On uniqueness of σ -finite measures on a product space

by Etienne Marion

Consider (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) two σ -finite measure spaces. It is well known that the product measure $\mu \otimes \nu$ is the only measure ξ over the product space $(X \times Y, \mathcal{A} \otimes \mathcal{B})$ satisfying

$$\forall E \in \mathcal{A}, F \in \mathcal{B}, \xi(E \times F) = \mu(E)\nu(F).$$

Thus the product of two σ -finite measures is characterized by its value on what we will call measurable rectangles. This however is no longer true if μ and ν are only assumed to be s-finite, i.e. to be a countable sum of finite measures. Indeed, consider $\mu = \nu := \infty \cdot \text{Leb}_{[0,1]}$, i.e. the measure which to a Lebesgue-measurable set associates ∞ if it has positive Lebesgue measure, and zero otherwise. Denote by λ the Lebesgue measure on the diagonal of $[0,1]^2$. Then for any $E, F \in \mathcal{L}([0,1])$ (the Lebesgue σ -algebra), if either E or F has Lebesgue measure 0, then

$$(\mu \otimes \nu)(E \times F) = (\mu \otimes \nu + \lambda)(E \times F) = 0.$$

Otherwise, both measures give infinite measure to $E \times F$, therefore the two measures $\mu \otimes \nu$ and $\mu \otimes \nu + \lambda$ coincide on measurable rectangles. However $\mu \otimes \nu$ gives measure zero to the diagonal, while $\mu \otimes \nu + \lambda$ gives it measure $\sqrt{2}$, so the two measures are different.

Consider now the more general case of a σ -finite measure μ defined over the product space $(X \times Y, \mathcal{A} \otimes \mathcal{B})$. Is it characterized by its value on measurable rectangles? This is true if μ is assumed to be finite, as can be shown via the π - λ theorem. It is also true if μ is the product of two σ -finite measures, as discussed above. However, it turns out that it is not true in general. The goal of this note is to provide a counter example. This counter example was presented to me by Sébastien Gouëzel, and is based on problem 14E in *Problems for Mathematicians*, *Young and Old* by Paul R. Halmos.

We will build a function $B:\mathbb{R}^2\to\mathbb{R}_+$ such that for any $E,F\in\mathcal{L}(\mathbb{R})$ with positive measure, B has an infinite integral over $E\times F$ against the Lebesgue measure on \mathbb{R}^2 . Therefore, using the same trick as before, it will not be possible to distinguish the measure with density B from the same measure to which we add the Lebesgue measure over the diagonal of \mathbb{R}^2 by simply looking at their values over measurable rectangles. On the other hand, because B is finite everywhere, the measure with density B will be σ -finite (take $X_n:=\{x\mid B(x)\leq n\}\cap [-n,n]^2$ to get a sequence of spanning sets with finite measure). In what follows, if $E\in\mathcal{L}(\mathbb{R})$, we will denote by |E| the Lebesgue measure of E.

To construct B, consider $(r_n)_{n\in\mathbb{N}}$ a dense sequence in \mathbb{R} , and let I_n be the interval centered at r_n and with length $\frac{1}{2^n}$. We set

$$A: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \sum_{n \geq 0} 4^n \mathbb{1}_{I_n}(x).$$

Because $\sum_{n\geq 0} |I_n| < \infty$, the Borel-Cantelli lemma implies that for Leb-almost every x, the sum defining A(x) contains only a finite number of non-zero terms, and is therefore finite. We redefine A by setting it to 0 on the zero-measure set where it is infinite.

We now set B(x,y) := A(x-y). Let $E, F \in \mathcal{L}(\mathbb{R})$ with positive measure. Doing the change of variable u = x - y and v = y, we have

$$\begin{split} \int_{E\times F} B(x,y) \,\mathrm{d}x \,\mathrm{d}y &= \int_{\mathbb{R}^2} A(x-y) \mathbbm{1}_{E\times F}(x,y) \,\mathrm{d}x \,\mathrm{d}y \\ &= \int_{\mathbb{R}^2} A(u) \mathbbm{1}_{E\times F}(u+v,v) \,\mathrm{d}u \,\mathrm{d}v \\ &= \int_{\mathbb{R}} A(u) \int_{\mathbb{R}} \mathbbm{1}_{E\times F}(u+v,v) \,\mathrm{d}v \,\mathrm{d}u \\ &= \int_{\mathbb{R}} A(u) \int_{\mathbb{R}} \mathbbm{1}_{(E-u)\cap F}(v) \,\mathrm{d}v \,\mathrm{d}u \\ &= \int_{\mathbb{R}} A(u) |(E-u)\cap F| \,\mathrm{d}u. \end{split}$$

We will now prove that, for some constant c > 0, there exist arbitrarily large n such that for every $u \in I_n$, $|(E - u) \cap F| \ge c$. This will imply that

$$\int_{E\times F} B(x,y)\,\mathrm{d} x\,\mathrm{d} y \geq c\int_{I_n} A(x)\,\mathrm{d} x \geq c4^n |I_n| = c2^n,$$

which in turn implies that $\int_{E\times F} B(x,y) dx dy = \infty$. To do that, recall that because E and F both have positive measure, the Lebesgue's density theorem implies that there exist $x \in E$, $y \in F$ and $\varepsilon > 0$ such that

$$|E\cap [x-\varepsilon,x+\varepsilon]|>\frac{4\varepsilon}{3} \text{ and } |F\cap [y-\varepsilon,y+\varepsilon]|>\frac{4\varepsilon}{3}.$$

Let $u \in \left[x - y - \frac{\varepsilon}{7}, x - y + \frac{\varepsilon}{7}\right]$. Then

$$|(E-u)\cap [x-u-\varepsilon,x-u+\varepsilon]|=|E\cap [x-\varepsilon,x+\varepsilon]|\geq \frac{4\varepsilon}{3}.$$

Moreover, $x - u \in \left[y - \frac{\varepsilon}{7}, y + \frac{\varepsilon}{7}\right]$, which means that

$$\begin{split} |(E-u)\cap[y-\varepsilon,y+\varepsilon]| &\geq |(E-u)\cap[x-u-\varepsilon,x-u+\varepsilon]\cap[y-\varepsilon,y+\varepsilon]| \\ &= |((E-u)\cap[x-u-\varepsilon,x-u+\varepsilon])\setminus\\ &\qquad ([y-\varepsilon,y+\varepsilon]^c\cap[x-u-\varepsilon,x-u+\varepsilon])| \\ &\geq |(E-u)\cap[x-u-\varepsilon,x-u+\varepsilon]| -\\ &\qquad |[y-\varepsilon,y+\varepsilon]^c\cap[x-u-\varepsilon,x-u+\varepsilon]| \\ &\geq \frac{4\varepsilon}{3} - \frac{2\varepsilon}{7} > \varepsilon. \end{split}$$

We also know that $|F \cap [y - \varepsilon, y + \varepsilon]| > \frac{4\varepsilon}{3}$. Because $|[y - \varepsilon, y + \varepsilon]| = 2\varepsilon$, we deduce that

$$|(E-u)\cap F|\geq |(E-u)\cap F\cap [y-\varepsilon,y+\varepsilon]|>\frac{7\varepsilon}{3}-2\varepsilon=\frac{\varepsilon}{3}.$$

Take $c := \frac{\varepsilon}{3}$. To conclude, we notice that because the sequence $(r_n)_{n \in \mathbb{N}}$ is dense, the interval $\left[x-y-\frac{\varepsilon}{8},x-y+\frac{\varepsilon}{8}\right]$ contains infinitely many terms of the sequence, which implies that there exist arbitrarily large n such that $\left[x-y-\frac{\varepsilon}{7},x-y+\frac{\varepsilon}{7}\right]$ contains I_n .