 −4.9622E+01

800 −4.35154E+03 −4.3515E+03 −1.98488E+02 −1.9849E+02

6. Results

To evaluate our implementation, we compare the pairwise interaction energy (Upair) and long-range correc-

tion (LRC) values computed using our Lean code with the NIST Standard Reference Simulation Website

(SRSW) benchmark values [24] for LJ particles in a cubic box (Table 2). The results show exact agreement

for all four systems, within the number of digits provided by NIST.

7. Conclusions and Outlook

In this study, we developed pairwise energy calculations in Lean and compared our results with the values

provided by the NIST SRSW benchmark. Our calculations agree to machine precision with the NIST ref-

erence values. To be clear, our confidence in our system does not stem from its agreement with the NIST

benchmark, rather from the theorems we have proved in Lean that certify that the functions in LeanLJ have

those specified mathematical properties. For instance, the pbc function guarantees that all wrapped parti-

cles lie in the interval [−L/2,L/2], and the derivation of the function computing long-range corrections is

validated mathematically. We assert that LeanLJ is a more reliable benchmark than the NIST SRSW, at

least for the components of the benchmark we have addressed. LeanLJ could be validated even further, by

adding to the list of theorems proved about the current functions – we had wished to prove that the pairwise

summation function operated over at most N ∗ (N−1) pairs of particles (such would be useful for validating

energy summation in systems with polyatomic molecules), but we couldn’t quite navigate that proof.

We consider it helpful to reflect on the remaining sources of uncertainty in our code – considering what

we’ve verified, what could still be wrong? First, we are trusting in the axioms of mathematics, as expressed

in Lean’s core; errors here might compromise Mathlib, on which we depend. Second, our approach to poly-

morphism exposes us to mistakes in typeclasses. For example, we link the rounding functions for reals and

floats – a subtle error in which one rounded 0.5 down while another rounded 0.5 up would not be detected

by Lean (egregious errors like linking functions for round and floor would also be technically possible, so

human oversight remains necessarily at this level). Third, we are still exposed to errors in input/output (Sec-

tion 5.3), and in defining system-specific parameters, such as the force field parameters; these are mitigated

by the testing, but do not prevent a user from inputting incorrect parameters for calculations outside the

scope of the NIST benchmarks. A fourth source would be vulnerabilities in the broader operating system in

which the code is executed. Nonetheless, traditional molecular simulation have far more possibilities for er-

20

rors, such that many of these concerns are not considered in typical conversations about software correctness.

More broadly, this work demonstrates how Lean can provide a new paradigm for computational molecu-

lar simulations, where the results and the entire computational process are provably correct. Logical steps

to build on this framework include implementing support for triclinic simulation boxes, Ewald summation

for Coulomb interactions, neighbour lists to improve computational efficiency, and of course, integrating

Newtons equations of motion to evolve particle trajectories. Some of these are matters of implementation

(triclinic cells), but others will involve grappling yet-unresolved questions of how to handle various approx-

imations in a formal environment, such as how to precisely describe the conditions under which neighbour

lists can be trusted.

In our previous work, we showed Lean’s broader utility for formalizing derivations in science as math proofs

[34], digitizing key results in absorption theory, thermodynamics, and kinematics. Joseph Tooby-Smith is

also developing derivations in the high-energy physics field [35, 40]. These early works showcase Lean’s

rigour and versatility for building a library (or libraries) of formally-verified results in diverse areas of sci-

ence, facilitating rigorous verification of scientific ideas in different disciplines.

LeanLJ demonstrates how executable scientific computing software can be tied to such proofs, using poly-

morphic functions. We believe this approach is quite general for reasoning about idealized real-valued

functions in scientific theories, while linking these to floating-point executions in scientific computing soft-

ware. Certigrad’s [28] approach is also worth considering; this verifies the high-level mathematics in Lean,

and then links high-level functions to unverified, but efficient, linear algebra libraries written in C. Compared

to our approach, Certigrad’s “bridge” between verified math and executable math consequently happens at

a higher level; our polymorphic functions build this bridge at the level of individual math operators (e.g.

addition, division) and constants (e.g. π).

Scientific computing benchmarks are typically based on human oversight and software best practices [23];

formal verification in Lean offers an even more rigorous alternative, enabling rigorous math proofs that

implemented software is correct. This shift from empirical validation to formal proof introduces a new

level of confidence in molecular simulations, setting the stage for more reliable and mathematically sound

scientific computing.

Acknowledgements

The authors thank the members of the Lean Zulip for helpful discussions, especially Tomáš Skřivan for

his insights into polymorphic functions. This material is based on work supported by the National Science

Foundation (NSF) CAREER Award #2236769.

Declaration of Interest

The authors declare no competing financial or personal interests that could influence the work reported in

this paper.

21

Data Availability

All code, proofs, and benchmark files are on the ATOMS Lab Github.

References

[1] Chenyang Sun, Yaning Zhang, Chaofeng Hou, and Wei Ge. A new correlation model for predicting the
melting and boiling temperatures of the Lennard-Jones systems. Physica Scripta, 98(1):015702, Jan-
uary 2023. URL: https://iopscience.iop.org/article/10.1088/1402-4896/aca443, doi:
10.1088/1402-4896/aca443.

[2] Peter Schwerdtfeger, Antony Burrows, and Odile R. Smits. The Lennard Jones Potential Revisited –
Analytical Expressions for Vibrational Effects in Cubic and Hexagonal Close-Packed Lattices. The
Journal of Physical Chemistry A, 125(14):3037–3057, April 2021. arXiv:2012.05413 [cond-mat].
URL: http://arxiv.org/abs/2012.05413, doi:10.1021/acs.jpca.1c00012.

[3] Peter Schwerdtfeger and David J. Wales. 100 Years of the Lennard-Jones Potential. Journal of Chem-
ical Theory and Computation, 20(9):3379–3405, May 2024. Publisher: American Chemical Society.
doi:10.1021/acs.jctc.4c00135.

[4] Koichi Fumino and Ralf Ludwig. Analyzing the interaction energies between cation and anion in ionic
liquids: The subtle balance between Coulomb forces and hydrogen bonding. Journal of Molecular
Liquids, 192:94–102, April 2014. URL: https://www.sciencedirect.com/science/article/
pii/S0167732213002316, doi:10.1016/j.molliq.2013.07.009.

[5] Xipeng Wang, Simón Ramírez-Hinestrosa, Jure Dobnikar, and Daan Frenkel. The Lennard-Jones
potential: when (not) to use it. Physical Chemistry Chemical Physics, 22(19):10624–10633, May
2020. Publisher: The Royal Society of Chemistry. URL: https://pubs.rsc.org/en/content/
articlelanding/2020/cp/c9cp05445f, doi:10.1039/C9CP05445F.

[6] Jiapu Zhang. A Brief Review on Results and Computational Algorithms for Minimizing the Lennard-
Jones Potential, December 2010. arXiv:1101.0039 [physics]. URL: http://arxiv.org/abs/1101.
0039, doi:10.48550/arXiv.1101.0039.

[7] Junwen Wang and Shengfeng Cheng. Integrated Lennard-Jones Potential between a Sphere and a
Thin Rod, May 2024. arXiv:2405.03944 [cond-mat]. URL: http://arxiv.org/abs/2405.03944,
doi:10.48550/arXiv.2405.03944.

[8] Loup Verlet. Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-
Jones Molecules. Physical Review, 159(1):98–103, July 1967. URL: https://link.aps.org/doi/
10.1103/PhysRev.159.98, doi:10.1103/PhysRev.159.98.

[9] A. Rahman. Correlations in the Motion of Atoms in Liquid Argon. Physical Review, 136(2A):A405–
A411, October 1964. URL: https://link.aps.org/doi/10.1103/PhysRev.136.A405, doi:10.
1103/PhysRev.136.A405.

[10] J.J. Nicolas, K.E. Gubbins, W.B. Streett, and D.J. Tildesley. Equation of state for the Lennard-Jones
fluid. Molecular Physics, 37(5):1429–1454, May 1979. URL: https://www.tandfonline.com/
doi/full/10.1080/00268977900101051, doi:10.1080/00268977900101051.

[11] Jerry Z. Yang and Xiantao Li. Comparative study of boundary conditions for molecular dynamics
simulations of solids at low temperature. Physical Review B, 73(22):224111, June 2006. URL: https:
//link.aps.org/doi/10.1103/PhysRevB.73.224111, doi:10.1103/PhysRevB.73.224111.

[12] Luke Mizzi, Daphne Attard, Ruben Gatt, Krzysztof K. Dudek, Brian Ellul, and Joseph N.
Grima. Implementation of periodic boundary conditions for loading of mechanical metamate-
rials and other complex geometric microstructures using finite element analysis. Engineering
with Computers, 37(3):1765–1779, July 2021. URL: https://link.springer.com/10.1007/
s00366-019-00910-1, doi:10.1007/s00366-019-00910-1.

[13] W. W. Wood and F. R. Parker. Monte Carlo Equation of State of Molecules Interacting with the
Lennard-Jones Potential. I. A Supercritical Isotherm at about Twice the Critical Temperature. The
Journal of Chemical Physics, 27(3):720–733, September 1957. URL: https://pubs.aip.org/
jcp/article/27/3/720/204747/Monte-Carlo-Equation-of-State-of-Molecules, doi:10.
1063/1.1743822.

https://github.com/ATOMSLab/LeanLJ
https://iopscience.iop.org/article/10.1088/1402-4896/aca443
https://doi.org/10.1088/1402-4896/aca443
https://doi.org/10.1088/1402-4896/aca443
http://arxiv.org/abs/2012.05413
https://doi.org/10.1021/acs.jpca.1c00012
https://doi.org/10.1021/acs.jctc.4c00135
https://www.sciencedirect.com/science/article/pii/S0167732213002316
https://www.sciencedirect.com/science/article/pii/S0167732213002316
https://doi.org/10.1016/j.molliq.2013.07.009
https://pubs.rsc.org/en/content/articlelanding/2020/cp/c9cp05445f
https://pubs.rsc.org/en/content/articlelanding/2020/cp/c9cp05445f
https://doi.org/10.1039/C9CP05445F
http://arxiv.org/abs/1101.0039
http://arxiv.org/abs/1101.0039
https://doi.org/10.48550/arXiv.1101.0039
http://arxiv.org/abs/2405.03944
https://doi.org/10.48550/arXiv.2405.03944
https://link.aps.org/doi/10.1103/PhysRev.159.98
https://link.aps.org/doi/10.1103/PhysRev.159.98
https://doi.org/10.1103/PhysRev.159.98
https://link.aps.org/doi/10.1103/PhysRev.136.A405
https://doi.org/10.1103/PhysRev.136.A405
https://doi.org/10.1103/PhysRev.136.A405
https://www.tandfonline.com/doi/full/10.1080/00268977900101051
https://www.tandfonline.com/doi/full/10.1080/00268977900101051
https://doi.org/10.1080/00268977900101051
https://link.aps.org/doi/10.1103/PhysRevB.73.224111
https://link.aps.org/doi/10.1103/PhysRevB.73.224111
https://doi.org/10.1103/PhysRevB.73.224111
https://link.springer.com/10.1007/s00366-019-00910-1
https://link.springer.com/10.1007/s00366-019-00910-1
https://doi.org/10.1007/s00366-019-00910-1
https://pubs.aip.org/jcp/article/27/3/720/204747/Monte-Carlo-Equation-of-State-of-Molecules
https://pubs.aip.org/jcp/article/27/3/720/204747/Monte-Carlo-Equation-of-State-of-Molecules
https://doi.org/10.1063/1.1743822
https://doi.org/10.1063/1.1743822

22

[14] Steve Plimpton. Fast Parallel Algorithms for Short-Range Molecular Dynamics. Journal of Computa-
tional Physics, 117(1):1–19, March 1995. URL: https://linkinghub.elsevier.com/retrieve/
pii/S002199918571039X, doi:10.1006/jcph.1995.1039.

[15] Mark James Abraham, Teemu Murtola, Roland Schulz, Szilárd Páll, Jeremy C. Smith, Berk
Hess, and Erik Lindahl. GROMACS: High performance molecular simulations through
multi-level parallelism from laptops to supercomputers. SoftwareX, 1-2:19–25, September
2015. URL: https://linkinghub.elsevier.com/retrieve/pii/S2352711015000059, doi:
10.1016/j.softx.2015.06.001.

[16] David Van Der Spoel, Erik Lindahl, Berk Hess, Gerrit Groenhof, Alan E. Mark, and Herman J. C.
Berendsen. GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16):1701–
1718, December 2005. URL: https://onlinelibrary.wiley.com/doi/10.1002/jcc.20291,
doi:10.1002/jcc.20291.

[17] Matthew W. Thompson, Justin B. Gilmer, Ray A. Matsumoto, Co D. Quach, Parashara Shamaprasad,
Alexander H. Yang, Christopher R. Iacovella, Clare McCabe, and Peter T. Cummings. Towards molec-
ular simulations that are transparent, reproducible, usable by others, and extensible (TRUE). Molecular
Physics, 118(9-10):e1742938, June 2020. URL: https://www.tandfonline.com/doi/full/10.
1080/00268976.2020.1742938, doi:10.1080/00268976.2020.1742938.

[18] Anthony Nicholls, David L. Mobley, J. Peter Guthrie, John D. Chodera, Christopher I. Bayly,
Matthew D. Cooper, and Vijay S. Pande. Predicting Small-Molecule Solvation Free Energies: An
Informal Blind Test for Computational Chemistry. Journal of Medicinal Chemistry, 51(4):769–
779, February 2008. URL: https://pubs.acs.org/doi/10.1021/jm070549%2B, doi:10.1021/
jm070549+.

[19] Daniel G. Friend, David J. Frurip, Joseph W. Magee, and James D. Olson. Establishing bench-
marks for the first industrial fluids simulation challenge. Fluid Phase Equilibria, 217(1):11–15,
March 2004. URL: https://linkinghub.elsevier.com/retrieve/pii/S0378381203003571,
doi:10.1016/S0378-3812(03)00357-1.

[20] Fiona Case, Anne Chaka, Daniel G Friend, David Frurip, Joseph Golab, Russell Johnson,
Jonathan Moore, Raymond D Mountain, James Olson, Martin Schiller, and Joey Storer. The
first industrial fluid properties simulation challenge. Fluid Phase Equilibria, 217(1):1–10, March
2004. URL: https://linkinghub.elsevier.com/retrieve/pii/S0378381203002085, doi:
10.1016/S0378-3812(03)00208-5.

[21] Brad Crawford, Umesh Timalsina, Co D. Quach, Nicholas C. Craven, Justin B. Gilmer, Clare McCabe,
Peter T. Cummings, and Jeffrey J. Potoff. MoSDeF-GOMC: Python Software for the Creation of
Scientific Workflows for the Monte Carlo Simulation Engine GOMC. Journal of Chemical Information
and Modeling, 63(4):1218–1228, February 2023. URL: https://pubs.acs.org/doi/10.1021/
acs.jcim.2c01498, doi:10.1021/acs.jcim.2c01498.

[22] Jessica A. Nash, Mohammad Mostafanejad, T. Daniel Crawford, and Ashley Ringer McDonald.
MolSSI Education: Empowering the Next Generation of Computational Molecular Scientists. Com-
puting in Science & Engineering, 24(3):72–76, May 2022. URL: https://ieeexplore.ieee.org/
document/9882989/, doi:10.1109/MCSE.2022.3165607.

[23] Matthew W. Thompson, Justin B. Gilmer, Ray A. Matsumoto, Co D. Quach, Parashara Shamaprasad,
Alexander H. Yang, Christopher R. Iacovella, Clare McCabe, and Peter T. Cummings. Towards molec-
ular simulations that are transparent, reproducible, usable by others, and extensible (TRUE). Molecular
Physics, 118(9-10):e1742938, June 2020. URL: https://www.tandfonline.com/doi/full/10.
1080/00268976.2020.1742938, doi:10.1080/00268976.2020.1742938.

[24] Vincent K. Shen, Daniel W. Siderius, William P. Krekelberg, and Harold W. Hatch, editors. NIST
Standard Reference Simulation Website. Number 173 in NIST Standard Reference Database. Na-
tional Institute of Standards and Technology, Gaithersburg, MD, 20899. URL: https://doi.org/
10.18434/T4M88Q.

[25] Pascal T. Merz and Michael R. Shirts. Testing for physical validity in molecular simulations. PLOS
ONE, 13(9):e0202764, September 2018. URL: https://dx.plos.org/10.1371/journal.pone.
0202764, doi:10.1371/journal.pone.0202764.

https://linkinghub.elsevier.com/retrieve/pii/S002199918571039X
https://linkinghub.elsevier.com/retrieve/pii/S002199918571039X
https://doi.org/10.1006/jcph.1995.1039
https://linkinghub.elsevier.com/retrieve/pii/S2352711015000059
https://doi.org/10.1016/j.softx.2015.06.001
https://doi.org/10.1016/j.softx.2015.06.001
https://onlinelibrary.wiley.com/doi/10.1002/jcc.20291
https://doi.org/10.1002/jcc.20291
https://www.tandfonline.com/doi/full/10.1080/00268976.2020.1742938
https://www.tandfonline.com/doi/full/10.1080/00268976.2020.1742938
https://doi.org/10.1080/00268976.2020.1742938
https://pubs.acs.org/doi/10.1021/jm070549%2B
https://doi.org/10.1021/jm070549+
https://doi.org/10.1021/jm070549+
https://linkinghub.elsevier.com/retrieve/pii/S0378381203003571
https://doi.org/10.1016/S0378-3812(03)00357-1
https://linkinghub.elsevier.com/retrieve/pii/S0378381203002085
https://doi.org/10.1016/S0378-3812(03)00208-5
https://doi.org/10.1016/S0378-3812(03)00208-5
https://pubs.acs.org/doi/10.1021/acs.jcim.2c01498
https://pubs.acs.org/doi/10.1021/acs.jcim.2c01498
https://doi.org/10.1021/acs.jcim.2c01498
https://ieeexplore.ieee.org/document/9882989/
https://ieeexplore.ieee.org/document/9882989/
https://doi.org/10.1109/MCSE.2022.3165607
https://www.tandfonline.com/doi/full/10.1080/00268976.2020.1742938
https://www.tandfonline.com/doi/full/10.1080/00268976.2020.1742938
https://doi.org/10.1080/00268976.2020.1742938
https://doi.org/10.18434/T4M88Q
https://doi.org/10.18434/T4M88Q
https://dx.plos.org/10.1371/journal.pone.0202764
https://dx.plos.org/10.1371/journal.pone.0202764
https://doi.org/10.1371/journal.pone.0202764

23

[26] D. Price. Pentium FDIV flaw-lessons learned. IEEE Micro, 15(2):86–88, April 1995. URL: https:
//ieeexplore.ieee.org/document/372360/, doi:10.1109/40.372360.

[27] R. Kaivola and N. Narasimhan. Formal Verification of the Pentium® 4 Floating-Point Multiplier. In
Proceedings of the conference on Design, automation and test in Europe, DATE ’02, page 20, USA,
March 2002. IEEE Computer Society.

[28] Daniel Selsam, Percy Liang, and David L. Dill. Developing Bug-Free Machine Learning Systems With
Formal Mathematics. In Proceedings of the 34th International Conference on Machine Learning, pages
3047–3056. PMLR, July 2017. ISSN: 2640-3498. URL: https://proceedings.mlr.press/v70/
selsam17a.html.

[29] John Harrison. Floating-Point Verification Using Theorem Proving. In Marco Bernardo and Alessan-
dro Cimatti, editors, Formal Methods for Hardware Verification, volume 3965, pages 211–242.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2006. Series Title: Lecture Notes in Computer Sci-
ence. URL: http://link.springer.com/10.1007/11757283_8, doi:10.1007/11757283_8.

[30] Anh V. Tran and Yan Wang. Reliable Molecular Dynamics: Uncertainty quantification using interval
analysis in molecular dynamics simulation. Computational Materials Science, 127:141–160, February
2017. URL: https://linkinghub.elsevier.com/retrieve/pii/S0927025616305171, doi:
10.1016/j.commatsci.2016.10.021.

[31] Geoffrey Irving. girving/interval, March 2025. original-date: 2024-05-26T10:00:08Z. URL: https:
//github.com/girving/interval.

[32] Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von Raumer. The
Lean Theorem Prover (System Description). In Amy P. Felty and Aart Middeldorp, editors, Automated
Deduction - CADE-25, pages 378–388, Cham, 2015. Springer International Publishing. doi:10.
1007/978-3-319-21401-6_26.

[33] David Thrane Christiansen. Functional Programming in Lean.

[34] Maxwell P. Bobbin, Samiha Sharlin, Parivash Feyzishendi, An Hong Dang, Catherine M. Wraback,
and Tyler R. Josephson. Formalizing chemical physics using the Lean theorem prover. Digital Dis-
covery, 3(2):264–280, 2024. URL: https://xlink.rsc.org/?DOI=D3DD00077J, doi:10.1039/
D3DD00077J.

[35] Joseph Tooby-Smith. HepLean: Digitalising high energy physics, May 2024. arXiv:2405.08863 [hep-
ph]. URL: http://arxiv.org/abs/2405.08863, doi:10.48550/arXiv.2405.08863.

[36] Tomáš Skřivan. lecopivo/SciLean, April 2025. original-date: 2021-09-27T21:50:10Z. URL: https:
//github.com/lecopivo/SciLean.

[37] The Mechanics of Proof — The Mechanics of Proof, by Heather Macbeth. URL: https://
hrmacbeth.github.io/math2001/index.html.

[38] Michael Patrick Allen and Dominic J. Tildesley. Computer simulation of liquids. Oxford university
press, Oxford, 2nd ed edition, 2017.

[39] Daan Frenkel and Berend Smit. Understanding molecular simulation: from algorithms to applications.
Number 1 in Computational science series. Academic Press, San Diego, 2nd ed edition, 2002.

[40] Joseph Tooby-Smith. Formalization of physics index notation in Lean 4, November 2024.
arXiv:2411.07667 [cs]. URL: http://arxiv.org/abs/2411.07667, doi:10.48550/arXiv.
2411.07667.

https://ieeexplore.ieee.org/document/372360/
https://ieeexplore.ieee.org/document/372360/
https://doi.org/10.1109/40.372360
https://proceedings.mlr.press/v70/selsam17a.html
https://proceedings.mlr.press/v70/selsam17a.html
http://link.springer.com/10.1007/11757283_8
https://doi.org/10.1007/11757283_8
https://linkinghub.elsevier.com/retrieve/pii/S0927025616305171
https://doi.org/10.1016/j.commatsci.2016.10.021
https://doi.org/10.1016/j.commatsci.2016.10.021
https://github.com/girving/interval
https://github.com/girving/interval
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/978-3-319-21401-6_26
https://xlink.rsc.org/?DOI=D3DD00077J
https://doi.org/10.1039/D3DD00077J
https://doi.org/10.1039/D3DD00077J
http://arxiv.org/abs/2405.08863
https://doi.org/10.48550/arXiv.2405.08863
https://github.com/lecopivo/SciLean
https://github.com/lecopivo/SciLean
https://hrmacbeth.github.io/math2001/index.html
https://hrmacbeth.github.io/math2001/index.html
http://arxiv.org/abs/2411.07667
https://doi.org/10.48550/arXiv.2411.07667
https://doi.org/10.48550/arXiv.2411.07667

	Introduction
	Methods
	Informal Description of the Molecular Simulation System
	Formally Defining the Mathematics
	Introduction to Lean syntax
	Lennard Jones Potential
	Periodic Boundaries
	Minimum Image Distance
	Long-Range Corrections

	Code Execution
	Functional Programming
	Polymorphism
	Input and Output in Lean

	Results
	Conclusions and Outlook

